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Usually, complete synchronization �CS� is regarded as the form of synchronization proper of iden-
tical chaotic systems, while generalized synchronization �GS� extends CS in nonidentical systems.
However, this generally accepted view ignores the role that the coupling plays in determining the
type of synchronization. In this work, we show that by choosing appropriate coupling strategies, CS
can be observed in coupled chaotic systems with parameter mismatch, and GS can also be achieved
in coupled identical systems. Numerical examples are provided to demonstrate these findings.
Moreover, experimental verification based on electronic circuits has been carried out to support the
numerical results. Our work provides a method to obtain robust CS in synchronization-based chaos
communications. © 2006 American Institute of Physics. �DOI: 10.1063/1.2193684�
vast amount of research on synchronization in chaotic
ystems, in both theory and experiment, has emerged
ver the past fifteen years. So far, various types of chaotic
ynchronization, including complete synchronization
CS), generalized synchronization (GS), and phase syn-
hronization (PS) have been extensively studied. Tradi-
ionally, CS is regarded as the synchronization form re-
lized in coupled identical chaotic systems, while GS is
xpected to achieved in coupled different chaotic systems
s the generalization of CS. In the present work, we at-
ack an important question; i.e., whether the identity (or
onidentity) is a necessary condition for CS (or GS). Our
tudy shows that the coupling strategies play an impor-
ant role in determining the form of chaotic synchroniza-
ion. By designing appropriate coupling schemes, enables
s to select the synchronization form (CS or GS) no mat-
er whether the coupled systems are identical or different.

e further present an experiment based on electronic
ircuits to support our findings and point out the poten-
ial application of this study in chaotic communications.

. INTRODUCTION

In the past decade, the synchronization of chaotic sys-
ems has attracted much attention for both theoretical interest
nd practical applications. Theoretically, these studies ex-
ended the theory of classic synchronization of periodic os-
illators, and enhanced our understanding in both the behav-
or of chaotic systems and the synchronization
henomenon.1–3 On the practical side, the combination of
haos synchronization and traditional communication theory
as crystallized the application of chaos-based
ommunications.4–6 Experimentally, chaos synchronization
as been extensively observed in lasers, electric circuits,

7–10
hemical reactions, and biological systems.
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So far, different forms of chaos synchronization have
been investigated and classified. Mainly, these include com-
plete synchronization,11–14 generalized synchronization,15–23

and phase synchronization.24–26 Among them, CS refers to
the complete coincidence of the state variables between
coupled chaotic systems; GS is manifested by a functional
relationship between two coupled chaotic systems. Typically,
CS is expected to occur in coupled identical chaotic systems,
whereas GS is understood as the generalization of CS in
coupled nonidentical chaotic systems. From this commonly
accepted view, the possible synchronization mode seems to
be determined before two identical or nonidentical systems
are coupled. In some situations, this view turns out to be
true; for example, in replacement scheme11 and feedback
scheme.12 However, there have been observations that seem
to be in contradiction with this view.27,28 So far, whether the
identity �or nonidentity� is a necessary condition for CS �or
GS�, has not been systematically investigated. For this pur-
pose, in this work we study the relation between identity �or
nonidentity� of coupled chaotic systems and the type�s� of
synchronization that can be realized. We find that the com-
monly accepted view ignores the role that coupling schemes
play in synchronization. In fact, it is generally impossible to
predict the forms of synchronization in coupled chaotic sys-
tems without considering the specific coupling scheme.
Whether the CS manifold or the GS manifold exists in
coupled chaotic systems �they could be identical or noniden-
tical� strongly depends on the coupling strategies employed.
By designing simple but appropriate coupling strategies, we
have shown that CS can be observed in coupled chaotic sys-
tems with parameter mismatch, and GS can be achieved in
coupled identical systems. We emphasize that the proposed
coupling strategies in our work do not require any special

properties of chaotic systems. Therefore, they are generally
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uitable in coupled chaotic systems. We provide numerical
xamples as well as experiments to demonstrate how to se-
ect CS or GS in coupled chaotic systems by designing ap-
ropriate coupling strategies.

