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Explosive synchronization with asymmetric frequency distribution
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In this work, we study the synchronization in a generalized Kuramoto model with frequency-weighted coupling.
In particular, we focus on the situations in which the frequency distributions of oscillators are asymmetric. For
typical unimodal frequency distributions, such as Lorentzian, Gaussian, triangle, and even special Rayleigh, we
find that the synchronization transition in the model generally converts from the first order to the second order
as the central frequency shifts toward positive direction. We characterize two interesting coherent states in the
system: In the former, two phase-locking clusters are formed, rotating with the same frequency. They correspond
to those oscillators with relatively high frequencies while the oscillators with relatively small frequencies are
not entrained. In the latter, two phase-locking clusters rotate with different frequencies, leading to the oscillation
of the order parameter. We further conduct theoretical analysis to reveal the relation between the asymmetric
frequency distribution and the conversion of synchronization type, and justify the coherent states observed in the
system.
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I. INTRODUCTION

The models of coupled oscillators naturally describe vari-
ous complex systems, in which a large number of individual
elements interact with each other [1], such as synchronizing
fireflies, neurons in human brain, cardiac pacemaker cells,
power grids, and Josephson junction arrays, just to name
a few. The Kuramoto model is a prototype in studying
synchronization issues [2], in which N phase oscillators are
coupled as follows:

θ̇j = ωj + κ

N

N∑

n=1

sin(θn − θj ), j = 1, . . . ,N. (1)

Here, θj (ωj ) are the instantaneous phase (the natural
frequency) of the j th oscillator. Dot denotes the temporal
derivative, and κ is the global coupling strength. The set of
N natural frequencies {ωj } is drawn from certain frequency
distribution (FD) g(ω). It has been shown that with the increase
of the coupling strength, the system will bifurcate from the
incoherent state, in which oscillators rotate almost according
to their natural frequencies, into the (partially) coherent state,
in which part of oscillators become phase locked to the mean
field. As the consequence, an order parameter characterizing
the collective behavior in the system transits from 0 to a value
that is significantly greater than 0.

For decades, the Kuramoto model has been extensively
investigated due to its rich dynamics and simplicity for theoret-
ical treatment [3,4]. In most cases, the relevant synchronization
transitions were found to be continuous, i.e., the second order.
Recently, Gómez-Gardeñes et al. investigated a generalized
Kuramoto model on a scale-free network [5]. It is shown
that when the natural frequencies of oscillators are correlated
with the network topology, i.e., ωj = kj , where ωj and kj
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are the natural frequency and degree of the j th oscillator
or node in the network, respectively, the order parameter
characterizing the coherence in the system experiences a
discontinuous jump at certain coupling strength. This so-
called explosive synchronization (ES) actually refers to the
discontinuous, or the first-order, irreversible synchronization
transition, which is drastically different from the second-order
transitions observed in the previous studies of the Kuramoto
model. Since then, this important finding has stimulated much
research attention along this line [6–22].

In particular, Zhang et al. found that the correlation between
ωj and kj in Ref. [5] actually is equivalent to a frequency
weight in the coupling strength [12]. Accordingly, a frequency-
weighted generalized Kuramoto model was proposed as

θ̇j = ωj + κ|ωj |
N

N∑

n=1

sin(θn − θj ), j = 1, . . . ,N. (2)

It is shown that ES can generally occur for various network
topologies in this model, including the scale-free network.
Furthermore, Hu et al. obtained the exact solutions of this
model, including the transition points and stabilities for both
the forward and backward transitions, proving the first-order
nature of ES in this model [18]. Based on this model, the
mechanism for the first-order synchronization transition has
been understood in terms of certain suppressive rules that
always limit the formation of large synchronous clusters in
such systems [21].

For the classical Kuramoto model, the most important
characteristic is its invariance under rotation transformation,
i.e., it has rotation symmetry. This can be easily verified by
applying the following rotation transformation:

θj = θ ′
j + �t, ωj = ω′

j + �, (3)

to Eq. (1). Due to this inherent symmetry, the FD g(ω)
can be conveniently chosen to be centered at 0, which is
exactly the case in most previous studies of the Kuramoto
model. However, for the frequency-weighted model, the
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TABLE I. Summary of typical unimodal FDs used in this study.

