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Recently, the Bellerophon state, which is a quantized, time dependent, clustering state, was

revealed in globally coupled oscillators [Bi et al., Phys. Rev. Lett. 117, 204101 (2016)]. The most

important characteristic is that in such a state, the oscillators split into multiple clusters. Within

each cluster, the instantaneous frequencies of the oscillators are not the same, but their average

frequencies lock to a constant. In this work, we further characterize an intermittent Bellerophon

state in the frequency-weighted Kuramoto model with a biased Lorentzian frequency distribution.

It is shown that the evolution of oscillators exhibits periodical intermittency, following a synchro-

nous pattern of bursting in a short period and resting in a long period. This result suggests that the

Bellerophon state might be generic in Kuramoto-like models regardless of different arrangements

of natural frequencies. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972117]

In the study of synchronization, the classical Kuramoto

model and its many generalizations turn out to be proto-

types to offer important insight. So far, by extensive

investigations, a variety of coherent states have been

found in such systems, including the partially synchro-

nous state, the traveling wave state, the standing wave

state, and the Chimera state. Typically, these coherent

states can be classified into two types: stationary and

nonstationary. Here, the stationary state refers to such

an asymptotic state of the dynamical system in which

the probability density function of oscillators is time-

independent, and nonstationary state otherwise. Since

these asymptotic states characterize the long-term

dynamics of the system, they are of fundamental impor-

tance for understanding the collective behaviors of these

systems. Recently, several new Kuramoto-like models,

such as the frequency-weighted Kuramoto model, have

been investigated, which have been shown that transitions

in such systems can be discontinuous, i.e., the first-order.

Thus, it is important to identify and characterize possible

coherent states in these models. Recently, a new quan-

tized, time dependent, clustering state was revealed in the

frequency-weighted Kuramoto model with the bimodal

Lorentzian frequency distribution (FD). Along this

line, in this paper, we further report an intermittent

Bellerophon state in this model with the biased

Lorentzian frequency distribution. We provide a detailed

characterization of the dynamical features of such state,

which is helpful for us to understand the complicated col-

lective behaviors in coupled oscillators.

I. INTRODUCTION

Synchronization refers to the collective behaviors self-

organized in dynamical systems with a large number of inter-

acting components. Under certain circumstances, the

motions of vast degrees of freedom may dissipate and the

dynamics of such a system then can be governed by a few

degrees of freedom. Mathematically, the original high-

dimensional dynamical space collapses into a subspace,

typically low-dimensional, known as synchronization mani-

fold. Synchronization has been extensively observed in

various fields, and typical examples include the firing of fire-

flies, pacemaker cells in heart, human circadian rhythms,

Josephson junction arrays, and laser networks.1

Theoretically, synchronization has been successfully

studied in models of coupled oscillators. In the simplest

form, the dynamics of an oscillator is described by only a

phase variable. The coupling of N phase oscillators leads to

the famous Kuramoto model, whose dynamical equation

reads2

_hj ¼ xj þ
j
N

XN

n¼1

sin hn � hj

� �
; j ¼ 1; :::;N: (1)

Here, hj (xj) are the instantaneous phase (the natural fre-

quency) of the jth oscillator. Dot denotes the temporal deriv-

ative and j is the global coupling strength. The set of N
natural frequencies fxjg is drawn from the certain frequency

distribution (FD) gðxÞ. In this system, the coupling strength

serves as the control parameter. When it is small, the system

is in the incoherent state, in which oscillators rotate almost

according to their natural frequencies. However, when the

coupling strength is increased to exceed certain threshold,

synchronization occurs and the system goes into the (par-

tially) coherent state, in which part oscillators have been

entrained by the mean field and become phase-locked.

