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We study synchronization in a system of Stuart–Landau oscillators with frequency-weighted coupling.
For three typical unimodal frequency distributions, namely, the Lorentzian, the triangle, and the
uniform, we found that the first-order transition occurs when the frequency distribution is relatively
compact, while the synchronization transition is continuous when it is relatively wide. In both cases,
there is a regime of Bellerophon state between the incoherent state and the synchronized state. Re-
markably, we revealed novel transition behavior for such coupled oscillators with amplitudes, i.e., the
regime of Bellerophon state actually contains two stages. In the first stage, the oscillators achieve
chaotic phase synchronization; while in the second stage, oscillators form periodical phase synchro-
nization. Our results suggest that Bellerophon state also exists in coupled oscillators with amplitude
dynamics.
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1 Introduction

Synchronization is a type of macroscopic order self-
organized in dynamical systems consisting of two or more
interacting units. Such phenomena turn out to be ubiq-
uitous in nature, such as in physics, chemistry, life and
biology, engineering, and social science [1]. For example,
typical synchronization includes the flashing of fireflies [2],
the circadian rhythms of plants and animals [3], neurons
in human brain [4], power grid [5], the Josephson junction
arrays [6], and the crowd synchrony on the Millennium
Bridge [7], etc. Since synchronization is the dynamical
basis for cooperative functioning in a wealth of systems,
it has been extensively investigated for the past several
decades, both theoretically and experimentally [8–10].

One classical, and also the most successful, model for
theoretical study on synchronization is the Kuramoto
model [11, 12]:

θ̇j = ωj +
K

N

N∑
n=1

sin(θn − θj), j = 1, 2, · · · , N, (1)

where θj and ωj are the phase and the natural frequency
of the jth phase oscillator, and the dot denotes the time
derivative. The second term of the right hand side is
the coupling among oscillators. Basically, this model de-
scribes the synchronization transition among a large num-
ber of phase oscillators via mean-field coupling. On one
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hand, it is simple enough to apply analytical treatment.
On the other hand, it can capture the most fundamental
dynamics in coupled oscillators. Due to these reasons, the
Kuramoto model and its many variants have been exten-
sively investigated for over forty years, which has greatly
enhanced our understandings about the collective behav-
iors of coupled systems. For a latest and comprehensive
review, please refer to Ref. [13].

One central issue in the research of synchronization in
coupled oscillators is the formed coherent state, which
emerges autonomously due to the nonlinear interaction
among oscillators. So far, studies have revealed various co-
herent states in Kuramoto-like models. Essentially, they
can be classified into two types: the stationary and the
non-stationary. In the continuum limit, i.e., the number
of oscillators N → ∞, a density function ρ(θ, ω, t) can be
introduced, such that ρ(θ, ω, t)dθ accounts for the fraction
of oscillators of natural frequency ω whose phases are be-
tween θ and θ+dθ at time t. ρ satisfies the normalization
condition∫ 2π

0

ρ(θ, ω, t)dθ = 1 (2)

for all ω and all t, and its evolution is governed by the
continuity equation

∂ρ

∂t
+

∂(ρυ)

∂θ
= 0. (3)

For a coherent state, if the corresponding density does
not change with time, it is defined as stationary state;

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019



Research article

on the contrary, if the density of a coherent state varies
with time, it is non-stationary. Typical stationary states
include the (partially) synchronized state (or the coher-
ent state) [11, 12], the π-state [14], and the travelling
wave state (observed in an appropriate rotating frame)
[15], while the standing wave state belongs to the non-
stationary state [16].

Recently, investigations have identified two novel coher-
ent states in coupled phase oscillators. One is the Chimera
state (CS), which consists of both coherent and incoher-
ent dynamics though in coupled identical oscillators with
symmetric coupling [17–20]. The other is the Bellerophon
state (BS), which is a quantized and non-stationary co-
herent phase, occuring in globally coupled nonidentical
oscillators with widely different frequencies [21–29]. In
such state, oscillators form quantized coherent clusters,
and in each coherent cluster the oscillators’ instantaneous
frequencies are not locked, but instead their average fre-
quencies are locked to form a staircase-like structure.

