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a b s t r a c t

In this paper, we carried out network analysis for typical time series, such as periodic sig-
nals, chaotic maps, Gaussian white noise, and fractal Brownian motions. By reconstructing
the phase space for a given time series, we can generate a network under the constraint of
fixed nearest neighbors. The mapped networks are then analyzed from both the statistical
properties, such as degree distribution, clustering coefficient, betweenness, etc, as well as
the local topological structures, i.e., networkmotifs. It is shown that time series of different
nature can be distinguished from these two aspects of the constructed networks.

© 2012 Elsevier B.V. All rights reserved.

Nonlinear time series analysis is an important branch in the field of nonlinear dynamics, which is of great theoretical
and application significance in science, engineering, finance and economics, as well as life and medical science, etc. [1].
In the past decade, with the rapid development of complex network theory [2–4], a method, which investigates time
series by constructing networks, has brought new ideas into this area. Basically, this method first maps a given time series
into a network by certain operations. Then the generated network can be analyzed in terms of concepts and approaches
developed in the area of complex networks. Hopefully, this essentially different description for time series would provide
new perspectives to the traditional domain of time series analysis.

The key point to construct a network from a time series is to define nodes and edges properly. So far, it is still an open
question to reasonably map a time series into a network so that the latter could keep sufficient information to effectively
exhibit the characteristics of the former. Nevertheless, there are three types of tentative methods proposed already. Let
us briefly review them in the following. (1) Constructing a network from pseudo-periodic time series. This method was
proposed by Zhang et al. in Refs. [5,6]. In this method, the pseudo-periodic time series is approximately divided into many
‘‘cycles’’, i.e., small intervals of approximate cycles. Each ‘‘cycle’’ then can be treated as a node and the connection between
two nodes can be established if the distance between them,which is defined similar to Euclidean norm in vector space, is less
than a given threshold. The approach is first designed for pseudo-periodic time series, such as signals from chaotic Rossler
or human ECGs. Later, it has been extended to arbitrary time series by constructing networks from the correlation matrix in
Ref. [7]. Employing this method, it has been shown that periodic series with noise can be easily distinguished from chaotic
Rossler time series. (2) The method of visibility graph. This method was proposed by Lacasa et al. in Ref. [8]. In principle,
this method is suitable for all time series. In this method, each point in the time series is naturally considered as a node in
the network, and two nodes connect each other if a straight line between them does not intersect any other points between
them. Geometrically, this means that all the points in between do not block the visibility of these two reference nodes. This
is why the method is called a visibility graph. Later, a simplified version of this method is developed, namely, the horizontal
visibility graph [9,10]. By constructing a visibility network, it has been shown that the dynamical properties of the time series
can be represented in the transferred networks. For example, periodic time series lead to a regular network, random time
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series are mapped into a network with exponential degree distribution, and a fractional Brownian time series generates
a network with power-law degree distribution [11–14]. (3) The method of reconstructing phase space. This method was
proposed by Xu et al. in Ref. [15]. In this method, the phase space embedding is first applied for the time series. Then each
vector in the phase space is considered as a node in the network. Whether there is a link between two nodes or not depends
on the distance in phase space between them [16]. In this way, a network can be generated. In fact, the recurrence plots and
the related analysismethods,which are developed before the booming of complex network science, are essentially the graph
or network representation of nonlinear dynamics [17]. Given a dynamics, for example, a time series, its recurrence plot is a
square binarymatrix. If the distance between two state vectors in phase space is less than a certain recurrence threshold, the
corresponding matrix element is 1, and 0 otherwise. Thus the recurrence plot characterizes the times when the trajectory
of the dynamics visits roughly the same neighborhood in the phase space. If the state vectors in phase space are treated as
nodes, a recurrence network is readily obtained based on the recurrence plot [18,19]. In this way, the recurrence network
provides a generic method to map time series into a network, and analyze time series from the perspective of network
topology.