The Kuramoto model and its various generalizations have

been extensively investigated for more than four decades.3,4 So

far, several typical coherent states have been observed and

characterized, such as the partially coherent state,2 the standing

wave state,5,6 the traveling wave state,6–10 and the Chimera

state.11,12 In all these coherent states, oscillators inside the

coherent cluster are typically frequency-locked. Recently,

a quantized, time dependent, clustering state, named as

the Bellerophon state, was revealed in globally coupled
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oscillators,13,14 which is essentially different from the

coherent states previously observed in Kuramoto-like mod-

els. In such a state, the oscillators organize into multiple

coherent clusters. By coherent here we mean that within

each cluster, the instantaneous frequencies of the oscilla-

tors are not equal to each other, but their average frequen-

cies lock to a constant. In this paper, we further show that

such a state also occurs with a different arrangement of

FD, i.e., a biased Lorentzian distribution. Interestingly, the

observed nonstationary state turns out to be periodically

intermittent, occurring in the intermediate regime between

incoherence and fully synchrony.

The dynamical system we study is a variant of Kuramoto

model, namely, the frequency-weighted Kuramoto model

_hj ¼ xj þ
jjxjj

N

XN

n¼1

sin hn � hj

� �
; j ¼ 1; :::;N: (2)

Recently, this model has been intensively investigated in

terms of explosive synchronization.15–20 For example, in Ref.

20, it has been studied with a biased Lorentzian distribution

g xð Þ ¼ D

p½ðx� x0Þ2 þ D2�
; (3)

where x0 corresponds to the peak of the distribution that is

generally not zero, and 2D is the width at half maximum. It

is shown that as x0 increases, the synchronization type in the

system converts from discontinuous (first-order) to continu-

ous (second-order). Interestingly, several types of coherent

states have been observed in these systems, including two

types of phase-locking states and one type of oscillatory

coherent state in which the order parameter turns out to be

time-dependent. In fact, such an oscillatory state has also

been observed in noise-driven active rotators in the

Shinomoto-Kuramoto model that is relevant to many physi-

cal contexts.21–23 In this work, we further investigate the

observed oscillatory coherent state in Ref. 20 and show that

it is a special, i.e., intermittent, Bellerophon state.

In our numerical simulations, the coupled ordinary

differential equations are integrated by the fourth-order

Runge-Kutta method with time step 0.01. The initial condi-

tions for the phase variables are chosen from ½�p; p� at ran-

dom. To simplify the situation, we keep D¼ 1 as a constant

throughout this work. In both forward and backward transi-

tions, the coupling strength is increased/decreased in an

adiabatic way with a step of 0.02. For each j, the order

parameters are averaged in a time window after the transient

stage. Typically, the total number of oscillators is N¼ 10 000.

To characterize the phase synchronization or collective

behavior in the model, an order parameter can be defined as

reiw ¼ 1

N

XN

j¼1

eihj ; (4)

where r and w are the module and argument of the mean

field, respectively. Physically, the complex order parameter

can be regarded as a vector on the complex plane. According

to its definition, r is between 0 and 1. Typically, r � 0

indicates a totally random phase distribution, i.e., the inco-

herent state, while r> 0 indicates a (partially) phase-locking

state, i.e., the coherent or synchronized state. As the system

becomes more coherent, r will gradually approach 1, corre-

sponding to fully synchrony in the system. In addition, to

characterize the coherent states, especially the microscopic

perspectives, we can take snapshots of it and plot the follow-

ing distributions, such as the instantaneous phases vs the nat-

ural frequencies, the instantaneous frequencies (the angular

speeds of oscillators along unit circle) vs the natural frequen-

cies, and the averaged instantaneous frequencies (the average

angular speeds) vs the natural frequencies.

II. RESULTS

Now we report the new coherent state observed in the

frequency-weighted Kuramoto model and characterize its

main properties. A typical example has been illustrated in

Fig. 1. In fact, this state is observed in a regime below

synchrony during the backward process of the first-order transi-

tion.20 As discussed in Ref. 20, when j is sufficiently large,

the coherent oscillators, though split into two clusters, are

frequency-locking; i.e., they rotate in one speed along the unit

circle. This situation belongs to the traveling wave state.

However, when j gradually decreases to below the synchro-

nous regime, the two phase-locking clusters further decompose

into multiple phase-coherent clusters as shown in Fig. 1(a).