The BS was first observed in generalized Kuramoto
models, including the frequency-weighted Kuramoto mod-
els [22–24], the generalized frequency-weighted Kuramoto
models [25, 26], and the Kuramoto model with conformists
and contrarians [27–29]. Later it was revealed that it
could also occur in classical Kuramoto model with bi-
modal frequency distribution [30]. Therefore, the BS is
in fact a generic organization of globally coupled noniden-
tical phase oscillators occurring at intermediate values of
the coupling strength, not limited to specific dynamical
model nor to special arrangements in the frequency dis-
tributions. We noticed that so far the BS has been only
observed in coupled phase oscillators, where the dynam-
ics of each oscillator is greatly simplified to be described
only by a phase variable. However, in many real dynam-
ical systems, the amplitude usually plays a crucial role
that cannot be ignored. Then one natural question is:
could the BS occur in coupled oscillators with amplitude
dynamics?

Motivated by this idea, in this work we investigate a
model of coupled Stuart–Landau (SL) oscillators, which
are typical limit cycles with amplitude dynamics. For a
variety of frequency distributions, such as the Lorentzian,
the triangle, and the uniform, we find that BS indeed oc-
curs in this model. By extensive numerical simulations,
the formed BSs are fully characterized. Moreover, differ-
ent synchronization paths, including both the first- and
the second-order transitions, have been characterized. Re-
markably, we reveal that actually there are two stages
within the regime of BS: one is chaotic phase synchro-
nization and the other is periodical phase synchronization.
This work demonstrates that BS might be more generic in
the sense that they could also form in coupled oscillators
with amplitude dynamics. Hopefully, the present results
will stimulate physicists to further seek higher order co-
herent states in other numerous and diverse conditions
and settings.

2 The dynamical model

In this work, we study a dynamical model of globally
coupled SL oscillators with frequency-weighted coupling
[22, 23], i.e.,

żj(t) = (a+ iwj − |zj |2)zj(t) +
K|ωj |
N

N∑
n=1

[zn(t)− zj(t)].

(4)

Here j = 1, 2, · · · , N denotes the index of oscillators.
zj(t) = xj(t) + iyj(t) is the complex amplitude of the jth
oscillator at time t, and the dot represents the time deriva-
tive. a is a control parameter for individual SL oscillator,
i.e., the dynamics settles on a limit cycle if a > 0, and on
a fixed point if a < 0. ωj is the natural frequency of the
jth oscillator, and K is the coupling strength. Compared
with the phase oscillator in classical Kuramoto model, the
dynamics of an individual SL oscillator is two-dimensional
which has both amplitude and phase.

In this work, we consider typical unimodal frequency
distributions, including the Lorentzian, the triangle, and
the uniform. Their analytical forms g(ω) are given as fol-
lows.

1) Lorentzian distribution

g(ω) =
∆

π(ω2 +∆2)
. (5)

2) Triangle distribution

g(ω) = (π∆− |ω|)/(π∆)2, |ω| < π∆, 0 otherwise. (6)

3) Uniform distribution

g(ω) = 1/(2π∆), |ω| < π∆, 0 otherwise. (7)

In all three distributions, ∆ is a parameter which controls
the width of the distribution.

To characterize the collective behaviors of the coupled
SL oscillators, two order parameters can be defined as:

Rzeiψ =

N∑
j=1

zj/N, (8)

and

Rθeiϕ =

N∑
j=1

eiθj/N. (9)

Here, θj represents the phase of the jth oscillator. Order
parameter Rz (0 ≤ Rz ≤ 1 due to a = 1 in this study)
characterizes the coherence of the complete dynamics, in-
cluding both amplitude and phase. Order parameter Rθ
(0 ≤ Rθ ≤ 1) only characterizes the phase coherence of
the system, which does not involve any information of
amplitude.
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Without losing generality, we set a = 1, N = 2000, and
only consider the situation of global coupling. Through-
out this paper, numerical integration is carried out by the
fourth-order Runge–Kutta method with time step 0.005.
The initial phases of the limit cycles are random, i.e., oscil-
lators are uniformly distributed on the unit circle in com-
plex plane at the beginning. In our study, both the forward
and backward transitions are numerically investigated in
an adiabatic way with ∆K = 0.01. To compute the order
parameters and other statistical measures, Eq. (4) is first
integrated for a transient period of t = 10000. Then the
quantities are calculated based on the following time win-
dow of length t = 200. Such scheme is adopted throughout
this paper.

