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Abstract – Explosive synchronization (ES) has recently received increasing attention and studies
have mainly focused on the conditions of its onset so far. However, its inverse problem, i.e. the
suppression of ES, has not been systematically studied so far. As ES is usually considered to be
harmful in certain circumstances such as the cascading failure of power grids and epileptic seizure,
etc., its suppression is definitely important and deserves to be studied. We here study this inverse
problem by presenting an efficient approach to suppress ES from a first-order to second-order
transition, without changing the intrinsic network structure. We find that ES can be suppressed
by only changing a small fraction of oscillators into contrarians with negative couplings and the
critical fraction for the transition from the first order to the second order increases with both
the network size and the average degree. A brief theory is presented to explain the underlying
mechanism. This finding underlines the importance of our method to improve the understanding
of neural interactions underlying cognitive processes.

Copyright c© EPLA, 2016

Synchronization is one of the key problems in nonlin-
ear science and has been studied for a long time. It was
previously focused on the case of two coupled chaotic
oscillators and then moved to the case of coupled lat-
tices [1]. Since the concept of complex networks was in-
troduced in 1999, the main topic of synchronization has
been shifted to the influence of the structure of complex
networks [2–4]. One common feature for all these cases is
that the routes to synchronization are continuous, i.e., the
size of synchronized clusters grows gradually, presenting a
second-order transition. However, there are exceptions of
the first-order transition such as the cascading failure in
power grids and financial crisis, etc. [5,6], whose under-
lying mechanism has remained unclear for a long time.
A remarkable progress on this challenging problem is the
finding of explosive synchronization (ES) in 2011 in the
networked Kuramoto oscillators [7], where the transition
from a non-synchronized state to a synchronized state is
abrupt/discontinuous, namely, the global synchronization
appears explosively. In that paper, two conditions were
thought to be necessary for the onset of ES: i) a scale-free
(SF) network topology and ii) the existence of a positive
correlation between the natural frequency of an oscillator

(a)E-mail: zhliu@phy.ecnu.edu.cn

and its degree. After that, great attention has been paid
to this problem and is mainly focused on the conditions of
its onset [6,8–17].

The phenomenon of the first-order transition was in fact
revealed before 2011 [18–20] but received attention only
after the work of ref. [7] in 2011, because of the new fea-
ture of an extremely fast cascading process named by ES.
Then, ES was immediately confirmed by an experiment in
a circuit of star graph of coupled Rössler oscillators [8].
After that, it was found that ES can be also observed
in a generic network (either SF or non-SF) in a modified
Kuramoto model, provided that a positive correlation be-
tween the natural frequencies of oscillators and their cou-
pling strengths is preserved [13–16] or there is a frequency
disorder [21]. To illustrate the underlying mechanism of
these two different ways of ES in refs. [7] and [13], ref. [15]
shows that they can be unified into a common root of
suppressing the formation of giant clusters, called suppres-

sive rule of ES, i.e. the small synchronization clusters are
prevented from merging gradually into larger clusters and
thus cannot induce a second-order transition. According
to this suppressive rule, it is also possible to have other
ways to ES, provided that they can prevent the gradual
growing and merging of small clusters. Fortunately, such a
scenario is reported recently in multilayer networks where
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the suppressive rule is implemented by adaptively adjust-
ing the behaviors of individual oscillators by using their
local order parameter [22].

In sum, all these works focus on finding the conditions
for the onset of ES. Thus, an open question is how to
suppress ES, i.e. the inverse problem of the onset of ES,
which will make the phase transition be degraded from the
first order to the second order. This problem does deserve
to be studied as many first-order transitions are harmful
to human beings such as the cascading failure of power
grids [23] and epileptic seizures [24], etc. To make the first-
order transition change into the second-order transition,
an intuitive idea is to make the suppressive rule break.
Reference [15] showed a way to break the suppressive rule
by randomly exchanging the frequencies of two nodes i and
j. In reality, however, the natural frequencies of oscillators
are usually not changeable. Thus, an interesting question
would be whether it is possible to suppress ES but keeping
their original characteristic features unchanged such as the
natural frequencies and the network topology, etc.