As we know, the properties of complex networks are usually described by their global or statistical properties, such as
degree distribution, clustering coefficient, betweenness, etc. However, it has been shown that the statistical properties alone
are not complete for characterizing complex networks. The local structures or connecting patterns also play significant roles
in network dynamics. For example, if a network slightly changes its local topology, which hardly influences its statistical
properties, its synchronizability, however, can be drastically changed [20]. Recently, the study on network motifs, i.e., the
small subnetworks that typically consist of a few fixednumbers of nodes, aims at characterizing the local topological patterns
in complex networks. In fact, networks have rich information at different scales, ranging frommicroscopic level (single node
properties) to macroscopic level (global properties), with the mesoscopic level between [21,22]. In such a sense, network
motifs can be classified as the properties of a network at the mesoscopic level. Definitely, the investigation on full scales
of complex networks can broaden and deepen our understanding of network structures, organization and functions. It has
been shown that network motifs play important roles in network structure and dynamics in many circumstances, such as
in social networks, the ecological networks, the gene control networks and the protein interaction networks [23–25].

In Ref. [15], time series have been analyzed by investigating the properties of particular network motifs comprising four
nearest nodes in the constructed network. Specifically, a network is first generated by embedding time series into a phase
space. Then each phase space point is regarded as a node which connects its four nearest neighbors. It has been shown that
the relative frequencies of these motifs occurring in a network can be used as a quantity to characterize different types
of time series. This work was very insightful and enlightening, nevertheless, it has one disadvantage, that is, each node
in the network only connects four nearest neighbors. In our opinion, such a network might not be adequate to represent
the dynamical properties of the time series in phase space. This is because nonlinear dynamics is inherently determined
by the local differential properties in the tangent space defined by the governing equations. After phase space embedding,
the orbit actually becomes discrete, where the local properties are conserved and characterized by the relations among
phase space points in the neighborhood. Under this circumstance, if the number of neighbors that each node connects is
too small, the mapped network based on phase space embedding may not keep sufficient information to fully represent the
dynamical properties of the original time series. Based on this consideration, in the present paperwe extended the network-
generating approach proposed in Ref. [15]. Mainly, we let each phase space node connectM nearest neighbors, whereM is a
moderately large number, and the choosing ofM depends on a rule of thumb. By numerical experiments, it is found thatM
can be properly set as 10 ≤ M ≤ 30. In Ref. [15], the number of connecting nearest neighborsM = 4, which is so small that
the mapped network exhibits almost δ degree distribution (as shown in Fig. 3). As a consequence, the mapped networks are
sparse and approximately homogeneous (as shown in Fig. 1). For such networks, it may not provide sufficient and reliable
global information for the original time series. By extending the constraint number of nearest neighbors in phase space to
appropriately larger values, the generated networks could be analyzed from both a global aspect, such as many statistical
properties, and a local aspect, such as local topological patterns. Furthermore, choosingmoderately largeM also helps avoid
possible redundant information in the generated network when M is very large. Therefore, networks mapped under this
constraint could conserve essential and faithful dynamical information for analyzing the original time series.

To be specific, let us briefly describe our method to generate a network from time series. Totally, there are three steps.
First, a time series of total length N is obtained from either dynamical models or practical observations. Then we choose
an appropriate delay time and dimension to reconstruct a phase space for the time series [15,16]. In the present study, the
dimension of phase space is usually chosen to be 5, and the results have been verified in a larger embedding dimension up
to 10. Finally, we treat each phase space point (vector) as a node and connect them under the constraint of fixed nearest
neighbors. In such a way, the time series can be mapped into a network. In Figs. 1 and 2, we schematically plotted the
topologies of mapped networks for several typical time series, including periodic signals, chaotic maps, Gaussian white
noise, and fractional Brownian motion (FBM).

We first report the results of network analysis for three typical time series, i.e., (1) periodic signals xn = sin(2πωn);
(2) chaotic logistic map xn+1 = 4xn(1 − xn); and (3) Gaussian white noise xn ∼ NG(0, σ 2). Here, x is the variable, n is the
discrete time step, andNG denotes the Gaussianwhite noisewith zeromean and σ standard deviation. Fig. 3 plots the degree
distributions for the networks mapped from these three time series. From the figure, we found that the degree of a network
from periodic signals follows a very steep exponential distribution; the degree of network from a chaotic logistic map is of
typical exponential form; while the degree of a network from Gaussian white noise basically satisfies a Poisson distribution.
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Fig. 1. (Color online) Networks mapped from (a) sine signals; (b) chaotic logistic map; (c) Gaussian white noise; and (d) fractal Brownian motion. The
mapped networks are sparse and approximately homogeneous. N = 200,M = 4.
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Fig. 2. (Color online) Comparison with Fig. 1; all the parameters are the same as in Fig. 1 except M = 10. (a) and (c) are basically a regular network and
random network, respectively; while (b) and (d) exhibit typical modular structures. The network characteristics are more distinct compared with Fig. 1.