3 Results

In this work, we carry out extensive numerical simulations
to investigate the synchronization transitions in the sys-
tem. Special attention has been paid to the paths towards
synchronization and the formed coherent states. In the
following, we report the main results in detail.

We first investigate the dynamical model [Eq. (4)] with
the Lorentzian frequency distribution, i.e., Eq. (5). Figure
1 characterizes the synchronization transitions in this case,
where both order parameters Rz and Rθ are plotted with

Fig. 1 Typical synchronization transition paths in coupled
SL oscillators [Eq. (4)] with Lorentzian frequency distribution.
Both order parameters Rz and Rθ are plotted vs the coupling
strength K. (a) The first-order transition under ∆ = 0.02.
The critical points for the forward and backward transitions
are K = 3.52 and K = 1.99, respectively. (b) The second-order
transition under ∆ = 0.5. Three bifurcation points (marked
by the crosses) are K = 0.23, 1.73, and 2.13, respectively. The
regime of BS are denoted by the magenta color and the green
line marks the transition point within BS regime.

respect to the coupling strength K. It is found that there
are three types of attractors in the system with Lorentzian
distribution: the incoherent state (IS), the Bellerophon
state (BS), and the synchronized state (SS). When the
coupling strength is small, the system evolves into the IS,
where no coherent cluster of oscillators is formed. On the
other hand, when the coupling strength is large enough,
the oscillators will form SS, where their instantaneous fre-
quencies are locked. In the intermediated regime of the
coupling strength, the system can achieve another higher
order coherence, i.e., the BS, where the instantaneous fre-
quencies of oscillators in the cluster are not locked, but
their averaged frequencies are locked [21, 22].

Depending on parameter ∆ in the Lorentzian distribu-
tion, which characterizes the peak width at half height,
the system exhibits two scenarios of bifurcations toward
synchronization. In the first case, where ∆ = 0.02, the sys-
tem undergoes typical first-order transition from the IS to
the SS with a hysteresis loop (IS→SS); while in the second
case, where ∆ = 0.5, the system bifurcates continuously
from the IS to SS via BS (IS→BS→SS).

Interestingly, in the regime of BS shown in Fig. 1(b), we
find another transition point (marked by the green line).
Comparing Fig. 1(b1) with (b2), it is seen that the or-
der parameter Rz and Rθ exhibit different behaviors. For
Rz, the forward bifurcation point is at K = 1.73, while
for Rθ, the first forward transition occurs much earlier
at K = 0.23. On the other hand, both Rz and Rθ show
a transition point at K = 1.73. So, what happens in the
regime of BS, i.e., K ∈ [0.23, 2.13]? A careful examination
reveals that in such a regime, the system essentially goes
into BS, but there are two slightly different BS! To high-
light this point, we specially choose three representative
points at K = 1.60 (A), 1.90 (B), and 2.30 (C) (marked
by the stars in Fig. 1(b2), respectively. Fig. 2 character-
izes the state at point A in Fig. 1(b2). As seen in (a),
the oscillators at this point have formed certain coherent
behavior. However, such coherence is only achieved in the
phases, not the amplitudes [(b) and (c)]. From (c) and
(d), we can see that the coherent cluster contains oscilla-
tors with relatively larger natural frequencies, while from
(b) and the inset in (d1) we find that the coherent clus-
ter is located in a quite small region around the origin in
the complex plane, i.e., the coherent oscillators have very
small amplitudes. This directly leads to that Rz ≈ 0 while
Rθ is significantly greater than 0 as shown in (a). Statis-
tically, except for the small coherent cluster where coher-
ent oscillators have very small amplitude, most oscillators
distribute almost randomly inside the unit circle (b). This
explains that during the interval K ∈ [0.23, 1.73], Rz ≈ 0
while Rθ > 0 [Fig. 1(b)].