However, interestingly, it is found that the oscillators in these

coherent clusters are no longer frequency-locked. As shown

FIG. 1. Characterizing the Bellerophon state observed in the model.

x0 ¼ 0:5 and j ¼ 2:08. (a)–(c) The phases (a), the instantaneous frequen-

cies (speeds) (b), and the average frequencies (average speeds) (c) vs the

natural frequencies of oscillators. (d) The counterpart of (c) in the rotating

frame. Note that the average frequencies are normalized by the fundamental

frequency X1. In (a) and (b), the snapshots are taken after integrating Eq. (2)

to t¼ 1000. In (c) and (d), the averages are calculated in the time window

[1000, 1000þ T1], where T1 ¼ 2p=X1 (see text for the definition of X1).

Such a numerical scheme is also used for Fig. 5.
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in Fig. 1(b), their instantaneous frequencies are generally dif-

ferent from each other.

Naturally, one may ask a question: as long as the instan-

taneous frequencies of oscillators are not locked, how can

their phases become seemly coherent as shown in Fig. 1(a)?

By carefully examining the dynamics of oscillators, we have

understood this question as follows. The key point here is

that although the instantaneous frequencies of oscillators in

each cluster are different, their average frequencies (average

angular speeds) are the same! As shown in Fig. 1(c), the

instantaneous frequencies of synchronous clusters exhibit a

structure like staircases. Of course, there are also drifting

oscillators between two coherent zones [those between stair-

cases in Fig. 1(c)]. This implies that although the instanta-

neous speeds of oscillators in each cluster are different from

each other, they do correlate in certain form so that their

average speeds can still maintain the same. The existence of

this coherent state shows that the dynamical system can

achieve a weaker form of coherence, which is between the

nonsynchronous state (full incoherence) and the synchronous

state (full coherence). Typically, as shown in Fig. 1(c), the

order parameter oscillates in this state. Following Refs. 13

and 14, such a nonstationary clustering state belongs to the

Bellerophon state. Compared with the previously found

coherent states, the observed Bellerophon state may share

some features with the standing wave state, where two clus-

ters rotate in opposite directions along the unit circle.

However, it has two essential differences. First, in the stand-

ing wave state, oscillators in each coherent cluster are

frequency-locking; but in the Bellerophon state, oscillators

in each coherent cluster are not frequency-locking [Fig.

1(b)]. Second, in the standing wave state, there are only two

clusters; while in the Bellerophon state, there are multiple

pairs of clusters and on average each pair of clusters rotates

with different speeds.

As shown in Fig. 1(c), the distribution of frequency stair-

cases is not symmetric with respect to zero. This is because

in the model the effective coupling strength is frequency-

weighted and a biased Lorentzian distribution, i.e., Eq. (3), is

used, where the center of the distribution has been shifted to

x0. To further reveal the characteristics of the Bellerophon

state, it is convenient to transform the dynamical system into

a rotating frame by setting hj ¼ h0j þ x0t and xj ¼ x0j þ x0.
In Fig. 1(d), we replot Fig. 1(c) in an appropriate rotating

frame. Remarkably, some quantitative properties for the aver-

aged frequencies of coherent clusters in the Bellerophon state

can be identified. It is shown that the staircases of the average

frequencies distribute symmetrically with respect to zero

now. The average frequencies of coherent oscillators have a

fundamental (the lowest) frequency and all the higher fre-

quencies are odd times of it,24 i.e., X6n ¼ 6ð2n� 1ÞX1 with

n ¼ 1; 2; 3;…. Thus, the gap between two neighboring fre-

quency staircases is twice of the fundamental frequency. So

the Bellerophon state can be characterized by a series of

coherent clusters C6ð2n�1Þ with n ¼ 1; 2; 3;…. Based on the

above analysis, now we can explain the physical picture of

such a state. It is a weak coherence achieved by the coupled

oscillators when the coupling strength is in the intermediate

regime.20 In this regime, multiple coherent clusters coexist in

the sense that their average frequencies inside any clusters

are identical. However, unlike previously observed coherent

states, the oscillators in each coherent cluster still have cer-

tain degree of freedom; i.e., their instantaneous frequencies

are generally not locked. To demonstrate this important

dynamical feature, we provide two animated movies in Figs.