The paper is organized as follows. In Sec. II, we show
hat GS can be achieved in coupled identical chaotic systems
y using two simple coupling strategies; namely, the direct
riving and the generalized feedback. In Sec. III, we study
he synchronization between two coupled parametrically dif-
erent chaotic systems by using the hybrid coupling strategy.
n this case, it is found that either CS or GS can be achieved
n the same coupled systems, depending on the details of the
oupling. One interesting example even shows a smooth
ransition from GS to CS with the increase of the coupling
trength. In Sec. IV, an experiment based on electronic cir-
uit is carried out to demonstrate how to achieve CS between
wo chaotic oscillators with significant parameter mismatch.
n the last section, we compare the current work with several
revious works and point out the relation and difference be-
ween them. Finally, we end this paper with concluding
emarks.

I. GS IN COUPLED IDENTICAL SYSTEMS

. Direct driving coupling

We first consider two identical Lorenz systems in a
rive-response configuration. The drive system is described
y

ḋ = ��yd − xd� , yḋ = rxd − yd − xdzd, zḋ = xdyd − �zd, �1�

nd the response system with the coupling is

ṙ = ��yr − xr� + �xd, yṙ = rxr − yr − xrzr, zṙ = xryr − �zr.

�2�

ere, the subscripts d and r denote the state variables in the
rive and the response systems, respectively. This conven-
ion is followed throughout this paper. The parameters in
oth systems are the same; i.e., �=10, r=28, and �=8/3. In
his model, the response system is driven by the signal from
he drive system through a coupling term �xd in the x vari-
ble. This kind of coupling is neither a complete replacement
cheme11 nor a feedback scheme,12 which are frequently
sed in chaos synchronization. We call this coupling strategy
irect driving. In Eqs. �2�, direct coupling is added to the
esponse system via its x variable. Similarly, it can also be
dded to the response system via the y or z variable; i.e., the
oupling term �yd or �zd can be added to the equation of the

y or z variable in the response system, respectively.
For the coupling of direct driving, it can be easily veri-

ed that the CS manifold xd=xr does not exist even though
he drive and the response system are identical systems. It
urns out that the specific coupling destroys the CS manifold
hat exists between two identical systems. �In the present
ork, we do not consider the trivial case where xd=xr=0.�
ince this coupling strategy requires no special properties of

he dynamical system, in principle it can be applied to any
oupled identical chaotic systems. Generally, it can be ex-

ected that GS rather than CS could occur.

wnloaded 26 May 2006 to 137.132.123.74. Redistribution subject to AIP
Generally, in order to analyze the stability of synchroni-
zation, one should consider the Lyapunov exponents in the
transverse space, which is orthogonal to the synchronization
manifold; i.e., the transversal Lyapunov exponents �TLEs�.
The necessary condition for stable synchronization requires
that all the TLEs are negative. For CS, the manifold xd=xr

defines the CS hyperplane and can be used as the reference
manifold to compute the TLEs. It has been shown that in
drive-response system, the TLEs are equivalent to the condi-
tional Lyapunov exponents �CLEs�.1 The latter can be ob-
tained by treating the response system as a separate dynami-
cal system and calculating its LE as usual though it is under
the driving from the drive system. For GS, usually we do not
have the luxury to know or predict the GS manifold, which is
generally a complicated functional relationship: xd=��xr�.
This makes it difficult to directly compute the TLEs of the
coupled system when the stability of GS is concerned. How-
ever, by introducing an auxiliary system that is an exact copy
of the response system, it has been shown that the stability of
the GS manifold between the drive and response system is
equivalent to the stability of the CS between the response
and auxiliary system.17 Since the response system and the
auxiliary system are identical, the TLEs characterizing the
stability of CS between them are equivalent to the CLEs for
the response systems.

In the present study, two methods are used to character-
ize the synchronization. First, the largest conditional
Lyapunov exponent �LCLE� is calculated; a negative LCLE
indicates that synchronization may occur between the
coupled systems.29 Second, we directly apply the response-
auxiliary system method to detect synchronization and dis-
tinguish whether it is CS or GS.17 In Fig. 1, the synchroni-
zation between Eqs. �1� and �2� is characterized in terms of
LCLE in the response system. For three cases of direct driv-
ing, it is found that the LCLE becomes negative with large
enough coupling strength. Since a CS manifold does not ex-
ist between the drive and the response system, this synchro-
nization should belong to the GS type. This is further verified
by the response-auxiliary system method, as shown in Fig. 2.