FD Formula Parameter

Lorentzian g(ω) = �

π [(ω−ω0)2+�2]
� = 1

Gaussian g(ω) = 1√
2π�

exp[ −(ω−ω0)2

2�2 ] � = 1
Triangle g(ω) = (� − |ω − ω0|)/�2, |ω − ω0| < � � = 0.1

Rayleigh g(ω) = ω−ω0
�2 exp[− (ω−ω0)2

2�2 ] � = 1

dynamical equation (2) is no longer invariant under rotation
transformation. This raises an important question: How does
the model behave with an asymmetric FD? In this paper, we
address this question by numerical simulations and theoretical
analysis.

Without losing generality, we consider the typical unimodal
FDs, such as Lorentzian, Gaussian, triangle. Moreover, we also
consider a special unimodal FD, i.e., the Rayleigh distribution.
For convenience of narration, we take the Lorentzian FD as
example to report our results. As shown in Table I, there are two
parameters in Lorentzian, Gaussian, and triangle FD: ω0 and
�. ω0 corresponds to the central frequency, and � controls the
width of the FD. Most importantly, we consider the situation
ω0 �= 0 in the current study. For Rayleigh FD, it is inherently
asymmetric, i.e., it cannot become symmetric by translation of
axis, which is essentially different from the above three cases.
Note that ω0 in Rayleigh FD does not correspond to the central
frequency.

For simplicity, the network is supposed to be globally cou-
pled. Numerical integrations for coupled ordinary differential
equations are carried out by the fourth-order Runge-Kutta
method with time step 0.01. The initial conditions for the
phase variables are random. In both forward and backward
transitions, the order parameters are calculated in an adiabatic
way, where κ is increased at a step of 0.02 and the final state
for a prior κ is used as the initial state for a next κ . For each
κ , the order parameters are averaged in a time window after
the transient stage. Typically, the total number of oscillators is
N = 10 000. Such numerical schemes are adopted throughout
this paper.

II. NUMERICAL RESULTS

A. Transitions

We first report the results of numerical simulations to
Eq. (2). By default, the results are for Lorentzian FD unless
otherwise specified. To characterize the phase synchronization
in the model, an order parameter can be defined as

reiψ = 1

N

N∑

j=1

eiθj , (4)

where r and ψ are the module and argument of the mean field,
respectively. Geometrically, the complex order parameter can
be regarded as a vector on the complex plane. According to
its definition, r is between 0 and 1. Typically, r = 0 indicates
a totally random phase distribution, i.e., the incoherent state;
while r > 0 indicates a (partially) phase-locking state, i.e., the
coherent or synchronized state. As the system becomes more
coherent, r will gradually approach 1.

We notice that there are two parameters in the asymmetric
Lorentzian FD, i.e., the central frequency ω0 and the width at
half maximum � (see the formula in Table I). To simplify the
situation, we keep � as a constant, i.e., � = 1 in this work. We
change ω0 to shift the FD along positive axis and investigate
the synchronization transition in Eq. (2), i.e., how r changes
with respect to the coupling strength κ .

Figure 1 plots the phase diagrams for the system with differ-
ent central frequencies ω0. Generally, we observe both first-
and second-order synchronization transitions in the system.
When ω0 = 0, i.e., for the symmetric FD, it has been proven
that the synchronization transition is discontinuous [18]. When
ω0 is small, it is found that this discontinuous transition
remains. A typical example is given in Fig. 1(a), where ω0 =
0.3. When ω0 is further increased, it is found that the hysteresis
area significantly shrinks if we compare Fig. 1(b) (ω0 = 0.5)
with Fig. 1(a) (ω0 = 0.3). A careful examination reveals that
the shrinking of the hysteresis area is due to the decrease of
the forward transition point κf , while the backward transition
point κb almost remains unchanged within the precision of our
numerical simulations. As ω0 increases, the forward transition
point κf becomes smaller and smaller. Numerically, we find
that when ω0 � 0.7, there are two transitions in the forward
process. Now, the first transition is continuous, i.e., the second
order, and the second transition is explosive, i.e., the first order.
A typical example has been shown in Fig. 1(c), where it is
seen that a small hysteresis area still remains. As ω0 further
increases, the hysteresis area finally vanishes. After that, the
system will undergo a continuous synchronization transition,
similar to the classical Kuramoto model. A typical example is
illustrated in Fig. 1(d), where ω0 = 1.2.