2 and 3 (Multimedia view), which help visualizing the evolu-

tion of phases, speeds, and collective rotations of oscillators

on the unit circle.

Then we reveal another interesting characteristic of the

observed Bellerophon state in this model: the intermittency.

To this end, we choose 12 coherent clusters and sample one

oscillator in each cluster. In Fig. 4, we plot the time series of

the instantaneous frequencies of these oscillators. As shown

in Fig. 4(a), it is shown that the motions of coherent oscilla-

tors have two stages: the bursting stage and the resting stage.

At the first stage, which occupies relatively shorter period,

they burst to rotate with highly heterogeneous speeds along

the unit circle. Then in the following stage, which occupies

most of time, they almost keep static. This dynamical behav-

ior reminds us of the firing of neurons and excitable media.

Such a pattern is repeated again and again as time increases.

Interestingly, this is a synchronous periodic intermittency.

So it is different from the intermittency observed in chaotic

systems, where the bursting is intrinsically stochastic and

unpredictable. To be precise, we can call this pattern “the

periodic intermittency.” In Figs. 4(c) and 4(d), we provide

more details for these two stages during evolution. It is seen

that during the bursting stage, the instantaneous frequencies

of oscillators in different clusters show different patterns. Of

course, their average frequencies also differ significantly. On

the contrary, during the resting stage, all coherent oscillators

FIG. 2. Evolution of the instantaneous phases hiðtÞ (top), the instantaneous

speeds _h iðtÞ (middle), and the accumulated average of instantaneous speeds

h _h iðtÞi ¼ 1
t

Ð t
0

_h iðsÞds (bottom) of all oscillators in state Fig. 1. The used time

window is about two periods of T1 ¼ 2p=X1. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4972117.1]
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have almost the same instantaneous frequencies, which are

very small.

In Fig. 5, we further illustrate the bursting stage for

oscillators inside the same coherent cluster. It is shown that

although the average frequencies of oscillators in one cluster

are the same, their instantaneous frequencies are generally

different, following highly heterogeneous patterns. For

example, as shown in Fig. 5, although on average all oscilla-

tors in one coherent cluster rotate along one direction (with

positive speeds), there are some oscillators which can rotate

reversely against the mainstream (with negative speeds) for a

while. This is because that the average speeds of oscillators

inside one cluster must be the same, so those oscillators who

run too fast in the beginning have to go back to wait for the

others to catch up. This is a very interesting behavior.

Compared with the simple collective behaviors such as

phase-locking or frequency-locking, the Bellerophon state is

a high-order, time-dependent coherence, which is essentially

different from other coherent states previously observed in

the Kuramoto-like models.

FIG. 3. Collective motion of the oscil-

lators forming C1, C3, C5, C7, C9 in

state Fig. 1 (from inner to outer circle).

For better visualization, we show the

motions of oscillators with negative

frequencies (i.e., those rotating in the

clockwise direction) and positive fre-

quencies (i.e., those rotating in the

counterclockwise direction) in two

panels (a) and (b), respectively. In

fact, all oscillators (corresponding to

n ¼ 1; 2;…) with both positive and

negative frequencies rotate along the

unit circle. As shown in the movie,

oscillators in C1, C3, C5, … rotate 1, 3,

5, … loops, respectively, within the

period T1. Oscillators in each cluster

generally have heterogeneous speeds.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4972117.2]

FIG. 4. The intermittency of nonsta-

tionary clustering state for x0 ¼ 0:5
and j ¼ 2:08. (a) Evolution of the

instantaneous speeds of all oscillators.

