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Abstract
When large ensembles of phase oscillators interact globally, andwhen bimodal frequency
distributions are chosen for the natural frequencies of the oscillators themselves, Bellerophon states
are generically observed at intermediate values of the coupling strength. These aremulti-clustered
states emerging in symmetric pairs. Oscillators belonging to a given cluster are not locked in their
instantaneous phases or frequencies, rather they display the same long-time average frequency (a sort
of effective global frequency).Moreover, Bellerophon states feature quantized traits, in that such
average frequencies are all oddmultiples (±(2n−1), n=1, 2...) of a fundamental frequencyΩ1.We
identify and investigate (analytically and numerically) several typical bifurcation paths to synchroniza-
tion, including first-order and second-order-like. Linear stability analysis allows to successfully solve
the critical transition point for synchronization.Our results highlight that the spontaneous setting of
higher order forms of coherence could be achieved in classical Kuramotomodel.

1. Introduction

Synchronization phenomena are ubiquitous in physics, chemistry, biology, engineering, and human society. In
particular, synchronization in networked oscillators has attracted great attention in the last few decades, due to
its potential in applications [1]. Recently, a special phase coherence (called the Bellerophon state)has been
characterized in globally coupled nonidentical phase oscillators. Such a state is a quantized, time-dependent,
clustered state which emerges close to afirst-order-like transition to synchronization [2–5]. There are twomain
backgrounds of this work: the first is explosive synchronization, i.e. an abrupt, first-order-like, transition to a
coherent (synchronous) state of globally coupled phase oscillators, and the second is the Bellerophon states
whichwere so far found only in generalizedKuramotomodels [3–5].

As for explosive synchronization, after the seminal workswithKuramotomodel on scale-free networks
[6, 7], it was argued that a sufficient condition be the setting of proper correlations between the natural
frequencies of the phase oscillators and the networkʼs node degrees. Later, Zhang et al proposed a frequency-
weightedKuramotomodel, which can exhibit first-order-like synchronization transition on generic networkʼs
topologies for typical frequency distributions [8–12]. Furthermore, it was revealed that themechanism at the
basis of such abrupt synchronization transition is similar to that underlying explosive percolation [2], where the
formation of a giant component is controlled by a suppressive rule [10]. Finally,first-order-like synchronization
transitionwas also found in adaptive andmulti-layer networks [11]. As for the Bellerophon states, they have
been observed so far in generalized Kuramotomodels: either the frequency-weighted Kuramotomodel [3, 4] or
theKuramotomodel with conformists and contrarians [5].

In our paper, we focus on the classical Kuramotomodel, andwe consider a bimodal distribution for the
selection of the natural frequencies of the phase oscillators. In these conditions, wefirst point out that the regime
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called standing wave byCrawford [13] and identified in [14] is actually not a standingwave but is, in fact, a
Bellerophon state. Then, we carefully investigate five regimes on the parameter plane, and identify several typical
bifurcation paths to synchronization, including bothfirst-order and second-order-like.Moreover, the
robustness of ourfindings is demonstrated by the fact that a similar scenario emerges for different bimodal
frequency distributions. Finally, we apply linear stability analysis (to the entire system, and not to a reduced
lower-dimensional one, as several other studies have done in the past by using theOtt–Antonsenmethod), and
successfully solve the critical transition point for synchronization. All our theoretical predictions arewell
consistent with numerical simulations.

2.Model and theoretical analysis

Let us start by introducing the classical Kuramotomodel [15], which describes the evolution of an ensemble ofN
globally coupled phase oscillators:
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where dot denotes a temporal derivative, and i=1,K,N. The instantaneous phases θi(t) evolve as q w=˙ ( )ti i

when the coupling strengthκ is set to zero. The oscillators’natural frequenciesωi are taken from a distribution g
(ω)which is usually considered symmetric and centered at zero, i.e. g(ω)= g(−ω) in the thermodynamic limit
(  ¥N ). Tomonitor the setting of coherence in the ensemble asκ increases, one can rely on the (complex
valued) order parameter defined as
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where 0�r�1 is themodulus of themean-field, andΨ is the average phase. r=0 (r=1) corresponds to a
fully incoherent (fully coherent) state, while intermediate values of r characterize partially coherent states where
a portion of the ensemble is organized into one, ormany synchronized clusters, and coexists with a sea of not
entrained oscillators. For the case of a unimodal distribution g(ω), a continuous transition from incoherence to
full coherence is found at the critical point k =

p ( )c g

2

0
. For bimodal distributions the results are somehow

inconclusive, and point to the formation, atκ>κc, of two symmetric counter-rotating clusters of synchronized
oscillators, a state whichwas (inaccurately, as wewill shortly see)named as standingwave.