Thus from periodic series, to chaotic series, to noise, the degrees of the corresponding networks change from exponential
form to Poisson distribution. The distribution width increases with M , i.e., the constraint number of nearest neighbors.
Moreover, it is also found that for the former two degree distributions, the most probable degree exactly equals M , but for
the last degree distribution corresponding to Gaussianwhite noise, themost probable degree is significantly greater thanM .
This is due to the different local differential properties of dynamics in phase space. If the phase space is locally homogeneous,
the nearest neighbors are more likely to be mutual. However, if the phase space is locally very heterogeneous, the nearest
neighborsmostly are notmutual. Apparently, in the latter case the average links (thus the average degree) can be larger than
that in the former case. For comparison, in Fig. 3 we also plot the degree distributions for M = 4 cases, which are almost
like a δ function due to the sparseness induced by the constraint of very small nearest neighbors. We further investigated
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Fig. 3. (Color online) The degree distributions for networks mapped from typical time series. N = 2000.
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Fig. 4. (Color online) Comparing the betweenness distribution (upper panel) and the clustering coefficient-betweenness correlation (bottom panel) for
networks mapped from chaotic logistic map and Gaussian white noise. N = 2000,M = 10.

other statistical properties for the mapped networks, such as cluster coefficients, betweenness, etc. Fig. 4 compares these
quantities formapped networks from chaoticmap andGaussianwhite noise. It is seen that betweenness for the twomapped
networks follow different distributions. The former approximately satisfies exponential distribution (Fig. 4(a)), whereas
the latter approximately follows a Gaussian form (Fig. 4(b)). Furthermore, it is also found that for a chaotic map, in the
generated network the betweenness vs. clustering coefficient gives a bell-shaped function (Fig. 4(c)); while for the noise,
the betweenness is negatively correlated with the clustering coefficient (Fig. 4(d)). As we know, due to the deterministic
stochasticity of chaotic motions, the behaviors of chaotic time series and noise are very similar in coordinate space. Here,
as we show by mapping time series into networks, some statistical quantities of the mapped network can be conveniently
used to distinguish chaotic series from noise, which might be of practical applications in related engineering fields.

In the above, we have characterized the mapped networks in terms of their global statistical properties, such as
distributions of degree, clustering coefficients and betweenness. In fact, the local topological patterns in complex networks
are equally important in affecting the dynamics on it [20]. Recently, Xu et al. considered the subnetwork patterns ormotifs of
size four in networks mapped from time series, focusing on the local properties of networks [15]. Mainly, they investigated
the occurrence of subnetworks of size four in theirwork. As shown in Fig. 5, in total, there are six differentmotifs consisting of
four nodes. In the present work, we also analyze these network motifs in terms of their relative frequencies in the networks
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Fig. 5. (Color online) Frequencies of motifs D and F in the networks mapped from chaotic logistic map and Gaussian white noise. N = 2000,M = 10.
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Fig. 6. (Color online) The degree distributions (a) and the frequencies of motifs D and F; (b) for networks generated from 5 chaotic maps. N = 2000,M =

10, and the average degree is about 11.

mapped from time series, i.e., for each constructed network, we count the number of occurrence of the target motifs. For
example, Fig. 5 plots the occurrence rank of network motifs for two networks mapped from a chaotic logistic map and
Gaussian white noise, respectively. It is found that the two networks can be distinguished by the relative frequencies of two
particular network motifs, i.e., motifs D and F. For Gaussian white noise, the frequency of motif F is obviously smaller than
that of motif D; while for a chaotic map, the frequency of motif F (and C) is significantly larger than that of motif D as shown
in the inset of Fig. 5. This result is reasonable because motif D has more chance to occur in high-dimensional dynamics
where the distribution of phase space points is more heterogeneous. On the contrary, motif F occurs more frequently in
low-dimensional dynamics where the phase space points are relatively homogeneous. This finding is consistent with that
in Ref. [15], showing that by properly allowing more nearest neighbors of connection, the mapped networks can still keep
essential local properties of the time series. Furthermore, this extension in our work greatly increases the total occurrence
of motifs. As pointed out in Ref. [15], the latter is a macroscopic measure similar to entropy, so a largerM , thus a larger total
frequency, implies a relatively more reliable result.