FIG. 1. (Color online) The order parameter r vs the coupling
strength κ . It is shown that with the increase of ω0, the synchronization
transition converts from the first-order type into the second-order one.
From (a) to (d), ω0 = 0.3,0.5,0.8,1.2, respectively. The dashed lines
correspond to κr = 1. Lorentzian FD is used for Figs. 1 to 6. � = 1
and N = 10 000 are the same throughout this paper.
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FIG. 2. (Color online) Characterization of the steady states in the forward continuity of the first-order transition. ω0 = 0.5. Rows (a) and
(b) correspond to κ = 1.5 and 3.5, respectively. Columns 1–3 correspond to the order parameter, the distributions of the instantaneous phases
and frequencies, respectively. Column 4 is the enlargement of column 3. Throughout this paper, the purple dashed line, such as that in (b2),
denotes the boundary of synchronized clusters predicted by Eq. (9), and the purple straight lines, such as those in (a4) and (b4), denote the
fluctuation range of instantaneous frequencies of oscillators predicted by Eq. (11).

B. Steady states in the first-order transition

Through extensive simulations, we find that the model can
exhibit rich steady states. To characterize them, we study both
the macroscopic property, i.e., the order parameter, and the
microscopic properties, such as the distributions of phases and
instantaneous frequencies. The results are shown in Figs. 2–5.
In the following, we describe them in detail.

We first report the steady states in the first-order syn-
chronization transition. In this case, the system undergoes
different paths in the phase diagram when the coupling strength
increases or decreases. We take ω0 = 0.5 as an example. The
corresponding phase diagram has been shown in Fig. 1(b).
For the forward transition process, there are two steady states:
one is the trivial incoherent state, and the other is a (partially)
coherent state. In Figs. 2(a1) and 2(b1), the order parameters of
these two steady states are plotted, corresponding to κ = 1.5
and 3.5, respectively. It is seen that in the former case, the order
parameter is almost 0, while in the latter case, it is greater than
0.9, indicating the occurrence of high coherence in the system
when the coupling strength is large enough. In this coherent
state, it is seen that there are two phase-locking clusters and
some drifting oscillators. Interestingly, the oscillators with
relatively large natural frequencies are phase locked, while
the oscillators with relatively small natural frequencies are
drifting, as shown in Fig. 2(b2). This scenario is different
from the coherent state in classical Kuramoto model, where
the oscillators with relatively small natural frequencies are
typically easier to be entrained by the mean field. Although
the oscillators are divided into two clusters with different
phases, they have almost the same instantaneous frequencies,

as shown in Figs. 2(b3) and 2(b4). So, their relative positions
are unchanged during rotation on the complex plane.

For the backward transition process, there are three typical
steady states as the coupling strength goes down. The first
one is the coherent state, i.e., the partially synchronized state,
which is essentially the same as in the forward transition
process when κ is large. An example has been shown in
Fig. 3(a1). Interestingly, when κ decreases below the knee
point [see Fig. 1(b)] into the hysteresis area, another type
of coherent state appears. We show one such example in
Fig. 3(b1). As shown in the figure, in this state, the order
parameter oscillates almost “periodically.” However, when
we plot the order parameter in the complex plane, we find
that the mean-field vector does not form a closed orbit.
Instead, it is seemingly ergodic, which reminds us of certain
quasiperiodical motion. when the coupling strength κ further
decreases, a first-order backward transition occurs. After that,
the order parameter drops to almost 0, coinciding with the
order parameter in the forward transition. Macroscopically,
the system exhibits no collective behavior in both forward
and backward transition processes at this stage. However,
the incoherent state in the backward transition is nontrivial.
One such example is shown in Fig. 3(c1), where κ = 1.5 and
r ≈ 0. Comparing this figure with Fig. 2(a1), we find that,
microscopically, there are essential differences between these
two incoherent states. As shown in Fig. 3(c2), although the
phase seems to be randomly distributed, there are many small
clusters with fine structures. Similar fine structures can also
be seen in the distribution of the instantaneous frequencies
although they are basically distributed around their natural
frequencies [Figs. 3(c3) and 3(c4)].
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FIG. 3. (Color online) Characterization of the steady states in the backward continuity of the first-order transition. ω0 = 0.5.
Rows (a)–(c) correspond to κ = 3.5, 2.08, and 1.5, respectively. The parameters and the arrangement of panels are the same as in Fig. 2.