We here study this problem. We find that ES can be
effectively suppressed by introducing a small fraction of
contrarians with negative coupling strengths, in contrast
to conformists with positive coupling strengths [25–31].
There is a critical fraction for the transition from the first
order to the second order and it increases with both the
network size and the average degree. To understand the
role of contrarians, we consider two typical ways to intro-
duce them into the network. One is to let the contrarians
be distributed randomly and homogeneously among the
conformists, while the other is to let the contrarians be
heterogeneously distributed in the network, e.g., only dis-
tributed to a local area of the network. We find that both
ways can effectively suppress ES, indicating that the con-
trarians take a positive role in suppressing ES.

We consider a network of N coupled Kuramoto
oscillators. Each oscillator is characterized by its phase
θi(t), i = 1, · · · , N and obeys an equation of motion
defined as

θ̇i = ωi +
λ|ωi|

ki

N
∑

j=1

Aij sin(θj − θi), i = 1, . . . , N, (1)

where λ is the overall coupling strength, ωi and ki are the
natural frequency and the degree of oscillator i, respec-
tively, and Aij are the elements of the adjacency matrix
A, so that Aij = 1 when nodes i and j are connected
and Aij = 0 otherwise. Equation (1) can be considered
as a frequency-weighted network and reflects the feature
of several natural and social systems [5,32]. It has been
recently shown that eq. (1) shows ES at a critical point
λc [13,15–17] for a general complex network with a sym-
metric distributed ωi. Our aim here is to present an effi-
cient and practical approach to suppress the ES in eq. (1).

For this purpose, our idea is to introduce a small fraction
of contrarians to suppress the growth of larger clusters in
eq. (1). In detail, we assume that the oscillators of eq. (1)

can be either conformists or contrarians, which can be dis-
tinguished from the role of λ in the coupling. In the lit-
eratures, there are two approaches to define a conformist
or a contrarian. In the first method, a contrarian oscilla-
tor will receive interactions from its neighbors by a neg-
ative coupling strength while a conformist oscillator will
receive interactions from its neighbors by a positive cou-
pling strength [25–27]. Thus, eq. (1) can be rewritten as

θ̇i = ωi +
λi|ωi|

ki

N
∑

j=1

Aij sin(θj −θi), i = 1, . . . , N, (2)

where the conformists have positive λi while the contrari-
ans have negative λi. For simplicity, we let all the coupling
strength λi have the same amplitude λ > 0 with λi = λ
for all the conformists and λi = −λ for all the contrarians.

In the second method, a contrarian oscillator will give
negative coupling to each of its neighbors while a con-
formist oscillator will give a positive coupling to each of
its neighbors [28–30]. Thus, eq. (1) can be rewritten as

θ̇i = ωi +
|ωi|

ki

N
∑

j=1

λjAij sin(θj − θi), i = 1, . . . , N, (3)

where the conformists contribute positive λj while the con-
trarians contribute negative λj . Doing the same as in the
first way of defining conformists and contrarians, we let all
the coupling strength λj have the same amplitude λ > 0
with λj = λ for all the conformists and λj = −λ for all the
contrarians. We will consider both these two definitions
in this work.

We let the fraction of contrarians be f , which represents
the ratio between the number of the contrarians and the
total number of oscillators. Thus, we have fN contrar-
ians and (1 − f)N conformists in the network. Then, a
key point is how to distribute these contrarians among the
conformists. For convenience, we here consider two typical
ways. In the first one, we let the contrarians be randomly
mixed with the conformists in the network, i.e. we ran-
domly choose fN nodes to be contrarians and let the re-
maining (1−f)N nodes to be conformists. The advantage
of this way is that each node will have approximately the
same fraction of neighboring conformists or contrarians.
In the second one, we let the contrarians be distributed
only at a local part of the network, resulting that the
contrarians are highly heterogeneously distributed in the
network. The aim of choosing these two typical ways is
to see how the distribution of contrarians influences the
controlling effect, which may provide a new insight into
understanding how the inhibitory neurons play a role in
the function of neuron networks.

