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Abstract – Recently, explosive phase transitions, such as explosive percolation and explosive
synchronization, have attracted extensive research interest. So far, most existing works have
investigated Kuramoto-type models, where only phase variables are involved. Here, we report the
occurrence of explosive oscillation quenching in a system of coupled Stuart-Landau oscillators that
incorporates both phase and amplitude dynamics. We observe three typical scenarios with distinct
microscopic mechanism of occurrence, i.e., ordinary, hierarchical, and cluster explosive oscillation
death, corresponding to different frequency distributions of oscillators. We carry out theoretical
analyses and obtain the backward transition point, which is shown to be independent of the specific
frequency distributions. Numerical results are consistent with the theoretical predictions.

Copyright c© EPLA, 2014

Introduction. – Recently, two remarkable phenom-
ena, i.e., explosive percolation (EP) and explosive syn-
chronization (ES), have attracted great attention in the
area of nonlinear dynamics and complex networks.

EP refers to the sudden formation of an inter-connected
giant cluster in a growing network, whose size is compa-
rable with that of the whole network [1–9]. It is shown
that EP could occur in a network under Achlioptas-like
growth rules, which generally enhance the formation of
small clusters and suppress the formation of giant clus-
ters before transition [1]. Such processes are essentially
different from the traditional percolation transition in the
Erdős-Rényi network, where the size of the giant cluster
grows gradually and continuously after the transition.

ES is an abrupt, irreversible synchronization first re-
ported in a generalized Kuramoto model on a scale-free
network when the natural frequency and degree of the j-th
oscillator in the network are correlated, i.e., ωj = kj [10].
This result is drastically different from the continuous syn-
chronization transition found in the Kuramoto model for
decades, and thus has stimulated intensive research along
this line [11–18].

So far, ES is only observed in phase synchronization, ei-
ther in the Kuramoto-type model or in the coupled Rössler
system. One important question is: could explosive be-
haviors occur for the amplitude dynamics in networked os-
cillators? Motivated by this idea, we investigate a model

of coupled Stuart-Landau (SL) oscillators in this paper.
By introducing a similar coupling scheme as in ref. [16],
we found that explosive oscillation death (EOD) could oc-
cur in the model. Specifically, we have numerically identi-
fied three typical types of EOD, namely, ordinary EOD
(OEOD), hierarchical EOD (HEOD), and cluster EOD
(CEOD), corresponding to different distributions of the
natural frequency of SL oscillators. Interestingly, for all
three cases, it is found that the backward phase transi-
tions are independent of the specific frequency distribu-
tions (FDs). We further apply a self-consistency analysis,
which proves the universal property of the backward phase
transitions in the model.

The dynamical model. – Amplitude death (AD) and
oscillation death (OD) both refer to the complete sup-
pression of oscillations in coupled systems, i.e., converting
from oscillating states, such as limit cycles or chaos, into
fixed points [19,20]. In AD all oscillators finally settle on
the same fixed point, while in OD they settle on different
fixed points. Since its first discovery in an array of coupled
oscillators [21], AD and OD have stimulated continuous
research in both theory [22–26] and experiments [27,28]
in the past two decades. For networked oscillators, it is
important to investigate how transition to AD or OD oc-
curs, i.e., does it occur suddenly for all oscillators, or does
it develop gradually in the system? This issue has been
addressed by several previous works. In refs. [29–31], it

50003-p1



Hongjie Bi et al.

Table 1: Summary of the three typical FDs with parameters investigated in this paper, and the critical points for both forward
(Kf ) and backward (Kb) transitions.

FD Formula Parameter Kf Kb

Triangle
g(ω) = (πΔ − |ω|)/(πΔ)2,

Δ = 0.1 Kf ≈ 2.30 Kb ≈ 2.02
|ω| < πΔ, 0 otherwise

Lorentzian g(ω) = ∆
π(ω2+∆2) Δ = 0.02 Kf ≈ 3.32 Kb ≈ 2.02

Uniform
g(ω) = 1/(2πΔ),

Δ = 0.1
K1

f ≈ 1.64 K1
b ≈ 2.02

|ω| < πΔ, 0 otherwise K2
f ≈ 2.02 K2

b ≈ 1.56

is found that with the increase of the coupling strength,
partial oscillators in the network first undergo AD. Then
more and more oscillators convert into the AD state as
the coupling strength further increases until all oscillators
finally become fixed points. In a few words, AD/OD oc-
curs successively in such networked systems. Moreover,
in ref. [32], although AD is shown to occur suddenly for
all oscillators in the network, no hysteresis has been re-
ported there. In this work, our primary concern is whether
AD/OD could occur in an explosive way accompanied by
a hysteresis in a certain coupled oscillators system. To
this end, we study a dynamical model of networked SL
oscillators with frequency-weighted coupling [16], i.e.,

żj(t) = (a + iwj − |zj |2)zj(t) +
K|ωj|

N

N
∑

n=1

[zn(t) − zj(t)].