In fact, the direct coupling scheme used in the above
model can be easily generalized. For example, the coupling

FIG. 1. The LCLEs vs the coupling strength for direct coupling in the x, y,
and z variables in Eqs. �2�, respectively.
term can take the following form:

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



w
f
c
f

B

c
a
t
c
T
s

F
d
a
y
s

023107-3 Chaotic synchronization through coupling Chaos 16, 023107 �2006�

Do
c�xd,xr� = f�xd� , �3�

here f is a usual function. If c�0 when xd=xr, CS mani-
old cannot exist between these two identical systems
oupled by such scheme. The only possible synchronization
orm for this coupled system, then, is GS.

. Generalized feedback

Feedback techniques have been extensively used in
haos control and synchronization. Here we propose gener-
lized feedback coupling schemes that can lead to GS rather
han CS between two coupled identical chaotic systems. The
oupled systems are still in the drive-response configuration.
he drive system is the same as Eqs. �1�, and the response

IG. 2. GS rather than CS observed between two identical systems with
irect coupling. �=15. �a� The attractors in the drive �black�, response, and
uxiliary systems �gray; they are totally overlapping�. �b� yd vs yr. �c� ya vs

r. The subscripts d, r, and a denote the state variables in the drive, re-
ponse, and auxiliary systems, respectively.
ystem is

wnloaded 26 May 2006 to 137.132.123.74. Redistribution subject to AIP
xṙ = ��yr − xr� , yṙ = rxr − yr − xrzr − ��yr − �yd� ,

�4�
zṙ = xryr − �zr,

with �=10, r=28, and �=8/3 for both systems. Here, � is a
constant. Essentially, the coupling scheme in this set of equa-
tions is of the feedback type that includes the frequently used
one, i.e., �yr−yd�, as a special case with �=1.

Here we consider ��1. It is easy to verify that no CS
manifold xd=xr exists in the coupled system. Therefore, if
synchronization can be achieved, it must be GS rather than
CS, although the two systems are identical without coupling.
In Fig. 3, it is shown the LCLE in the response system be-
comes negative when the coupling strength is large enough,
indicating that synchronization can be achieved. In Fig. 4,
this synchronization is confirmed to be the GS type by the
response-auxiliary system method.

In fact, the coupling scheme used in the above model
can be easily generalized. For example, the coupling term
can take the following form:

c�xd,xr� = f�xd,xr��g�xr� − h�xd�� , �5�

where f , g, and h are usual functions. If c�0 when xd=xr,
CS is forbidden between two identical systems coupled by
this generalized feedback scheme. The possible synchroniza-
tion form for such a system should be GS. On the other hand,
if c=0 when xd=xr, both CS and GS might be observed in
this case.

C. GS between two identical spatiotemporal
chaotic systems

To demonstrate that GS can be achieved between two
identical spatiotemporal chaotic systems, we couple two ar-
rays of N diffusively coupled Lorenz systems by direct driv-
ing coupling. The drive system is

ẋd
i = ��yd

i − xd
i � + D�xd

i+1 − 2xd
i + xd

i−1� ,

�6�
ẏd

i = rxd
i − yd

i − xd
i zd

i , żd
i = xd

i yd
i − �zd

i ,

and the response system with driving is

FIG. 3. The LCLE vs the coupling strength for Eqs. �4�.
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ẋr
i = ��yr

i − xr
i� + D�xr

i+1 − 2xr
i + xr

i−1� ,

�7�
ẏr

i = rxr
i − yr

i − xr
izr

i + �yd
i , żr

i = xr
iyr

i − �zr
i ,

ith �=10, r=28, and �=8/3 for both systems. D is the
oefficient of diffusive coupling inside the arrays. The re-
ponse system is coupled to the drive system via direct driv-
ng in the y variable. For numerical simulations presented in
his work, we assume periodic boundary conditions.