As the coupling strength further increases, the ampli-
tudes of oscillators gradually become coherent. Figure 3
shows the state at point B in Fig. 1(b2). As seen in (b)
and (d), there are two coherent clusters in which both
phases and amplitudes of oscillators are significantly con-
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centrated. These two coherent clusters rotate in opposite
directions, but inside each coherent cluster each oscilla-
tor has its own, time-dependent speed (instantaneous fre-
quency). For this reason, both order parameter Rz and Rθ

Fig. 2 The BS corresponding to point A (K = 1.60) in
Fig. 1(b2). (a) Order parameters Rz(t) and Rθ(t). (b) The
snapshot of oscillators in the complex plane. (c) The spa-
tiotemporal pattern of the phases of oscillators, i.e., θ(j, t),
where j denotes the oscillator index. (d) Snapshots of the in-
stantaneous magnitude of amplitude zj (d1), the instantaneous
phase θj (d2), the instantaneous speed θ̇j (d3), and the average
speed ⟨θ̇j⟩ (d4) vs the natural frequencies ωj of the oscillators.
The inset in (d1) is the enlargement of (b) in a small region
around the origin.

Fig. 3 The BS corresponding to point B (K = 1.90) in
Fig. 1(b2). The figure caption is the same as in Fig. 2.

are oscillating, and significantly greater than 0 on average
(a).

As the coupling strength finally increases to exceed the
transition point at K = 2.13, it is found that oscillation
death (OD) occurs in this system. Figure 4 illustrates the
synchronized state at point C in Fig. 1(b2), where all os-
cillators split to form two coherent clusters consisting of
fixed points.

In order to reveal the mechanism underlying the novel
transition within the BS regime, we turn to study the
microscopic dynamics of individual oscillator. Figure 5(a)
shows the time evolution of two arbitrary coherent oscil-
lators corresponding to Fig. 2. We find that the orbits of
oscillators evolve in a chaotic way (a1), and the two co-
herent oscillators actually achieve chaotic phase synchro-
nization, i.e., their phases are locked, but amplitudes are
uncorrelated (a2). On the contrary, in Fig. 5(b), which
corresponds to Fig. 3, the dynamics of oscillators in this
stage become smeared limited cycles with different ampli-
tudes. Those are almost periodic oscillations, which have
achieved evident phase synchronization.

Based on the above analysis, we now understand the
remarkable transition within the BS regime in Fig. 1(b).

Fig. 4 The SS corresponding to point C (K = 2.30) in
Fig. 1(b2). The figure caption is the same as in Fig. 2.

Fig. 5 The orbits in the complex plane (upper panels) and
the time series of x variables of representative oscillators, cor-
responding to Fig. 2 and Fig. 3, respectively.
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Actually, the BS regime for the case of ∆ = 0.5 includes
two qualitatively different stages. In the first stage, the in-
dividual oscillator behaves chaotically. Their phases have
achieved coherence, but the amplitudes do not. This is a
typical situation of chaotic phase synchronization. Then
with further increasing of coupling strength, the dynamics
of oscillators become periodic and phase synchronization
can be achieved.

Besides the Lorentzian frequency distribution, we have
also studied two other unimodal distributions, i.e., the tri-
angle distribution and the uniform distribution. In both
cases, we observe qualitatively similar results. Fig. 6 shows
the bifurcation paths toward synchronization with the tri-
angle frequency distribution. When parameter ∆ is small,
for example, ∆ = 0.1, the system bifurcated from the IS to
SS via a first-order transition (IS→SS). When it is large,
for example, ∆ = 0.5, the system transfers from the IS to
SS via BS (IS→BS→SS). In this case, similar to Fig. 1(b),
there are two stages within the regime of BS. In Fig. 7,
a typical BS is shown at K = 1.80, which belongs to the
second stage of BS regime. It is seen that the dynamical
features are similar to that of the BS in Fig. 3.

Finally, we briefly present the results for the uniform
frequency distribution. When ∆ is small, for example,
∆ = 0.1 as shown in Fig. 8(a), the system first bifur-
cates from the IS to BS and then to SS, i.e., the bifur-
cation path is IS→BS→SS as the coupling strength in-
creases. It is found that IS→BS is first-order while BS→SS
is continuous. The same situation happens as the cou-

Fig. 6 Typical synchronization transition paths in coupled
SL oscillators (Eq. 4) with the triangle frequency distribution.
For ∆ = 0.1, the two critical points of forward and back-
ward transitions are K = 2.32 and K = 2.00, respectively.
For ∆ = 0.5, there are three transition points K = 0.74, 1.22
and 2.08 (marked by the crosses), respectively. The regime of
BS is denoted by the magenta color, and the green line marks
the transition point within BS regime.

pling strength decreases in the backward transition and
thus form a hysteresis loop. When ∆ is large, for example,
∆ = 0.5 as shown in Fig. 8(b), the system’s bifurcation
path is IS→BS→SS as the coupling strength increases,
and both transitions are continuous. Similar to the previ-
ous two distributions, two stages are observed within the

Fig. 7 The BS corresponding to point D (K = 1.80) in
Fig. 6(b2). The figure caption is the same as in Fig. 2.