C. Steady states in the second-order transition

We then characterize the coherent states in the second-order
transition process. In this case, the order parameter follows the
same path in the phase diagram when the coupling strength
increases or decreases. We take ω0 = 1.2 as an example. The
corresponding phase diagram has been shown in Fig. 1(d).

In Fig. 4, we show the typical steady states observed in the
forward continuity, including the incoherent state [Fig. 4(a1)],
the coherent state [Figs. 4(b1) and 4(d1)], and the oscillating
coherent state [Fig. 4(c1)]. It is found that there exist two
types of (partially) coherent states. Figures 4(b1) and 4(d1)
are two typical examples. We classify them as types I and II,
respectively. For the type-I coherent state, it is seen that there
is only one phase-locking cluster, corresponding to oscillators
with relatively small natural frequencies. However, for the
type-II coherent state, there are two phase-locking clusters
which correspond to oscillators with relatively high natural
frequencies. In this state, the oscillators with relatively small
natural frequencies are not entrained. They are still drifting. In
fact, the coherent states in the first-order transition, as shown
in Figs. 2(b1) and 3(a1), also belong to this type.

For the backward continuity, the order parameter follows
the same path as that in the forward one [Fig. 1(d)]. However,
we have specially checked the steady states for comparison.
The results are shown in Fig. 5. Comparing with Fig. 4, it

is found that the oscillating coherent state and the coherent
states (I and II) are qualitatively the same in both forward and
backward continuity. Similar to the situation of the first-order
transition, the incoherent state in the backward transition is
nontrivial although the transition is the second order in this
parameter regime.

D. Typical unimodal FDs

In the above, we report the results for the Lorentzian FD.
In fact, as listed in Table I, we have considered several typical
unimodal FDs in this study, including the special Rayleigh
FD. By extensive numerical simulations, we have investigated
the phase diagrams of synchronization and characterized the
typical coherent states in the system. The results are shown in
Fig. 6. Similarly, we observe the conversion from first-order to
second-order transition, and type-I and type-II coherent states.
These results show that the model (2) exhibits universal behav-
iors under asymmetric FDs, which certainly deserves further
theoretical analysis as we will do in the following section.

III. THEORETICAL ANALYSIS

A. Coherent states

By carefully examining the steady states observed above,
we find that in the type-I coherent states, such as Figs. 4(b)
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FIG. 4. (Color online) Characterization of the steady states in the forward continuity of the second-order transition. ω0 = 1.2. Rows (a)–(d)
correspond to κ = 1.5, 1.6, 1.9, and 2.5, respectively. The parameters and the arrangement of panels are the same as in Fig. 2.

and 5(c), the oscillators with relatively small frequencies
are phase locked, while the oscillators with relatively large
frequencies are drifting. This is consistent with the physical
picture in the classical Kuramoto model. However, in the type-
II coherent states, such as Figs. 2(b), 3(a), 4(d), and 5(a), and in
the oscillating coherent states, such as Figs. 3(b), 4(c), and 5(b),
on the contrary, the oscillators with relatively large frequencies
are phase locked, while the oscillators with relatively small
frequencies are drifting. This situation is seemingly opposite
to our understanding of synchronization of phase oscillators.
How could this happen? In the following, we conduct a
mean-field analysis to answer this question.

In the mean-field form, Eq. (2) becomes

θ̇j = ωj + κr|ωj | sin(ψ − θj ), j = 1, . . . ,N. (5)

The most important characteristic of this equation is that the
effective coupling κ|ωi | is proportional to the magnitude of
the natural frequency. For symmetric FDs, the average instan-
taneous frequency for all oscillators is always 0. Therefore,
in the coherent state, the average phase ψ is a constant. We
then can use the above mean-field equation to determine the
phase-locking condition. As analyzed in Ref. [18], for typical
symmetric FDs, all oscillators in this system will explosively
jump to the coherent state when the coupling strength is
large enough. The system has no partially coherent state with
symmetric FDs. In its coherent state, two clusters are formed,
corresponding to the populations of positive and negative
frequencies, respectively. Inside each cluster, all oscillators
totally coincide with each other, just like one oscillator, which
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FIG. 5. (Color online) Characterization of the steady states in the backward continuity of the second-order transition. ω0 = 1.2. Rows
(a)–(d) correspond to κ = 2.5, 1.9, 1.6, and 1.5, respectively. The parameters and the arrangement of panels are the same as in Fig. 2.

keeps fixed in phase space. So, this is actually a trivial coherent
state.