To measure the coherence of the collective motion, we
introduce an order parameter R [7,29],

ReiΨ =
1

N

N
∑

j=1

eiθj , (4)
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where Ψ denotes the average phase, and R (0 ≤ R ≤
1) is a measure of phase coherence. R will reach unity
when the system is fully synchronized and it will be 0 for
an incoherent state. As the conformists will attract each
other to form synchronized clusters and the contrarians
will repel each other to be out of phase, the competition
between them will form different collective behaviors. For
the case of f = 0, it has been revealed that the value of
R will show a jumping behavior at the critical point λ =
λc [13,15–17], i.e. the onset of ES. Then, an interesting
question will be: What will happen for the case f > 0?

In numerical simulations, we take the random Erdős-
Rényi (ER) network with size N = 500 and average
degree 〈k〉 = 6 as an example, unless with specific illustra-
tion. We let the frequency ωi in eq. (1) be the symmetric
Lorentzian distribution of g(ω) = 1

π [ γ
ω2+γ2 ] with γ being

the half-width at half-maximum [33]. We let γ = 0.5 in
this paper. Then, we choose a small fraction f of net-
work’s nodes to be the contrarians and the remaining frac-
tion 1− f of nodes to be the conformists by the two ways
defined by eq. (2) and eq. (3), respectively.

To measure the relationship between the order parame-
ter R and the coupling strength λ, we increase (decrease)
the coupling strength λ adiabatically with an increment
(decrement) δλ = 0.01 from λ = 0 (λ = 5) and compute
the stationary value of R for each λ during the forward
(backward) transition from the incoherent to the phase
synchronized state. We first consider the case of randomly
distributed contrarians and the definition of contrarian in
eq. (2). We call it the random-case1. Figure 1(a) shows
the results of how R changes with λ, where the “squares”
and “circles” represent the forward and backward cases
of f = 0, respectively, the “up triangles” and “down
triangles” represent the forward and backward cases of
f = 0.04, respectively, and the “left triangles” and “right
triangles” represent the forward and backward cases of
f = 0.08, respectively. It is easy to see that there are
hysteretic loops for the cases of f = 0 and f = 0.04 but
no loop for the case of f = 0.08, indicating that the first-
order transition of synchronization has been changed into
a second-order transition by a small fraction of contrari-
ans of f = 0.08. Similarly, we show the corresponding case
of randomly distributed contrarians and the definition of
contrarian in eq. (3) in fig. 1(b) and call it the random-

case2. Then we turn to the case in which the contrarians
are highly heterogeneously distributed in the network, i.e.

in a local part of the network. Figure 1(c) shows the case
of heterogeneously distributed contrarians and the defini-
tion of contrarian in eq. (2), called the hetero-case1. And
fig. 1(d) shows the case of heterogeneously distributed con-
trarians and the definition of contrarian in eq. (3), called
the hetero-case2. Comparing the four panels of fig. 1,
interestingly, we find that all of them show the second-
order phase transition when f = 0.08, indicating the suc-
cess of controlling ES by a small fraction of contrarians.
This result may be explained as follows. As the nodes in
the ER network are randomly connected, the links of the

Fig. 1: (Color online) Forward and backward synchroniza-
tion transitions for the Erdős-Rényi network with N = 500
and 〈k〉 = 6, where the “squares” and “circles” represent
the forward and backward cases of f = 0, respectively, the
“up triangles” and “down triangles” represent the forward and
backward cases of f = 0.04, respectively, and the “left trian-
gles” and “right triangles” represent the forward and backward
cases of f = 0.08, respectively. Panels (a)–(d) correspond to
the random-case1, the random-case2, the hetero-case1, and the
hetero-case2, respectively.