For a direct comparisonwith existing literature, we start by considering the same family of symmetric
bimodal distributions used in [14], i.e. the sumof two Lorentzian distributions
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is the Lorentzian distribution having 2Δ as the half width at halfmaximumof each peak, and±ω0 as center
frequencies. Note that equation (3) includes also a unimodal distribution as the trivial case for wD > 3 0, i.e.
when the two peaks are close enough to each other.

Several detailed studies of equation (1)with a bimodal distributionwere carried out [13, 14, 16, 17], and the
conclusion is that themodel exhibits the route to synchronization depicted infigure 1. As reported in [14], three
types of attractor are found: the incoherent (green area infigure 1(a)) and partially synchronized states (yellow
area) corresponding to the trivial and nontrivial fixed points, andwhatwas initially thought to be a standing
wave (red, dark and light brown areas) corresponding to a limit-cycle solution. The transitions between these
states aremediated by transcritical (TC), saddle-node (SN), Hopf (HB), and homoclinic (HC) bifurcations.
However, the bifurcation and stability analysis weremade using a reductionmethod developed byOtt and
Antonsen [18] and, as theAuthors themselve alert, some of the actual systemʼs behaviormight be lost due to the
fact that the reduced systemonly represents a special restricted class of all possible solutions of the original
system. Therefore, it is desirable to conduct the analysis on the full system, and to avoid any simplification.

Let us therefore carry out a direct linear stability analysis of equation (1) in the thermodynamical limit (i.e.
when  ¥N ) for the case inwhich the distribution of natural frequencies is given by equation (3), bymaking
use of amethod similar to that of [9, 19]. In the continuum limit, a density function ρ(θ,ω, t) can be introduced,
such that ρ(θ,ω, t) dθ accounts for the fraction of oscillators of natural frequencyωwhose phases are between θ
and θ+dθ at time t. ρ satisfies the normalization condition
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for allω and all t, and its evolution is governed by the continuity equation
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where υ(θ,ω, t) is the angular velocity. In itsmean-field form, equation (1) can be rewritten as

u w k q= + Y -( ) ( )r sin , 7

where it is clear that the different oscillators are only ‘seeing’ themean-field quantities r andΨ.
Let us now analyze the stability of the incoherent state ρ0(θ,ω, t)=1/(2π) (υ=ω) by linearizing the

continuity equation in the limit of small coupling strengths. Following themethodology of [9], one obtains that
the characteristic equation for the discrete eigenvalueλ (whose real part determines the stability of the
incoherent state) is
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Equation (8) explicitly relates the coupling strengthκwith the eigenvalueλ and, therefore, when the sign of the
Re[λ] changes fromnegative to positive, the incoherent state loses its stability. Once the frequency distribution
of equation (3) is inserted in equation (8), one obtains
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In general, the eigenvalueλ is complex, i.e.λ=a+ ibwith Îa b, . In the following, we separately discuss
the three possible cases: (i) a>0, (ii) a=0, and (iii) a<0.

(i) [a>0] In this case, f1(ω) and f2(ω) have poles ω1=ω0−iΔ and ω2=−ω0−iΔ respectively, and thus
the integral in equation (9) can be solved by conveniently choosing a contour line in the lower half complex
plane. The result is

Figure 1. (a)Bifurcation phase diagramof the classical Kuramotomodelwith a bimodal Lorentzian frequency distribution,
reproduced following figure 2 of [14]with themain bifurcation curves separating the transitions (TC, SN,HB, andHC) from
incoherent (CN=0, green) to partially (CN=1, yellow) synchronized states andwhat was called a standingwave (red and dark and
light brown). In fact, in this latter region Bellerophon states (where the oscillators’ instantaneous frequencies are not locked) emerge,
and the color (red, dark and light brown) indicates the number of coherent clusters that are observed (more than 3, 2, and 1). (b)The
five parameter regimes for different bifurcation paths toward synchronization as the coupling strength varies. Regimes I-IV andV
correspond to bimodal and unimodal frequency distributions, respectively, where the systembifurcates as reported infigure 2. The
parametersΔ andω0 stand for 4Δ/κ and 4ω0/κ, respectively. A, B, C, andD are points of higher codimension, as they correspond to
the intersections of bifurcation curves. Figure 1 adaptedwith permission from [14], Copyright 2009 by theAmerican Physical Society.
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where Res stands for the residue. From the above equation, one explicitly obtains the closed formof the
eigenvalue as
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Since a>0, one can use the condition Re[l  +] 01 to determine the critical coupling strength for the
synchronization transition, and one is presentedwith two possible situations:

(a) Softmode instability, forΔ<ω0 (bimodal regime). The critical coupling strength is

k = D ( )4 . 14f

In this case, a pair of complex eigenvalues crosses the imaginary axis at the bifurcation point, which typically
leads to limit-cycle oscillations. Equation (14) defines the half line reported (in solidmagenta) in
figure 1(b), and labeled asHB.

(b) Hard mode instability, for w w> D3 0 0 (bimodal), or  wD 3 0 (unimodal). There is only one
real eigenvalue crossing the origin along the real axis at the bifurcation point, and no periodic solutions
exist after the synchronization transition. The critical coupling strength is

k
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which defines the semicircle reported (in blue and green) infigure 1(b) and labeled as TC (for transcritical).

(ii) [a=0, λ=ib ]. f1 and f2 have poles at ω1=ω0+iΔ and ω2=−ω0+iΔ (in the upper half complex
plane), andω3=−b (in the real axis). By choosing an appropriate contour line, integration of equation (9)
gives:
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Note thatκ is real as long as the rhs of the above equation is a purely imaginary number, which is only
possible if both the lhs and rhs are equal to 0. This leads to b(b2+Δ2−ω0

2)=0 and k  ¥f which is
physically unreasonable. There are two eigenvalues in this circumstance. One isλ2=0, the other is

l w= - D i2 0
2 2 (withΔ<ω0, bimodal) that is purely imaginary.

(iii) [a<0]. In this case, f1 and f2 have poles in the upper half complex plane: ω1=ω0+iΔ and
ω2=−ω0+iΔ. The integration of equation (9) gives:
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Analytically, the eigenvalue is
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Since a<0, this directly requires + D <k 0
4

, i.e.κ<0, whichmakes no physical sense. Therefore, the

eigenvalueλ3 is artificial and should be disregarded.

3.Numerical results

Tohave a full confirmation of the bifurcations and transitions predicted from the linear stability analysis of
equation (8) and reported infigure 1(b), we performed extensive numerical simulations7 of the full Kuramoto
model (equation (1)) along the linesΔ/ω0=0.36, 0.8, 0.92, 1.0, 1.16, and 1.96 that traverse the regions I, II, III,
Line EA, IV, andV,marked infigure 1(b).

7
Numerical integrations are performedwith a fourth-order Runge–Kuttamethodwith integration time stepD =t 0.01. The initial

conditions for the phase variables are randomly taken and the typical number of oscillators in the ensemble is = ´N 5 104.
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Each panel forming figure 2 corresponds to one of these cases, and shows the order parameter r for the
forward (backward) synchronization transition as the coupling strengthκ increases (decreases). In particular,
figure 2(a) depicts a case in Region I (Δ<0.55ω0)where the systembifurcates from the incoherent (I) state
(green area) to a Bellerophon state (Bs) and then to a partially synchronous (PS) state (yellow area). Both
transitions are continuous, and there is no hysteresis loop. The two points in the transition curvemarked as A
andB correspond to Bs (whose detailed descriptionwill be provided below). In Region II
(0.55ω0<Δ<0.85ω0, reported in figure 2(b)), the transition I Bs is continuous, while the transitions Bs
PSBs are first-order-like with hysteresis.

The scenario reported infigure 2(c) (describing the emerging dynamics in Region III, i.e. for
0.85ω0<Δ<ω0) is almost identical to that reported infigure 2(b), except for the backward transition at which
the system experiences the passage fromPS to I. The hysteresis area shows bistability, and there are actually two
separate regimeswhere the PS state coexists with the I and the Bellerophon states. As the frequency distribution
becomes closer to a unimodal one (see the insets at the left hand side of the panels), Bellerophon states are no
longer present and the systembifurcates directly from I to PS and fromPS to I following afirst-order -like
transitionwith hysteresis (panels d and e belonging to Line EA andRegion IV, respectively) orwithout hysteresis
(panel f, regionV).