Compared with the trivial coherent state in Eq. (2) with
symmetric FDs, the nontrivial coherent states in Eq. (2)
with asymmetric FDs are interesting. Apparently, they should
originate from the asymmetry of FDs used. However, for
asymmetric FDs, the average instantaneous frequency for all
oscillators is not 0. In this case, we will generally observe
traveling wave states in which the synchronized clusters of
oscillators rotate [e.g., see Figs. 4(b4), (c4), and (d4)] and
the average phase ψ is time dependent. Therefore, Eq. (5)
generally has no solution of fixed point, and it cannot be
directly used to obtain the phase-locking condition as done for
the situations of symmetric FDs. To deal with this situation,

we apply the rotation transformation

θj = θ ′
j + ω0t, ωj = ω′

j + ω0 (6)

to Eq. (2). This gives the following equation:

θ̇ ′
j = ω′

j + κ|ω′
j + ω0|
N

N∑

n=1

sin(θ ′
n − θ ′

j ), j = 1, . . . ,N.

(7)
The above rotation transformation is equivalent to observing
the motion of oscillators in a rotating frame with frequency
ω0. In the rotating frame, the distribution of frequency
ω′ is symmetric to 0 now, and the average instantaneous
frequencies equal to 0 accordingly. Therefore, we can use the
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FIG. 6. (Color online) Characterization of synchronization and the steady states in model (2) with other typical FDs. Rows (a)–(c)
correspond to Gaussian, triangle, and Rayleigh FD, respectively. It is shown that the system generally converts from first-order transition to
second-order one as the FD shifts towards positive direction. Columns 3 and 4 characterize the type-I and type-II coherent states corresponding
to column 2, respectively. The inset plots the Rayleigh FD that is inherently asymmetric.

corresponding mean-field equation

θ̇ ′
j = ω′

j + κr|ω′
j + ω0| sin(ψ − θ ′

j ), j = 1, . . . ,N (8)

to determine the phase-locking condition. Equation (8) in-
dicates that each oscillator is entrained by the mean field r

with the effective coupling strength κ|ω′
j + ω0|. When ω0 = 0,

i.e., the FD is symmetric, the entraining force is exactly
proportional to the natural frequency of the oscillator, leading
to ES in the system [18]. When ω0 �= 0, i.e., for the asymmetric
FDs, there is a mismatch between the natural frequency and
the entraining force of the oscillator. This will essentially
change the synchronization behaviors of oscillators in the
system. From Eq. (8), we obtain the phase-locking condition
for oscillators as

f (ω′) =
∣∣∣

ω′
j

ω′
j + ω0

∣∣∣ � κr, j = 1, . . . ,N. (9)

In Fig. 7, we plot the function f (ω′). Based on the above
results of numerical simulations and theoretical analysis, now

we can understand the physical picture of the collective
dynamics observed in the model.

(1) Type-I coherent state. From Fig. 7, when κr � 1, there
will be one phase-locking cluster which consists of oscillators
with relatively small natural frequencies, rotating with certain
frequency. In the meantime, the oscillators with relatively large
natural frequencies are drifting. Such examples have been
shown in Figs. 4(b) and 5(c). In the phase diagram of Fig. 1, we
have verified that these states locate below the curve κr = 1.