(1)
Here j = 1, 2, · · · , N is the index of oscillators. zj(t) =
xj(t) + iyj(t) is the complex amplitude of the j-th oscilla-
tor at time t, and the dot represents the time derivative. a
is a control parameter for the individual SL oscillator, i.e.,
the dynamics settles on a limit cycle if a > 0, and on a
fixed point if a < 0. ωj is the natural frequency of the j-th
oscillator, and K the uniform coupling strength. The most
important characteristic of this model is that the effective
coupling for oscillator j is proportional to its natural fre-
quency ωj. Therefore, the effective couplings in eq. (1)
are heterogeneous rather than homogeneous as in most
previous models.

In this work, we consider several typical FDs as listed in
table 1. Without losing generality, we set a = 1 and only
consider the situation of global coupling. Throughout this
paper, numerical integration is carried out by the fourth-
order Runge-Kutta method with time step 0.01. The ini-
tial phases of the limit cycles are random, i.e., oscillators
are uniformly distributed on the unit circle in a complex
plane at the beginning.

The numerical results. – To characterize the collec-
tive behaviors of the coupled SL oscillators, two order pa-
rameters can be defined as: Reiψ =

∑N

j=1 zj(t)/N , and

Rθe
iφ =

∑N

j=1 eiθj /N . Here, θj represents the phase of
the j-th oscillator. The order parameter R (0 ≤ R ≤ 1
due to a = 1 in this study) characterizes the coherence

Fig. 1: (Color online) Characterization of the EOD by order
parameters R and Rθ for three typical FDs, i.e., triangle (left
column), Lorentzian (middle column), and uniform (right col-
umn), respectively. System size N = 500. In both forward and
backward transitions, the dynamical equations are integrated
in an adiabatic way, where K is increased at a step of 0.02 and
the final state for a prior K is used as the initial state for the
next K. For each K, the order parameters are averaged in a
time window after the transient stage. Such numerical schemes
are adopted throughout this paper.

of the complete dynamics, including both amplitude and
phase. The order parameter Rθ (0 ≤ Rθ ≤ 1) only char-
acterizes the phase coherence of the system, which does
not involve any information of amplitude.

We now report the main numerical findings. Generally,
we observe EOD in eq. (1), which, to our knowledge, is the
first explosive phase transition involving the behavior of
amplitude in a system of coupled oscillators. As listed in
table 1, we consider three typical FDs in eq. (1). In fig. 1,
we plot the order parameters R and Rθ vs. the coupling
strength K. For both R and Rθ, we observe a sudden,
discontinuous jump when the coupling strength K exceeds
the critical value, i.e., the forward transition point. Af-
ter the transition, the order parameters are significantly
greater than 0, indicating that the system goes from the in-
coherent state into the (partially) coherent one. Inversely,
when the system starts from a coherent state initially,
as the coupling strength decreases, the order parameters
also experience an abrupt fall, but at a different coupling
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Fig. 2: (Color online) Classification of the EOD by three mea-
sures: the effective frequencies Ωj ; Nd/N (Nc/N); and the
relative phases ηj (see the definitions in the text). For a
better visualization, we have applied downsampling in this
figure when necessary. All parameters are the same as in
fig. 1. In our study, we have also carefully examined the
process for the backward transition (not shown). Except for
the transition points, the physical pictures are qualitatively
the same.

strength from the forward transition point. In this way,
a hysteresis loop, which is a typical characteristic in the
first-order phase transitions, can be defined by the back-
ward and forward transition points. It should be pointed
out that, at this stage, we cannot identify whether it is
OD or AD only based on the results in fig. 1. Later, we
will provide more evidences to confirm that it is OD rather
than AD that occurs in this system.

Interestingly, we further reveal that the phenomena of
EOD shown in fig. 1 actually correspond to three qualita-
tively different situations, namely, the OEOD, the HEOD,
and the CEOD. To characterize them, we define several
quantitative measures. The first is the effective frequency

for each oscillator: Ωj = 1
T

∫ t+T

t
θ̇j(τ)dτ with T ≫ 1,

which basically is the averaged instantaneous frequency.
The second is the relative phase with respect to the aver-
age phase: ηj = θj − φ, where φ is defined as in the order
parameter Rθ. The third are two ratios Nd/N and Nc/N ,
where Nd and Nc are the numbers of oscillators that are
in the OD state and the clustering state, respectively. In
fig. 2, we plot these measures for the forward transition
processes. In the following, we describe these three types
of EOD in detail.