Fig. 8 Typical synchronization transition paths in coupled
SL oscillators [Eq. (4)] with the uniform frequency distribu-
tion. For ∆ = 0.1, the transitions towards synchronization
is hybrid. The three transition points are K = 1.57, 1.65,
and 2.02, respectively. For ∆ = 0.5, the transition is continu-
ous, and the three transition points are K = 0.64, 0.75, and
2.16 (marked by the crosses), respectively The regime of BS is
denoted by the magenta color, and the green line marks the
transition point within BS regime.

33603-5 Jia-Meng Zhang, et al., Front. Phys. 14(3), 33603 (2019)



Research article

BS regime. The above results suggest that the transition
within the BS regime is due to the inherent amplitude
dynamics of SL oscillators, despite of specific frequency
distributions.

4 Conclusion and discussion

Bellerophon state is a higher order coherent state, in which
oscillators form quantized coherent clusters, and in each
coherent cluster the oscillators’ instantaneous frequencies
are not locked, but their average frequencies are locked
instead. Previously, it has been found that such states are
generic in coupled phase oscillators. In this work, we inves-
tigated the synchronization in coupled SL oscillators, and
found that Bellerophon state also exists in such system
with amplitude dynamics. Depending on the parameter
characterizing the width of unimodal frequency distribu-
tion, both first-order and second-order transitions have
been observed. Typically, the system bifurcates from IS to
SS via BS when the frequency distribution is significantly
wide. Interestingly, we revealed that there is a novel tran-
sition with the regime of BS, i.e., from chaotic phase
synchronization to periodic phase synchronization. The
present work suggests that there might be more higher or-
der collective behaviors in coupled oscillator systems when
the amplitude dynamics is involved.

It should be pointed out that the Bellerophon states are
first identified in coupled phase oscillators, where phase
synchronization typically occurs. As we know, in cou-
pled oscillators with amplitude dynamics, besides chaotic
phase synchronization, generalized chaotic synchroniza-
tion could also take place in coupled nonidentical systems.
In such coherence, the oscillators’ amplitude dynamics
can achieve certain functional correlations. Therefore, it
is very interesting to further investigate the weak corre-
lation among the coherent oscillators in the Bellerophon
state formed by oscillators with amplitude dynamics. This
will be the task for future study.

Acknowledgements This work was partially supported by
the National Natural Science Foundation of China (Grant
Nos. 11875132, 11835003, and 11872182), and the Natural Sci-
ence Foundation of Shanghai (Grant Nos. 18ZR1411800 and
17ZR1444800).

References

1. A. Pikvosky, M. Rosenblum, and J. Kurths, Synchroniza-
tion: A Universal Concept in Nonlinear Sciences, Cam-
bridge: Cambridge University Press, 2003

2. J. Buck, Synchronous rhythmic flashing of fireflies (II),
Q. Rev. Biol. 63(3), 265 (1988)

3. A. T. Winfree, Biological rhythms and the behavior of
populations of coupled oscillators, J. Theor. Biol. 16(1),
15 (1967)

4. G. Buzsáki and A. Draguhn, Neuronal oscillations in cor-
tical networks, Science 304(5679), 1926 (2004)

5. M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Self-
organized synchronization in decentralized power grids,
Phys. Rev. Lett. 109(6), 064101 (2012)

6. K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchroniza-
tion transitions in a disordered Josephson series array,
Phys. Rev. Lett. 76(3), 404 (1996)

7. B. Eckhardt, E. Ott, S. H. Strogatz, D. M. Abrams, and
A. McRobie, Modeling walker synchronization on the Mil-
lennium Bridge, Phys. Rev. E 75(2), 021110 (2007)

8. H. Chen, Y. Sun, J. Gao, C. Xu, and Z. Zheng, Order
parameter analysis of synchronization transitions on star
networks, Front. Phys. 12(6), 120504 (2017)