contrarians will go to different nodes, including both the
conformists and contrarians. The difference between the
case of randomly distributed contrarians and the case of
highly heterogeneously distributed contrarians is that the
latter has more links among the contrarians than the for-
mer. As the links among the contrarians take only a small
fraction of the total links of contrarians, most of the total
links of contrarians will go to the conformists, resulting
in the fact that the two cases have the same function of
preventing the onset of ES. We also notice from fig. 1 that
the transition point λc will increase with the increase of f .
In this way, the induced second-transition point λc2 (i.e.
corresponding to fc) will be much larger than the original
first-transition point λc1. This result is important as it
not only suppresses the first-order transition but it also
makes the transition point be postponed a lot, which is
needed by the real systems with potential cascading risk.

Let d be the width of the hysteretic loop, see fig. 1(b).
To figure out the role of contrarians, we measure the de-
pendence of d on f . Figure 2(a) shows the results for tak-
ing an average on 30 realizations, where the four curves
pointed by the arrow with N = 500 represent the four
corresponding cases in fig. 1(a)–(d), respectively. From
them we see that there exists a critical value fc in all the
four cases, where d changes from zero to non-zero. All the
values of fc are smaller than 0.1, indicating that the intro-
duced contrarians are very efficient to prevent the onset
of ES.

To see the size effect, we show two more cases of
N = 1000 and N = 1500 in fig. 2(a) where the other
parameters are taken the same as in the cases of N = 500.
It is easy to see that all the three groups of curves have
similar behavior, i.e. all of them decrease with the increase
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Fig. 2: (Color online) Dependence of d on f for the Erdős-
Rényi network, where the results are obtained by taking an
average on 30 realizations. (a) The influence of size N on fc

with fixed 〈k〉 = 6 where the “squares”, “circles”, “up trian-
gles” and “down triangles” represent the corresponding cases in
fig. 1(a)–(d), respectively, and the three groups of curves denote
the cases of N = 500, 1000 and 1500, respectively. (b) The in-
fluence of the average degree 〈k〉 on fc with fixed N = 500 and
the random-case2 where the “squares”, “circles”, “up trian-
gles” and “down triangles” represent the cases of 〈k〉 = 6, 12, 24
and 499, respectively.

of f and their critical values fc are around 0.1. This com-
mon feature implies that ES can be controlled by a small
fraction of contrarians, no matter the contrarian’s defini-
tions and distributions. On the other hand, from fig. 2(a)
we also notice that fc increases with N , which will be
explained in the next section.

To see the influence of the average degree, we take the
random-case2 as an example. We let N = 500 and grad-
ually increase 〈k〉 from 6 to 12, then to 24 and finally to
the fully connected case of 499. The results are shown in
fig. 2(b). It is easy to see that fc increases with 〈k〉.

To check the robustness of the controlling of ES, we
have changed the network topology into a scale-free (SF)
network with a power law degree distribution and find
similar results as in fig. 2, indicating the robustness of our
approach to the network topologies. On the other hand,
it would be interesting to show how the approach works
in a realistic neuron network. For this purpose, we take
the neuronal network of C. elegans as an example. We
take the data of the network of C. elegans from ref. [34]
where each node represents a neuron and two nodes are
connected if there is a synaptic connection between the
corresponding nodes. The obtained network has 170 nodes
and the average degree 〈k〉 = 32.75. Doing the same nu-
merical simulations as in ER and SF networks, we obtain
a similar result as in fig. 2, indicating that our approach
can be successfully used to the realistic neuron networks.

It is well known that there are both excitatory and
inhibitory neurons in cortical neural networks. The
excitatory neurons comprise the majority (80–90%) of the
neuronal population and show to be largely homogeneous.