Obviously, the CS manifold cannot exist in these two
patiotemporal systems. Therefore, GS might be expected to
e observed between them. In order to characterize synchro-
ization in spatiotemporal systems, we define the time-
veraged global synchronization error between the response

IG. 4. GS rather than CS observed between two identical systems with
eneralized feedback coupling. �=3. �a� The attractors in the drive �black�,
esponse, and auxiliary systems �gray; they are totally overlapping�. �b� yd

s yr. �c� ya vs yr.
nd the drive system as

wnloaded 26 May 2006 to 137.132.123.74. Redistribution subject to AIP
Lrd��� =
1

t2 − t1
�
t1

t2 � 1

N
�
i=1

N

��xr
i − xd

i �2 + �yr
i − yd

i �2

+ �zr
i − zd

i �2�1/2� . �8�

Here, i is the index of the chaotic oscillator inside the array,
and N is the total number of chaotic oscillators. The time
average is carried out during a long period �t1 , t2�, where t1

should be large enough so that the system has passed the
transient stage. Similarly, the synchronization error between
the response and the auxiliary system Lra can be defined by
replacing the subscript d by a in Eq. �8�. In Fig. 5, the LCLE
and the global synchronization errors Lrd and Lra are plotted
versus the coupling strength. In the synchronization regime,
where the LCLE is negative, it is seen that Lra converges to
zero, but Lrd does not. Obviously, the synchronization be-
tween these two identical spatiotemporal systems belongs to
GS rather than CS due to the specific coupling.

III. CS IN COUPLED NONIDENTICAL SYSTEMS

A. CS between two parametrically different systems

In the previous section, we have shown that by designing
appropriate coupling schemes, GS can be achieved between
two identical dynamical systems. In this section, we further
demonstrate that by designing flexible coupling schemes, CS
can also be observed between two dynamical systems with
parameter mismatch.

The model we studied consists of two Lorenz systems
with parameter mismatch in drive-response configuration.
The drive system reads

xḋ = ��yd − xd� , yḋ = rdxd − yd − xdzd, zḋ = xdyd − �zd, �9�

and the response system with coupling is

xṙ = ��yr − xr� − ��xr − xd� ,

yṙ = rrxr − yr − xrzr − �rr − rd�xd, �10�

zṙ = xryr − �zr.

Here, the two systems have the same parameters �=10, �

FIG. 5. GS rather than CS between two identical spatiotemporal chaotic
systems using direct driving. N=10 and D=0.3.
=8/3, and the different parameters rd=28 and rr=30. What
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akes this model special is that the response system is
riven by two types of driving signals from the drive system.
he first coupling term is of the feedback type, which is
dded in the equation of the x variable. Moreover, there is a
econd direct driving term in the equation of the y variable,
hich is proportional to the parameter mismatch between the

wo systems. Therefore, this coupling term can be under-
tood as the parameter mismatch compensator. In fact, the
eedback coupling term can also be added to the response
ystem through the y or z variable, while the parameter mis-
atch compensator keeps unchanged in the equation of the y

ariable. We denote these three situations as the coupling
trategies A, B, and C, corresponding to the feedback cou-
ling through the x, y, and z variables, respectively.

It is generally believed that CS is forbidden between two
oupled systems with parameter mismatch. However, in the
resent model, due to the special hybrid coupling strategy, it
an be easily verified that the CS manifold exists even
hough there is parameter mismatch between the two coupled
ystems. If this CS manifold is asymptotically stable within
ertain parameter range, CS could be observed between the
wo nonidentical systems. On the other hand, the current
oupling strategy does not exclude GS manifold in the
oupled systems. Therefore, there are also possibilities of the
oexistence of CS and GS in the model studied. Whether CS
r GS can occur in the system depends on the stability of the
S and GS manifolds.