9. D. Yuan, J. L. Tian, F. Lin, D. W. Ma, J. Zhang, H. T.
Cui, and Y. Xiao, Periodic synchronization in a system
of coupled phase oscillators with attractive and repulsive
interactions, Front. Phys. 13(3), 130504 (2018)

10. X. Huang, J. Dong, W. Jia, Z. Zheng, and C. Xu, Dy-
namics of clustering patterns in the Kuramoto model with
unidirectional coupling, Front. Phys. 13(5), 130506 (2018)

11. Y. Kuramoto, Chemical Oscillations, Waves and Turbu-
lence, Springer, 1984

12. S. H. Strogatz, From Kuramoto to Crawford: Exploring
the onset of synchronization in populations of coupled
oscillators, Physica D 143(1–4), 1 (2000)

13. F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths,
The Kuramoto model in complex networks, Phys. Rep.
610, 1 (2016)

14. H. Hong and S. H. Strogatz, Kuramoto model of coupled
oscillators with positive and negative coupling parame-
ters: An example of conformist and contrarian oscillators,
Phys. Rev. Lett. 106(5), 054102 (2011)

15. D. Iatsenko, S. Petkoski, P. V. E. McClintock, and A.
Stefanovska, Stationary and traveling wave states of the
Kuramoto model with an arbitrary distribution of fre-
quencies and coupling strengths, Phys. Rev. Lett. 110(6),
064101 (2013)

16. J. D. Crawford, Amplitude expansions for instabilities in
populations of globally-coupled oscillators, J. Stat. Phys.
74(5), 1047 (1994)

17. Y. Kuramoto and D. Battogtokh, Coexistence of coher-
ence and incoherence in nonlocally coupled phase oscilla-
tors, arXiv: cond-mat/0210694 (2002)

18. I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E.
Schöll, When nonlocal coupling between oscillators be-
comes stronger: Patched synchrony or multichimera
states, Phys. Rev. Lett. 110(22), 224101 (2013)

19. D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A.
Wiley, Solvable model for chimera states of coupled os-
cillators, Phys. Rev. Lett. 101(8), 084103 (2008)

20. H. Wang and X. Li, Synchronization and chimera states of
frequency-weighted Kuramoto-oscillator networks, Phys.
Rev. E 83(6), 066214 (2011)

33603-6 Jia-Meng Zhang, et al., Front. Phys. 14(3), 33603 (2019)

https://doi.org/10.1086/415929
https://doi.org/10.1086/415929
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/science.1099745
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevLett.76.404
https://doi.org/10.1103/PhysRevLett.76.404
https://doi.org/10.1103/PhysRevLett.76.404
https://doi.org/10.1103/PhysRevE.75.021110
https://doi.org/10.1103/PhysRevE.75.021110
https://doi.org/10.1103/PhysRevE.75.021110
https://doi.org/10.1007/s11467-017-0651-4
https://doi.org/10.1007/s11467-017-0651-4
https://doi.org/10.1007/s11467-017-0651-4
https://doi.org/10.1007/s11467-018-0748-4
https://doi.org/10.1007/s11467-018-0748-4
https://doi.org/10.1007/s11467-018-0748-4
https://doi.org/10.1007/s11467-018-0748-4
https://doi.org/10.1007/s11467-018-0783-1
https://doi.org/10.1007/s11467-018-0783-1
https://doi.org/10.1007/s11467-018-0783-1
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1103/PhysRevLett.106.054102
https://doi.org/10.1103/PhysRevLett.106.054102
https://doi.org/10.1103/PhysRevLett.106.054102
https://doi.org/10.1103/PhysRevLett.106.054102
https://doi.org/10.1103/PhysRevLett.110.064101
https://doi.org/10.1103/PhysRevLett.110.064101
https://doi.org/10.1103/PhysRevLett.110.064101
https://doi.org/10.1103/PhysRevLett.110.064101
https://doi.org/10.1103/PhysRevLett.110.064101
https://doi.org/10.1007/BF02188217
https://doi.org/10.1007/BF02188217
https://doi.org/10.1007/BF02188217
https://doi.org/10.1103/PhysRevLett.110.224101
https://doi.org/10.1103/PhysRevLett.110.224101
https://doi.org/10.1103/PhysRevLett.110.224101
https://doi.org/10.1103/PhysRevLett.110.224101
https://doi.org/10.1103/PhysRevLett.101.084103
https://doi.org/10.1103/PhysRevLett.101.084103
https://doi.org/10.1103/PhysRevLett.101.084103
https://doi.org/10.1103/PhysRevE.83.066214
https://doi.org/10.1103/PhysRevE.83.066214
https://doi.org/10.1103/PhysRevE.83.066214