Figure 2. Forward and backward synchronization transitions versusκ computed along the lines (a)Δ/ω0=0.36 in region I; (b)Δ/
ω=0.8 in region II; (c)Δ/ω=0.92 in region III; (d)Δ/ω=1 line EA; (e)Δ/ω=1.16 in region IV; and (f)Δ/ω=1.96 in region
V. In all panels, the insets on the left side show the frequency distribution, and the enlargement of hysteresis loops are highlighted on
the right. In panels (a)–(c), Bellerophon states (denoted by arrows) are observed atmoderate values ofκ. In panel (d), one obtains
numericallyκf=9.87 andκb=9.0, which are consistent with the theoretical prediction 10 and 9.0, respectively.
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As already discussed, Bellerophon states [3] emergewhen crossing frombelow the half life in the bifurcation
diagramoffigures 1(a) and (b). This is an important clarification to previous works’ astray conclusions that such
a region of the phase diagram sustains standing waves characterized by two counter-rotating groups of oscillators
whose frequencies are locked plus a group of desynchronized oscillators. The Bellerophon states, instead, are
multiclustered states emerging in symmetric pairs as the coupling increases, such that oscillators in each pair of
clusters rotate with the same average velocity but in opposite direction, andwhose phases and instantaneous
frequencies are not locked [3].

Figure 3 shows a complete characterization of the Bellerophon statesmarked as points A andB infigure 2(a).
For each oscillator i in the ensemble, the figure reports the instantaneous phases θi (panels a1 and b1) and
frequencies q̇i (panels a2, b2), and the long-time averaged frequency qá ñ˙

i (panels a3, b3) of each oscillator in the
ensemble, as a function of the natural frequencyωi. One can clearly see a symmetricmulticluster structure (2
clusters labeled as ‘1’ and ‘−1’ for point A, and 8 visible clusters±1,±3,±5,±7 for point B)portrayed as
plateaus in panels a3 and b3, coexistingwith some oscillators whose behavior is incoherent.

Remarkably, such a collective organization implies the emergence of quantized traits: the plateaus (in the
staircases of the time averaged frequency) are, indeed, quantized in the sense that the qá ñ˙

i are oddmultiples
(±(2n−1), n=1, 2...) of the lowest clusterʼs frequency,Ω1. Figure 3(a4) shows the real and imaginary values
of the order parameter (equation (2)) for the two populations of oscillators with positive and negative
frequencies splitting in two (red and green) oval orbits, reflecting the oscillatorymotion of the total order

Figure 3.Characterization of the Bellerophon states occurring at points A (panels a) andB (panels b) infigure 2(a). Snapshots of the
instantaneous phase θi (a1 and b1), the instantaneous speed q̇i (a2 and b2), and the average speed qá ñ˙

i (a3 and b3) versus the natural
frequenciesωi of the oscillators. (a4) Local order parameters of the two counter-rotating clusters (red oval for positive frequencies and
green oval for negative), and global order parameter in blue. Insets: time evolution of themodulus r and the phaseΨ of the global order
parameter. (b4)Enlargement of the average speeds of the coherent clusters in panel b3. They correspond to odd-numberedmultiples
of the principle frequencyΩ1. Insets: local order parameters in the complex plane for clusters 1, 3, 5, and 7.
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parameter (as shownby the blue line corresponding to the global order parameter and in the insets for the
modulus r and phaseΨ). Once again, this is in contrast to a standingwave, where both local order parameters
should be on the same circle. For the point B, withmultiple symmetric coherent clusters (b1–b3), an
enlargement of the time averaged frequencies in panel b4, clearly shows the staircase structure with the plateaus
corresponding to the clusters’ frequencies±(2n−1)Ω1, with n=1, 2, 3, 4. The four insets report the local
order parameter in the complex plane in the clustersC1,C3,C5, andC7, showing the typical periodic or quasi-
periodic behavior resulting from complicated phase relationships among the oscillators in each cluster.