(2) Type-II coherent state. From Fig. 7, when κr > 1, due
to the singularity located at the ω′ = −ω0, there will be two
phase-locking clusters, consisting of oscillators with relatively
large natural frequencies. Depending on the magnitude of the
coupling strength κ , there will be two situations. When κ

is large enough, the two phase-locking clusters almost lock
into one frequency. In fact, they can be understood as one
cluster with two separated phases. The key point here is that
all oscillators in the coherent clusters rotate with almost the
same frequency. As a result, the order parameters almost keep
constant in these cases. Such examples have been shown in
Figs. 2(b), 3(a), 4(d), and 5(a). In the phase diagram of Fig. 1,
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FIG. 7. (Color online) Illustration of the phase-locking condition
for Eq. (2). The blue curve is f (ω′) that is defined in Eq. (9). The
red dashed line is κr , which intersects with f (ω′) and determines
the phase-locking region for frequency ω′, as shown by the purple
rectangle. (a) Corresponds to the situation of type-I coherent states. (b)
Corresponds to the situation of type-II and oscillating coherent states.
In Figs. 1 to 6, we have marked the theoretical synchronization areas
by purple dashed lines. The theoretical results are well consistent
with the numerical ones.

we have verified that these states all locate above the curve
κr > 1.

(3) Oscillating coherent state. When κr > 1, but κ is not
large enough to keep the phase-locking oscillators locked
to one frequency, the oscillators split into two clusters with
different rotating frequencies. As we know, if two oscillators
rotate with two different constant frequencies along the unit
circle, the resultant order parameter will oscillate. However,
since the distribution of instantaneous frequencies changes
with time, the average frequencies of the two rotating clusters
also vary with time. As a consequence, we observe approx-
imately periodical oscillation of order parameter. In Fig. 8,
we also show the results of power spectrum analysis to the
time series x(t), which apparently exhibits behavior similar

FIG. 8. (Color online) Characterization of the quasiperiodical
property for the time series x(t) = Re[r(t)] in oscillating coherent
states. (a), (b) Correspond to the situations in Figs. 3(b1) and 4(c1),
respectively. The first two “spectrum lines” correspond to the
dominant frequencies of the time series.

FIG. 9. (Color online) (a) A schematic illustration for the phase-
locking condition between two oscillators, i.e., Eqs. (12) and (13).
(b) Characterization the conversion from the first-order transition to
the second-order one by ρ vs ω0 (the circles) and d/dmax vs ω0 (the
squares). d denotes the width of hysteresis loop, as shown in Fig. 1(a).
dmax = 2 is the largest width of hysteresis loop when ω0 = 0. Note
that different scalings are used for ρ (the left axis) and d/dmax (the
right axis) for better visualization. Other parameters are the same as
in Fig. 1.

to “beat” phenomenon. It is verified that these time series
always comprise two dominant frequencies. Usually, they
are irreducible, leading to the quasiperiodicity of the order
parameter on complex plane.

In addition, the system also exhibits trivial and nontrivial
incoherent states [see Figs. 3(c) and 5(d)]. In fact, in the
backward continuity the system actually undergoes desynchro-
nization process. The small local fine clusters in the nontrivial
coherent state just reflect the “memory” of the initial coherent
state.

B. Conversion from explosive to continuous transition

As shown in Figs. 1 and 6, the model exhibits another
interesting characteristic: the type of synchronization converts
from the first order to the second order as the FD is translated
toward the positive direction in axis. Why does ω0 regulate
the nature of synchronization transition? This is an important
issue. Answering it will not only enhance our understandings
to ES, but also shed light on controlling it. In the following,
we provide a heuristic argument to address this question.

The mean-field equation (5) can be rewritten as

θ̇j = ωj ± κrωj sin(ψ − θj ), j = 1, . . . ,N. (10)

Its left-hand side is the instantaneous frequency of oscillators.
It has two sources as in the right-hand side of the equation.
The first term is the natural frequency, and the second term
can be understood as the fluctuation around the former. Since
the upper bound of sine function is 1, the fluctuation range is
between ±κrωj . Therefore, given the coupling strength, the
instantaneous frequencies of all coupled oscillators are located
between two straight lines as

θ̇ = (1 ± κr)ω. (11)

In Fig. 9(a), we show an example where θ̇i is plotted versus
ωi . The two purple straight lines correspond to the above
equations. It is seen that all the instantaneous frequencies
are distributed following the theoretical prediction. For two
arbitrary oscillators i and j , the necessary condition for them