We numerically studied the synchronization between
qs. �9� and �10�. The characterization of synchronization
etween Eqs. �9� and �10� with coupling strategies A, B, and

is shown in Fig. 6. For coupling strategy A, as shown in
ig. 6�a�, both Lrd and Lra converge to zero at the bifurcation
oint of synchronization. This implies that the synchroniza-
ion achieved is the CS type. For coupling strategy B, an
nteresting synchronization bifurcation is observed as shown
n Fig. 6�b�. It is found that with the increase of coupling
trength, there are three parameter regimes. In the first re-
ime, i.e., ��1.5, there is no synchronization between the
oupled systems. In the second regime, i.e., 1.5���2.65,
he LCLE becomes negative, indicating that synchronization
as achieved between the coupled systems. The synchroni-
ation type can be further identified as GS since the synchro-
ization error Lra=0, while Lrd�0 in this regime. A concrete
xample of GS at �=2 is shown in Figs. 7�a�–7�c�. The sys-
em enters into the third regime when ��2.65. In this re-
ime, the LCLE is negative and both Lra and Lrd converge to
ero. Obviously, this belongs to the case of CS. An example
f CS at �=3 is shown in Figs. 7�d�–7�f�. Therefore, for the
oupling strategy B, we have observed a smooth transition
rom GS to CS with the continuous increase of the coupling
trength. So far, two transitions between the different syn-
hronization forms have been found. One is the transition
etween GS and PS.26,30,31 The other is the transition be-
ween PS and lag synchronization.32 To our knowledge, the
ransition between GS and CS has not been reported before.

e noticed that in Ref. 33, GS is observed between coupled
dentical system. However, in that model, GS occurs when
he coupling strength is negative enough �positive feedback

oupling�, while CS occurs when the coupling strength is

wnloaded 26 May 2006 to 137.132.123.74. Redistribution subject to AIP
positive enough �negative feedback coupling�. There is no
continuous transition from GS to CS. For coupling strategy
C, a different synchronization scenario is observed, as shown
in Fig. 6�c�. In this case, the synchronization can be identi-
fied as GS, while CS does not occur.

To conclude, due to the special hybrid coupling strategy,
it is possible to observe CS in coupled systems with param-
eter mismatch. Of course, GS may also happen in such sys-
tems. Interestingly, a smooth transition from GS to CS has
been found in the current model. It should be pointed out that
the coupling strategy proposed in this model has certain limi-
tations. For some dynamical systems, it might be difficult to
construct parameter mismatch compensator for certain con-
trol parameters. In experiments, it may also happen that the
parameter mismatch exists in a state variable which, how-
ever, is inaccessible for feedback. Nevertheless, for a variety
of nonlinear dynamical systems that are actually partially
linear, for example, the Lorenz system, the Rössler system,
and the Chua circuits, etc., the proposed coupling strategy

FIG. 6. Characterizing CS and GS between two coupled nonidentical sys-
tems. �a�, �b�, and �c� Coupling strategies A, B, and C, respectively.
can be applied in a straightforward way.
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. CS between two nonidentical spatiotemporal
haotic systems

We further demonstrate that CS can also be achieved
etween two nonidentical spatiotemporal chaotic systems. To
his end, we consider two arrays of chaotic oscillators. Each
rray consists of N diffusively coupled Lorenz systems. The
rive system is the same as Eqs. �6�, with rd=28. The re-
ponse system with the driving is

ẋr
i = ��yr

i − xr
i� + D�xr

i+1 − 2xr
i + xr

i−1� ,

ẏr
i = rxr

i − yr
i − xr

izr
i − ��yr

i − yd
i � − �rr − rd�xd

i , �11�

żr
i = xr

iyr
i − �zr

i ,

ith rr=30. �=10 and �=8/3 are the same for both systems.
is the coefficient of diffusive coupling inside each array. In

umerical simulations, periodic boundary conditions are as-
umed. Similarly, the response system is driven by two sig-
als from the drive system. One is the feedback coupling
erm, and the other is the parameter mismatch compensator.

ue to this hybrid coupling strategy, it can be verified that

wnloaded 26 May 2006 to 137.132.123.74. Redistribution subject to AIP
the CS manifold exists between these two spatiotemporal
systems. Numerically, it is found that this CS manifold is
asymptotically stable when the coupling strength � is large
enough. As shown in Fig. 8, with the increase of �, the LCLE
becomes negative. In the meantime, both synchronization er-
rors Lrd and Lra converge to zero, showing that CS rather

FIG. 7. Both CS and GS are observed
for coupling strategy B in systems �9�
and �10�. �=2 for �a�, �b�, and �c�; �
=3 for �d�, �e�, and �f�. �a� and �d� The
attractors in the drive, response, and
auxiliary systems. In �a�, the attractors
in the response and auxiliary system
coincide, but they do not coincide with
the attractor in the drive system. In
�d�, the attractors in the drive, re-
sponse, and auxiliary systems all coin-
cide with each other. �b� and �e� yd vs
yr. �c� and �f� ya vs yr.