Research article

21. S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z.
Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive
transitions in complex networks’ structure and dynamics:
Percolation and synchronization, Phys. Rep. 660, 1 (2016)

22. H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu,
and S. Guan, Coexistence of quantized, time dependent,
clusters in globally coupled oscillators, Phys. Rev. Lett.
117(20), 204101 (2016)

23. W. Zhou, Y. Zou, J. Zhou, Z. Liu, and S. Guan, Intermit-
tent Bellerophon state in frequency-weighted Kuramoto
model, Chaos 26(12), 123117 (2016)

24. H. Bi, Y. Li, L. Zhou, and S. Guan, Nontrivial stand-
ing wave state in frequency-weighted Kuramoto model,
Front. Phys. 12(3), 126801 (2017)

25. Y. Xiao, W. Jia, C. Xu, H. Lü, and Z. Zheng, Synchro-
nization of phase oscillators in the generalized Sakaguchi-
Kuramoto model, Europhys. Lett. 118(6), 60005 (2017)

26. C. Xu, S. Boccaletti, S. Guan, and Z. Zheng, Origin of
Bellerophon states in globally coupled phase oscillators,
Phys. Rev. E 98, 050202(R) (2018)

27. D. Yuan, M. Zhang, and J. Yang, Dynamics of the Ku-
ramoto model in the presence of correlation between dis-
tributions of frequencies and coupling strengths, Phys.
Rev. E 89(1), 012910 (2014)

28. T. Qiu, S. Boccaletti, I. Bonamassa, Y. Zou, J. Zhou,
Z. Liu, and S. Guan, Synchronization and Bellerophon
states in conformist and contrarian oscillators, Sci. Rep.
6(1), 36713 (2016)

29. T. Qiu, I. Bonamassa, S. Boccaletti, Z. Liu, and S. Guan,
Rhythmic synchronization and hybrid collective states of
globally coupled oscillators, Sci. Rep. 8(1), 12950 (2018)

30. X. Li, T. Qiu, S. Boccaletti, I. Sendiña-Nadal, Z. Liu, and
S. Guan, Synchronization clusters with quantum traits
emerge as the result of a global coupling among classical
phase oscillators (submitted)

33603-7 Jia-Meng Zhang, et al., Front. Phys. 14(3), 33603 (2019)

https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1103/PhysRevLett.117.204101
https://doi.org/10.1103/PhysRevLett.117.204101
https://doi.org/10.1103/PhysRevLett.117.204101
https://doi.org/10.1103/PhysRevLett.117.204101
https://doi.org/10.1063/1.4972117
https://doi.org/10.1063/1.4972117
https://doi.org/10.1063/1.4972117
https://doi.org/10.1007/s11467-017-0672-z
https://doi.org/10.1007/s11467-017-0672-z
https://doi.org/10.1007/s11467-017-0672-z
https://doi.org/10.1209/0295-5075/118/60005
https://doi.org/10.1209/0295-5075/118/60005
https://doi.org/10.1209/0295-5075/118/60005
https://doi.org/10.1103/PhysRevE.98.050202
https://doi.org/10.1103/PhysRevE.98.050202
https://doi.org/10.1103/PhysRevE.98.050202
https://doi.org/10.1103/PhysRevE.89.012910
https://doi.org/10.1103/PhysRevE.89.012910
https://doi.org/10.1103/PhysRevE.89.012910
https://doi.org/10.1103/PhysRevE.89.012910
https://doi.org/10.1038/srep36713
https://doi.org/10.1038/srep36713
https://doi.org/10.1038/srep36713
https://doi.org/10.1038/srep36713
https://doi.org/10.1038/s41598-018-31278-9
https://doi.org/10.1038/s41598-018-31278-9
https://doi.org/10.1038/s41598-018-31278-9

	Introduction
	The dynamical model
	Results
	Conclusion and discussion
	References