Analysis of chaotic time series is of special theoretical and application importance. Therefore, in this work we further
investigated the networks mapped from various chaotic maps. Typically, we choose the following chaotic maps:

1. Logistic map xn+1 = 4xn(1 − xn);
2. Henon map xn+1 = yn + 1 − 1.4xn, yn+1 = 0.3xn;
3. Ikeda map xn+1 = 1 + 0.7(xn cos tn − yn sin tn), yn+1 = 0.7(xn sin tn + yn cos tn), tn = 0.4 − 6/(1 + x2n + y2n);
4. Folded-towelmap xn+1 = 3.8xn(1−xn)−0.05(yn+0.35)(1−2zn), yn+1 = 0.1[(yn+0.35)(1+2zn)−1](1−1.9xn), zn+1 =

3.78zn(1 − zn) + 0.2yn;
5. Generalized Henon map xn+1 = 1.9 − y2n − 0.03zn, yn+1 = xn, zn+1 = yn.

By constructing networks under the constraint of fixed nearest neighbors for the above time series, we are able to analyze
the networks from both statistical and local perspectives. For example, Fig. 6(a) plots the degree distributions for the five
mapped networks. They are qualitatively similar to each other, approximately following an exponential form. Furthermore,
as shown in Fig. 6(b), the examination of the two key network motifs reveals that the frequencies of motif D and motif F
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Fig. 7. (Color online) Characterizing the networks mapped from FBM with different Hurst exponents. (a) The degree distributions. (b) The clustering
coefficient versus the Hurst exponent. (c) Frequencies of motifs D and F. N = 2000,M = 10 for all networks.

follow different trends, namely, from maps 1–5, motif D increases while motif F decreases. This suggests that when the
dimension of chaotic maps increase, the corresponding networks become more and more heterogeneous.

Finallywe apply network analysis for fractional Brownianmotion,which is frequently used tomodel the fractal dynamics
such as turbulence, economic and financial series, as well as physiological signals in life systems. FBM is a nonstationary
random process characterized by the Hurst exponent H . H = 0.5 corresponds to one-step memory Brownian motion, and
the time series with H > 0.5 and H < 0.5 show persistence and antipersistence, respectively. In Ref. [26], the FBM time
series is mapped into a network by the phase space reconstruction method, and it is found that the relative frequencies of
occurrence of the tetrad motifs can be used to classify time series into superfamilies. In the present work, we characterize
the FBM time series by converting them into networks with appropriate numbers of nearest neighbors, i.e.,M is of the order
of 10. In this way, the network properties can be analyzed from both statistical quantities and local motifs. The results are
illustrated in Fig. 7. It is found that FBM time series with different Hurst exponents H have different network characteristics.
As the Hurst exponent H increases, the degree distributions of the mapped networks gradually change from Poisson form
to exponential form, as shown in Fig. 7(a). In particular, we found a linear dependence between the clustering coefficients c
of the mapped networks and the Hurst exponent H of the FBM time series. As shown in Fig. 7(b), the relation is numerically
fitted as

c ∼ 0.29 + 0.39H. (1)

Eq. (1) shows that the clustering coefficient, which is one of the most important statistical properties of networks, has a
linear relation with the Hurst exponent employing the network-generating method in this paper. On the other hand, the
motif analysis shows thatwith the increase of theHurst exponent, in themapped networksmotif F gradually increaseswhile
motif D drastically decreases, as shown in Fig. 7(c). This implies that networks mapped from FBM time series with larger
Hurst exponents turn out to be more homogeneous locally. Combining the results in Fig. 7(b) and (c), we conclude that with
the increase of the Hurst exponent, the transferred networks under the constraint of fixed nearest neighbors become more
connected, and simultaneously more homogeneous.

To summarize, in this paper we have applied network analysis to time series by extending the network-generating
method in Ref. [15] that is based on the properties of phase space embedding. We first reconstruct the phase space for
a given time series. Then we treat the vectors in phase space as nodes, and allow each node to connect a fixed number of its
nearest neighbors. By properly choosing a moderately large number of connecting neighbors, we can analyze the mapped
networks from both global and local perspectives. We carried out extensive numerical simulations to typical time series,
including periodic signals, chaotic maps, Gaussian white noise, and fractional Brownianmotion. It is found that the network
generated by the present method can characterize the dynamics of time series through both the statistical properties and
local motifs in the associated networks. Thus time series of different dynamical nature can be distinguished from both
aspects of the mapped networks. Our results are helpful for theoretical analysis as well as potential applications in the field
of time series analysis.
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