1) The OEOD. This corresponds to the triangle FD, and
is basically the same as the situation of ES observed
in previous works [10–12,16]. As shown in figs. 2(a1)
and 2(a2), with the increase of K, oscillators oscillate
almost according to their natural frequencies. This
situation continues until K arrives at the forward
transition point, where all the effective frequencies

of oscillators suddenly and simultaneously collapse to
0. Note that 0 is the averaged natural frequency due
to the symmetry of FDs in this study. This transition
point characterizes the occurrence of EOD in the sys-
tem. Moreover, as shown in fig. 2(a3), after the OD,
the oscillators settle on different fixed points in the
phase space that form two clusters.

2) The HEOD. This corresponds to the Lorentzian FD.
As shown in figs. 2(b1) and 2(b2), with the increase
of K, the effective frequencies of some oscillators col-
lapse hierarchically to small values that are very close
to 0. This process starts from the largest frequencies
and monotonically moves to smaller frequencies. A
careful examination of the dynamics of individual os-
cillator reveals that those oscillators whose effective
frequencies have collapsed actually form two small
clusters, rotating very slowly near the origin on the
complex plane (fig. 3(b2)). However, since this col-
lapse of effective frequencies before the forward tran-
sition point only involves minority oscillators in the
system (fig. 2(b2)), their contributions to the order
parameters can be ignored. Therefore, the order pa-
rameters have no significant growth at this stage, as
shown in figs. 1(b1) and 1(b2). This situation re-
mains until K arrives at the forward transition point,
where the effective frequencies of all oscillators sud-
denly collapse to 0. Since all oscillators simultane-
ously become OD (fig. 2(b2)), the order parameter
behaves in an explosive way, as shown in figs. 1(b1)
and 1(b2).

3) The CEOD. This corresponds to the uniform FD. As
shown in figs. 2(c1) and 2(c2), with the increase of
K, all oscillators oscillate almost according to their
natural frequencies before the first transition point
(K1

f ≈ 1.64). Then when K arrives at this point,
those oscillators with relatively large natural frequen-
cies suddenly become locked and form two clusters.
Inside each cluster, all oscillators have the same ef-
fective frequency, and they behave like two (giant)
oscillators, rotating clockwise and counterclockwise,
respectively. Since the number of oscillators involved
in this clustering is comparable to the system size
(fig. 2(c2)), the order parameters jump explosively, as
shown in figs. 1(c1) and 1(c2). After the first transi-
tion, the system is in a partially coherent state, where
clusters coexist with drifting oscillators. When K is
increased further, the two clusters rotate slower and
slower. Meanwhile, they gradually absorb the drift-
ing oscillators until finally the effective frequencies of
the two giant clusters completely approach 0 at the
second critical point (K2

f ≈ 2.02), where OD occurs.
So in this case, the system undergoes two transitions:
one is explosive (at K1

f ≈ 1.64); and the other is con-

tinuous (at K2
f ≈ 2.02). The transition involves three

distinct dynamical states, i.e., the incoherent state,
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Fig. 3: (Color online) Characterization of the EOD in the phase
space, corresponding to three FDs, i.e., triangle (left column),
Lorentzian (middle column), and uniform (right column), re-
spectively. In the first row, the amplitudes |zj |, averaged for a
long time after transient stage, are plotted vs. K. The other
panels are the snapshots of system states corresponding to dif-
ferent K. The second and the third rows correspond to the
states just before and after the first transitions, respectively.
In (a2), (b2), (c2), and (c3), red/pinkish-red (blue/green) dots
correspond to oscillators rotating clockwise (counterclockwise).
In (a3), (b3), (a4)–(c4), red (blue) squares indicate the fixed
points converted from oscillators with positive (negative) nat-
ural frequencies. The unit circle is plotted to guide the eyes.
All parameters are the same as in fig. 1.

the partially coherent state, and the OD state. We
emphasize that from figs. 1(c1) and 1(c2), the order
parameters actually change continuously when OD
occurs at the second critical point. However, since
there is an explosive transition in the way toward OD
in this case, we still term the whole transition process
as CEOD.