012812-8



EXPLOSIVE SYNCHRONIZATION WITH ASYMMETRIC . . . PHYSICAL REVIEW E 92, 012812 (2015)

to be phase locked is that their instantaneous frequencies are
close enough (or, loosely, equal to each other for simplicity).
Therefore, as shown in Fig. 9(a), the phase-locking condition
for oscillators i and j is that their ranges of instantaneous
frequencies must overlap, i.e., the upper bound of θ̇i must be
greater than the lower bound of θ̇j . This leads to the following
inequality:

(1 + κr)ωi > (1 − κr)ωj , (12)

which gives the phase-locking condition as

�ωij = |ωj − ωi |
|ωj | + |ωi | < κr. (13)

Given κ , a pair of oscillators are forbidden to synchronize with
each other when the above condition is not satisfied. Therefore,
condition (13) is called as the suppressive rule for forming
synchronized clusters [21]. For a system of coupled phase
oscillators, if condition (13) is easily satisfied for most pairs
of oscillators, the small synchronized clusters will gradually
grow up and merge with each other to form larger ones as
the coupling strength increases, leading to the second-order
transition. On the contrary, if a considerable proportion of
oscillator pairs violate condition (13), the formation of large
clusters in the system is significantly suppressed. In this case,
the system has no choice by exhibiting ES when the coupling
strength exceeds a certain threshold.

We now analyze which pair of oscillators are mostly
possible to violate condition (13). We notice that if a pair
of oscillators whose natural frequencies have different sign,
�ωij = 1. How about the magnitude of κr? We can give a
reasonable estimate. When κ is small, the system is in the
incoherent state, where the order parameter r fluctuates around
zero with the amplitude of the order 1/

√
N . In our simulation,

N = 10 000, so 1/
√

N = 0.01. Typically, the order of κ in
the incoherent state is less than 10. Thus, we safely estimate
the upper bound of κr as 0.1. From the above analysis, it is
found that the oscillator pairs with �ωij = 1 certainly violate
condition (13). Since in the asymmetric FDs, the location of
the central frequency ω0 actually controls the ratio between
oscillators with positive and negative frequencies, we can
define a ratio as

ρ(ω0) = N (�ωij = 1)/Nall, (14)

where N (�ωij = 1) and Nall denote the number of oscillator
pairs with �ωij = 1 and the number of total oscillator pairs,
respectively. This quantity characterizes the possibility of
occurrence of ES in the system. The larger the ρ, the
higher possibility for the first-order synchronization to occur.
In Fig. 9(b), we plot ρ versus ω0. It is seen that when
ω0 = 0, i.e., the symmetric FDs, ρ = 0.5. This means that

half oscillator pairs in the systems violate condition (13).
Typically, the first-order synchronization occurs in this case.
As ω0 increases, ρ continuously decreases, which is in favor of
the occurrence of the second-order synchronization transition.
This can be verified by the decrease of the width of the
hysteresis area d, which is also plotted in Fig. 9(b) for
comparison. Numerically, we find that when ρ decreases to a
certain value, the synchronization type converts from the first
order to the second order, i.e., from explosive to continuous.
The above analysis provides a qualitative explanation as to
why an explosive transition changes to a continuous one in
Eq. (2) when the bias of asymmetric FDs increases.

IV. CONCLUSION

In this work, we investigated the synchronization transi-
tion in a frequency-weighted Kuramoto model with typical
asymmetric FDs. It is shown that when the bias of central
frequency is small, the type of synchronization transition is
the first order, i.e., explosive. When it is large, the type of
synchronization transition is the second order, i.e., continuous.
We characterized the coherent states in both forward and
backward continuities, and found that they can be classified
into several types, including the type-I and type-II coherent
states, and the oscillating coherent state. Under the asymmetric
FDs, the coherent states in this model exhibit two new
characteristics. One is that the phase-locking oscillators may
split into two clusters, but locked to the same frequency. The
other is that when the coupling strength is not large enough,
the phase-locking oscillators may further split into two clusters
with different frequencies, leading to a weaker synchronous
state in the system characterized by the oscillation of order
parameter. Based on theoretical analysis, we revealed that the
above coherent states originate from the mismatch between
the natural frequency and the effective coupling strength in
the rotating frame due to the asymmetry of FDs. We also
provided an analysis to explain the conversion of type of
transition in the model. Since most previous works focused
on the cases of symmetric FDs, this work is helpful to
augment our understandings of the synchronous behaviors in
the generalized Kuramoto model.
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