(b) Evolution of the instantaneous

speeds and the order parameter. (c) and

(d) Enlargement of the boxes in (a)

respectively. For better visualization,

we only choose 12 clusters (n¼ 1–6)

and sample one oscillator in each clus-

ter. Note that a transient stage of

t¼ 1000 has been discarded before

plotting the time series. Same treatment

is also adopted in Figs. 3, 4, and 6.
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The formation of this intermittency can be heuristically

understood as follows. Since the Bellerophon state occurs

when the coupling strength is moderately large, on the one

hand, the oscillators can be entrained to certain extent by the

mean field. So they can be approximately synchronized as in

the resting stage. On the other hand, the coupling strength is

not large enough to maintain this coherence permanently. So

due to the difference of natural frequencies, oscillators try to

escape from the synchronization and manifest as the bursting

behavior. In fact, the Bellerophon state, which is a weak

form of synchronization, can be understood as a transitional

state between the incoherent state and the fully coherent

state. Moreover, based on the above analysis, it is not diffi-

cult to understand the oscillatory pattern in the order parame-

ter [Fig. 1(c)]. As shown in Fig. 4(b), in the resting stage,

where oscillators are almost synchronous, the order parame-

ter could achieve a relatively large value due to the high

coherence; while in the bursting stage, it takes a relatively

small value due to the low coherence among oscillators. We

emphasize that even in the bursting stage, oscillators still

maintain certain correlation rather than complete disorder.

The Bellerophon state is a partially coherent state, in

which both coherent oscillators (on the frequency staircases)

and drifting oscillators (between the frequency staircases)

coexist. How do the drifting oscillators behave? We answer

this question by illustrating an example in Fig. 6. It is shown

that the evolution of the instantaneous frequencies of drifting

oscillator still consists of the bursting stage and the resting

stage. However, it is not periodic though it does have a char-

acteristic time scale of bursting. Interestingly, although dur-

ing most time the oscillator moves along one direction, it

occasionally reverses its direction of rotation. This is a mani-

festation that the coupling strength is not enough to fully

entrain the oscillators.

Finally, in Figs. 7 and 8, we characterize another

Bellerophon state observed in model (2). Different from the

state discussed above, this one is observed in the process of

the second-order transition.20 However, qualitatively, this

state shares all the dynamical features of the previous exam-

ple. Certainly, they belong to the same type of coherent state.

In Figs. 9 and 10 (Multimedia view), we also provide two

animated movies to demonstrate the properties of this state.

FIG. 5. (a)–(d) Evolutions of the instantaneous frequencies (speeds) in 4

coherent clusters C1;C3;C5, and C7, respectively. x0 ¼ 0:5 and j ¼ 2:08.

For better visualization, we only choose 8 oscillators in each cluster. Note

that the instantaneous frequencies of oscillators inside one coherent cluster

are not frequency-locking. Instead, they follow heterogeneous patterns. In

(b)–(d), it is seen that although on average oscillators are supposed to rotate

toward positive direction, some oscillators turn out to rotate inversely for a

while during evolution.

FIG. 6. Characterizing the instantaneous frequencies of drifting oscillators

outside the coherent clusters. (a) and (b) Two drifting oscillators between C1

and C3, and C5 and C7, respectively. (c) and (d) Two oscillators in coherent

clusters C1 and C5 for comparison. x0 ¼ 0:5 and j ¼ 2:08.

FIG. 7. Characterizing the Bellerophon state observed in the model. x0

¼ 1:2 and j ¼ 1:9. The figure caption is the same as in Fig. 1.
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III. CONCLUSION

In conclusion, we have identified an intermittent

Bellerophon state in the frequency-weighted Kuramoto

model. Such state is a transitional state between the incoher-

ence and the full synchrony when the coupling strength is in

the intermediate regime. In this state, the oscillators split into

multiple coherent clusters. Inside each cluster, the instanta-

neous frequencies of oscillators follow a highly heteroge-

neous pattern; however, the average frequencies lock to a

constant. In terms of the average frequency, this state is char-

acterized by staircases structure with an equal gap between

neighboring clusters. Remarkably, the motions of oscillators

turn out to be periodically intermittent, following a synchro-

nous pattern of bursting and resting. Our work revealed that

there exists complicated, time dependent collective behavior

in coupled phase oscillators in Kuramoto-like models.
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