The inhibitory neurons comprise only 10% of the neuron
population, but show to be extremely heterogeneous and
play a role in controlling and coordinating the activity
of large populations of local neurons [35–37]. It is also
pointed out that the non-identity of neurons is necessary
for the diversity of memory [38]. In these neuron networks,
the positive (negative) coupling inherently represents ex-
citing (inhibitory) coupling. Our finding thus implies that
the existence of inhibitory neurons in the brain network is
necessary not only for sustaining its normal function but
also for preventing its abnormal behaviors, i.e. ES. That
is, the revealed dependence of phase transition on f has a
twofold meaning in neuron networks. The first one is that
the existence of contrarians can prevent the occurrence of
ES such as the epileptic seizures. The second one is that
different f may result in different degrees of phase transi-
tion, which is of significance in explaining how the neuron
network with excitable and inhibitory neurons implements
a diversity of cognitive processes.

We now present a brief theoretical analysis. For the
system of eq. (1) without contrarians, ref. [15] shows that
there is a suppressive rule,

Yij ≡
|ωi − ωj |

|ωi| + |ωj |
≤ λR, (5)

which controls the formation of synchronized clusters.
According to this rule, two oscillators i and j will be syn-
chronized when their scaled frequency difference Yij satis-
fies eq. (5), i.e. it is smaller than λR, and unsynchronized
otherwise. That is, those pairs of neighboring nodes i and
j violating eq. (5) will take the role of preventing the grow-
ing up of the formed small synchronized clusters. When
the coupling λ is large enough, all the small synchroniza-
tion clusters will suddenly merge together and thus result
in the first-order transition, i.e. ES.

For the systems of equations (2) and (3) with contrar-
ians, we now derive their corresponding suppressive rule.
We let ri be the instantaneous local order parameter for
the oscillator i, defined as rie

iφ = 1
ki

∑ki

j=1〈e
iθj 〉, where

〈· · · 〉 denotes a time average. By definition, 0 ≤ ri ≤ 1,
and φ denotes the phase averaged over the ensemble of
neighbors. The relationship between the global order
parameter R and the local order parameter ri can be rep-
resented as [39,40]

R =

∑N
i=1 kiri

∑N
i=1 ki

. (6)

In the case of f = 0, there is no contrarians in the network.
We let R0 and ri0 be its global and local order parameters,

respectively, and thus have Yij(f = 0) =
|ωi−ωj |
|ωi|+|ωj |

≤ λR0.

We now focus on the case of f > 0. For the contrarians
of eq. (2), eq. (4) can be rewritten as

ReiΨ =
1

N

⎛

⎝

∑

j∈conformists

eiθj +
∑

j∈contrarians

eiθj

⎞

⎠. (7)
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As the contrarians of eq. (2) have a negative coupling λ,
their phases are generally different from those conformists
with a phase difference π [31]. In this sense, we have

R ≈ (1 − 2f)R0. (8)

For the contrarians of eq. (3), we have

rie
iφ =

1

ki

⎛

⎝

∑

j∈conformists

〈eiθj 〉 +
∑

j∈contrarians

〈eiθj 〉

⎞

⎠ (9)

which gives ri ≈ (1−2f)ri0. Substituting it into eq. (6), we
also have R ≈ (1− 2f)R0. That is, eq. (8) works for both
the systems of equations (2) and (3). As the contrarians
are randomly distributed in the network, we may assume
ri ≈ (1 − 2f)R0 in the mean-field framework.

Note that ri sin(Ψ−θi) = 1
ki

∑ki

j=1 sin(θj−θi). Plugging
it into eq. (2), one obtains

θ̇i = ωi + λi|ωi|ri sin(Ψ − θi)

≈ ωi + λi|ωi|(1 − 2f)R0 sin(Ψ − θi). (10)

The evolution of the phase difference ∆θij ≡ θi − θj is
then given by

∆θ̇ij = ωi + (1 − 2f)R0λi|ωi| sin(Ψ − θi)

−ωj − (1 − 2f)R0λj |ωj | sin(Ψ − θj). (11)

When two conformists i and j are phase-locked, one has
∆θ̇ij = 0, and thus

ωi − ωj

(1 − 2f)R0λ
= [|ωj | sin(Ψ − θj) − |ωi| sin(Ψ − θi)]. (12)

The maximum value of the right-hand side of eq. (12) is
|ωi| + |ωj |, which gives a necessary condition of phase-
locking between two conformists,

|ωi − ωj |

|ωi| + |ωj |
≤ (1 − 2f)λR0. (13)

This is the suppressive rule of the case with both con-
formists and contrarians, corresponding to eq. (5). Com-
paring eq. (13) with eq. (5) we see that the factor (1−2f)
will make it more difficult for the conformists to form small
synchronized clusters in the case of f > 0 than in that of
f = 0, indicating that the core of the synchronized giant
cluster will not be generated from the conformists.