As for the critical point of the forward transition, figure 4 gives an account of how accurately the analytical
predictions given by equations (14) and (15) are verified by the numerical simulations. As it can be seen,κf
increases linearly withΔ as predicted by the equation (14) as long asΔ<ω0.WhenΔ>ω0 (red circles,
Δ=2.5, and green squares,Δ=3.0) the critical coupling obeys equation (15)with amuch less pronounced
increase.

Finally, we also briefly discuss the collective organization of system (1) in the presence of a different (a bi-
triangular) frequency distribution, given by w w w= +( ) [ ( ) ( )]g g g1

2 1 2 , where

w
p w w

p
w w p=

D - +
D
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2 2 0
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p w w
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The results are reported infigure 5, and one can see that the overall scenario is very similar to that occurring in
figure 2, with the generic presence of Bellerophon states at intermediate values of the coupling strength. These
Bellerophon states, on their turn, have the same characteristics as those reported infigure 3, confirming howour
findings are not dependent on the specific choice of the frequency distribution.

4. Conclusion anddiscussion

Kuramoto-likemodels have been proved to be successful to describe synchronization inmany real-world
systems, for example, the circadian rhythms of plants and animals [20], the synchronized flashing offireflies
[21], the Josephson junction arrays [22], and neurons in human brain [23], just name a few. Typically, the
unimodal frequency distributions are considered, which actually describe dynamical systemswith one
characteristic frequency. However,many real systems have interacting individuals with different characteristic
behaviours andmultiple time scales. For instance, both excitatory and inhibitory links are present in neural
networks [24]. Therefore, it is also desirable to investigate theKuramotomodels with the bimodal frequency
distributions. In fact, such studies have already providedmany important insights on synchronization
transitions [13, 14, 16, 17].

In this work, we have here shown that Bellerophon states can occur in classical Kuramotomodels with
typical bimodal frequency distributions. If taken together with some of our previous results (that reported the
same states in frequency-weighted Kuramotomodel and in theKuramotomodel with conformists and

Figure 4.Critical coupling strengthκf for the forward transition versusΔ for several values ofω0. The black linewith slope 4
corresponds to the theoretical solution given by equation (14)while the two branches departing from (2.5, 10) (red circles) and (3, 12)
(green squares) correspond to the prediction given by equation (15).
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contrarians), the conclusion is that the Bellerophon state is in fact a generic organization of globally coupled
phase oscillators occurring at intermediate values of the coupling strength, not limited to specific dynamical
model nor to special arrangements in the frequency distributions. Evenmore importantly, Bellerophon states
aremulti-clustered states where higher order of coherence are set among the nonidentical oscillators (only long-
term average frequencies are locked in each cluster of oscillators).

Furthermore, ourwork shows that explosive synchronization is inherent in classical Kuramotomodel with
bimodal frequency distributions. Its occurrence does not require any special scheme, such as a dynamics-
topology correlation [6], a frequencyweighted coupling [8], or an adaptive coupling [11]. In ourmodel, asΔ/ω0

increases, the frequency distribution gradually changes from a bimodal to a unimodal one. As shown infigure 2,
explosive synchronization does not occur for purely unimodal distributions, nor it occurs when the two peaks of
the bimodal distributions are too separated. It only occurs, interestingly, in a limited range of the bimodal case
where the two peaks are not toomuch separated (as it can be seen infigure 2). The present results raise an
important question: what is the necessary condition forfirst-order synchronization transitions? In otherwords,
what is themechanismunderlying such phenomena?

We emphasize that Bellerophon states are generic states of partial (orweak) coherence occurring in globally
coupled nonidentical oscillators, when frequencies arewidely distributed. Typically, such states occur in the
regimewhere the control parameter is at an intermediate value. In such case, on the one hand the coupling is not
strong enough to completely entrain all oscillators (synchronized state), and on the other hand it is large enough
to achieve certain correlations among them.Aswe know, fully or strong synchronization sometimes turns out to
be harmful in real situations, such as the spiral wave in human heart and strong synchronization of EEG in brain
during epileptic seizure. Therefore, the further investigation onBellerophon states will certainly enhance our
understanding of collective behaviors towards real-world circumstances.
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Figure 5.Typical first-order-like synchronization in the classical Kuramotomodel with bi-triangle frequency distribution. The
bifurcation scenarios in (a)–(d) are qualitatively the same as infigures 2(a)–(d), respectively. In addition, Bellerophon states are
typically observed (and their emergence is pointed by arrows in thefigure).
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