FIG. 8. CS between two nonidentical spatiotemporal chaotic systems �6�

and �11�. N=10 and D=0.3.
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han GS has been achieved between these two different spa-
iotemporal systems.

V. EXPERIMENTS

To verify the above numerical results, we carried out
xperiments based on a chaotic electronic LC oscillator to
emonstrate how to achieve CS between two chaotic systems
ith parameter mismatch. The schematic of the electronic

ircuit is shown in Fig. 9.34 Its dynamical equations can be
odeled as

diL

dt
= vc, C

dvc

dt
=

vc

R
− iL +

vF − vc

1 K	
, C

vF

dt
= −

vF

R
− f�vc� ,

�12�

f�vc� = �VD + vc

68 	
, vc � − VD,

0, vc � − VD.
	

ere, iL is the current through the tank inductor; vc the volt-
ge across the tank capacitor; vF the voltage in the folding
ircuit; VD
0.7 the voltage drop for a conducting diode; C
0.1 
F the tank capacitance; and R the variable resistance

or tuning the chaotic behavior of the circuit. The tank in-
uctor is implemented using a general impedance converter,
ith equivalent inductance L=0.2 H. At R=700 	, the cir-

uit is in the chaotic regime, exhibiting chaotic attractor-like
ehavior shown in Fig. 10�a�.

The response system is a copy of the drive system, ex-
ept that we artificially set the resistor in the folding circuit
o be 50 	. This generates about 30% parameter mismatch
etween the drive and the response system. The response
ystem with feedback coupling and parameter mismatch
ompensator is modeled as

diL�

dt
= vc�, C

dvc�

dt
=

vc�

R
− iL� +

vF� − vc�

1 K	
− R1�vC − vC� � ,

vF�

dt
= −

vF�

R
− f�vc�� , �13�

FIG. 9. The electronic circuit of the LC oscillator.
wnloaded 26 May 2006 to 137.132.123.74. Redistribution subject to AIP
f�vc�� = �VD + vc

50 	
+ R2�vF − vF�� −

1

RC
�VD + vc�, vc � − VD,

0, vc � − VD.
	

In the experiment, R1=12 K	 and R2=10 K	 are the cou-
pling strengths, and Rc controls the strength of parameter
mismatch compensator. First, two oscillators are coupled
through the usual feedback couplings without the parameter
mismatch compensator. In this case, the synchronization be-
tween the drive and the response system is of the GS type.
The functional relation is shown in Fig. 10�b�. We then
switch on the parameter mismatch compensator and gradu-
ally increase Rc in the response system. At certain appropri-
ate value of Rc, it can be observed that CS can be achieved

FIG. 10. �a� The chaotic attractor of the LC oscillator, vC vs vF. �b� and �c�
The synchronization manifold vF vs vF� . �b� The response system with feed-
back coupling but without parameter mismatch compensator. �c� The re-
sponse system with both feedback coupling and parameter mismatch
compensator.
between the two systems as shown in Fig. 10�c�.
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. DISCUSSION AND CONCLUDING REMARKS

There are several previous works that are relevant to the
urrent study.27,28,32,33,35–38 Here, we discuss the relation and
ifference between them and our work. In Ref. 27, a model
f coupled identical chaotic systems is shown to display CS
ombined with GS, depending on initial conditions. Let us
ewrite Eqs. �2� and �5� in Ref. 27 in the following. Equation
2� in the drive system is