In the case of eq. (3), both the conformists and contrar-
ians have the same expression and can be rewritten as

θ̇i = ωi +
λ|ωi|

ki

[

N
∑

j=1

Aij sin(θj − θi)

− 2
∑

j∈contrarians

Aij sin(θj − θi)

]

= ωi + λ|ωi|ri sin(Ψ − θi) − σi

≈ ωi + (1 − 2f)R0λ|ωi| sin(Ψ − θi) − σi, (14)

where σi ≡
2λ|ωi|

ki

∑

j∈contrarians Aij sin(θj − θi) represents
the fluctuation from the fraction f of contrarians. The
evolution of the phase difference ∆θij ≡ θi − θj is then
given by

∆θ̇ij = ωi − σi − ωj + σj

+ (1 − 2f)R0λ[|ωi| sin(Ψ − θi) − |ωj | sin(Ψ − θj)].

(15)

The necessary condition of phase-locking will be

|ωi − ωj + σj − σi|

|ωi| + |ωj |
≤ (1 − 2f)λR0. (16)

When σi = σj , it will become eq. (13). In general, as
both σi and σj are not very large, the fluctuation σj − σi

will be a small quantity. Thus, eq. (16) is approximately
equivalent to eq. (13). In this sense, what we obtained
from eq. (13) will also work here.

Based on the modified suppressive rule of eq. (13), we
now explain the numerical results of figs. 1 and 2. Letting
λ′ = (1 − 2f)λ represent the effective coupling strength,

eq. (13) becomes
|ωi−ωj |
|ωi|+|ωj |

≤ λ′R0, which is exactly the

suppressive rule of ref. [15]. When f = 0, we have λ′ = λ,
indicating that λ′ can be considered as the value of λ in
the case of f = 0. Thus, when λ′ is located in the region
of the hysteretic loop, we may expect a hysteretic loop in
the case of contrarians for λ = λ′/(1 − 2f) > λ′. This
prediction has been confirmed by fig. 1 where the value of
λ needed for the case of f = 0.04 in the hysteretic loop is
larger than that for the case of f = 0.

Notice that eq. (13) comes from the mean-field theory,
which is precise only when N → ∞. For a finite size
N , the order parameter R generally has a fluctuation of
O(N−1/2) [41,42], indicating that a larger N will have a
smaller fluctuation. In the region of the hysteretic loop,
there are two attractors with one having a larger R and
the other having a smaller R. Both of them have their
own basins of attraction [17]. Fluctuation will induce R
to jump between the two attractors, resulting in the hys-
teretic loop. In this sense, a larger fluctuation will make
the jumping occur easily and thus the loop width d will
decrease with the increase of fluctuation, which explains
the increase of fc with N in fig. 2(a). We also notice from
fig. 2(b) that fc increases with 〈k〉, which can be similarly
explained. By numerical simulations we find that the fluc-
tuation of the order parameter decreases with the increase
of 〈k〉, thus resulting in a larger fc for larger 〈k〉, as shown
in fig. 2(b).

In conclusions, we have presented an approach to con-
trol ES in both artificial and realistic networks by adding
a small fraction of contrarians into the network. We find
that the approach is robust to both the different definitions
of contrarians and the different distributions of contrari-
ans. By a theoretical analysis we show that the contrarians
can reduce the number of small synchronized clusters. The
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critical fc increases with both the network size N and the
average degree 〈k〉. This finding may provide new insights
into the diversity of cognitive processes.
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