ẋ2 = − x2 − �x3 − R�x1, �14�

ith R a parameter. The corresponding equation �3� in the
esponse system is

ẏ2 = − y2 − �x3 − R�y1, �15�

hich is a copy of the drive system, except that y3 in Eq.
14� has been replaced by the driving variable x3. The rest of
he equations in the drive system are the same as that in the
esponse system. For this replacement coupling, we can
hange the form of Eq. �15� into

ẏ2 = − y2 − �y3 − R�y1 + y1�y3 − x3� . �16�

ow we can see that this model is equivalent to two identical
ystems coupled with a nonlinear feedback term y1�y3−x3�,
hich can be classified into the generalized feedback cou-
lings studied in Sec. II of this paper. Therefore, the results
n Ref. 27 can be well understood in the framework of the
urrent study. Interestingly, CS and GS are found to coexist
n Ref. 27, depending on initial conditions. In this work
model A in Sec. III�, we further found that CS and GS can
oexist in one dynamical model, depending on parameter
egimes. In another work,28 the following coupling scheme is
sed. The involved equation in the drive system is �Eq. �6� in
ef. 28�

ż = − ��z − B − R�s1 + s2�� , �17�

ith z ,s1 ,s2 variables and B ,R parameters. The counterpart
f Eq. �17� in the response system is

z�̇ = − ��z� − B − R�s1 + s2�� , �18�

ith z� a variable in the response system and s1 ,s2 the driv-
ng variables. The other equations of the drive system and
he response system are the same. Similarly, Eq. �18� can be
ewritten as

�̇ = − ��z� − B − R�s1� + s2��� − �R��s1� + s2�� − �s1 + s2�� , �19�

here the variables with primes are in the response system.
pparently, this model can also be regarded as two identical

ystems coupled through a lumped feedback term. Thus, it is
ot strange to observe GS in this model according to the
nalysis of generalized feedback in Sec. II of this paper. In
ddition, the present study is different from previous
orks,35,36 where synchronization between different systems

s achieved by special chaos control techniques. Our study is
lso different from the work in Refs. 32, 37, and 38, where
pproximate CS, i.e., CS in a practical sense rather in a strict
ense, is achieved between coupled systems with parameter

ismatch.
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Since the primary aim in this work is to illustrate un-
usual synchronization phenomena by adopting appropriate
coupling strategies, we focus our studies on the unidirection-
ally coupled dynamical systems. However, the proposed cou-
pling strategies can be easily extended in the bidirectionally
coupled dynamical systems.39 For example, the models in
Sec. II can be modified to bidirectionally coupled systems by
introducing couplings in the drive systems. The couplings
can be constructed in flexible ways as long as they still de-
stroy the CS manifold in these systems. For the model in
Sec. III A, the modification to bidirectional coupling is
straightforward. For example, we can simply add a feedback
term in the equation of x variable in Eqs. �9�. In this case, it
is found numerically that when the coupling strength exceeds
11.5, CS occurs between the bidirectionally coupled non-
identical systems.

To summarize, in this paper we investigated the role that
the coupling strategy plays in determining the synchroniza-
tion type between coupled chaotic systems. By designing
appropriate coupling schemes, it has been shown that GS
could be observed in coupled identical systems, and CS
could also be achieved in coupled nonidentical systems. Our
results thus reveal that it is impossible to accurately predict
the synchronization type based only on whether the un-
coupled chaotic systems are identical or not. To draw a cor-
rect conclusion, the specific coupling scheme must be con-
sidered together with the dynamical equations. We
emphasize that the coupling strategies used in the current
work are simple and flexible; thus, they can be generally
applied to many other dynamical systems.

The present finding not only deepens our understanding
about synchronization between coupled chaotic systems, but
also has potential application in synchronization-based cha-
otic communications. Currently, most of the synchronization-
based communication schemes depend heavily on the CS
between the dynamics of the transmitter and the receiver.
However, due to the inevitable parameter mismatch in prac-
tice, the transmitter and the receiver cannot be perfectly iden-
tical. In fact, any synchronization between coupled chaotic
systems in practice should belong to GS rather than CS. In
certain systems, if the chaotic synchronization is highly sen-
sitive to a parameter mismatch, the strategies demonstrated
in this work can be applied so that strict and robust CS can
be achieved for communication purposes.
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