In fig. 2, we have characterized the observed EOD from
the perspective of phase, ignoring the amplitudes of os-
cillators. To completely illustrate the physical picture in
the above three EOD processes, we now further charac-
terize them in the phase space, as shown in fig. 3. Note
that in our numerical simulations, initially all oscillators
are randomly distributed on the unit circle in the complex
plane.

In the case of OEOD, with the increase of K, oscil-
lators gradually move inside the unit circle, as shown in
figs. 3(a1) and 3(a2). However, according to fig. 2(a1),

these oscillators still rotate almost according to their nat-
ural frequencies though their amplitudes have been sup-
pressed. Then when K arrives at the forward critical
point, all oscillations suddenly cease and OD occurs, as
shown in figs. 3(a2) and 3(a3). After OD, two compact
clusters consisting of different fixed points are formed. Os-
cillators inside each cluster may slightly change positions
when K further increases. However, oscillators cannot re-
distribute between two branches [33].

In the case of HEOD, from fig. 2(b1), we know that
the effective frequencies of oscillators hierarchically col-
lapse (near 0), starting from the largest frequency to the
smaller ones successively. As shown in fig. 3(b2), we found
that those oscillators form two small clusters near the ori-
gin. In the meantime, many oscillators move inside the
unit circle, i.e., their amplitudes are suppressed. Then
when K exceeds the forward critical point, all oscillations
in the system suddenly stop, indicating the occurrence of
OD. Similarly, two compact clusters of fixed points form
after OD.

In the case of CEOD, with the increase of K, oscillators
gradually move inside the unit circle, i.e., the oscillations
are significantly suppressed. Even so, they still rotate al-
most according to their natural frequencies. Then when K
exceeds the first critical point (K1

f ≈ 1.64), some oscilla-
tors, i.e., those with relatively large frequencies, suddenly
become frequency-locked and form two clusters. After
that, the system enters the partially coherent state, as
shown in fig. 3(c3). Remarkably, it is clustering rather
than OD that occurs at this point, which is essentially
different from the two cases discussed above. When K
further increases, more and more drifting oscillators are
recruited into the coherent clusters. Meanwhile, the rota-
tions of the two clusters become slower and slower. Finally,
when K exceeds the second critical point (K2

f ≈ 2.02), OD
occurs, as shown in fig. 3(c4).

We emphasize that, because oscillators go to different
fixed points in the quenched state, as shown in the inset
of fig. 1(a1), it is OD rather than AD that occurs in this
system. Moreover, in all three cases, with the further in-
crease of K after OD, the formed two clusters will become
more compact and they will more approach the unit circle,
as shown in fig. 3.

The theoretical analysis. – In the previous section,
three typical cases of EOD in networked SL oscillators
have been characterized. In all three cases, the hystere-
sis loops are observed in phase diagrams. Particularly,
it is found that a backward transition always occurs at
Kb ≈ 2.02 (fig. 1 and table 1), despite different FDs
are used. Theoretically, it is desirable to predict both
the forward and backward transition points for the EOD.
However, the mathematical treatment turns out to be dif-
ficult even for the Kuramoto model, which only involves
phase variables [12,17]. In the following we apply a self-
consistent analysis to obtain the backward transition point
and prove that it is independent of specific FDs.
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To facilitate the analysis, we consider eq. (1) in polar
coordinates, i.e.,

ṙj = (1 − r2
j − K|ωj|)rj +

K|ωj|
N

N
∑

n=1

rn cos(θn − θj),

θ̇j = ωj +
K|ωj|

N

N
∑

n=1

rn

rj

sin(θn − θj). (2)

Using the definition of order parameter, the above equa-
tion can be written in the mean-field form:

ṙj = (1 − r2
j − K|ωj|)rj + KR|ωj| cos(ψ − θj),

θ̇j = ωj +
KR|ωj|

rj

sin(ψ − θj). (3)

We set a reference rotating frame, i.e., ψ(t) = ψ(0)+〈Ω〉 t,
where 〈Ω〉 is the average effective frequency of oscillators
in the system. For a symmetric distribution of g(ω), we
generally have 〈Ω〉 = 0. Defining ηj ≡ θj − ψ, eqs. (3)
become

ṙj = (1 − r2
j − K|ωj|)rj + KR|ωj| cos ηj ,

η̇j = ωj − KR|ωj|
rj

sin ηj . (4)

When all oscillators are phase-locked, we have η̇j = 0,
then the stationary state for ηj can be solved as

η∗

j =

{

η∗

+ = arcsin(
rj

KR
), ωj > 0,

η∗

−
= − arcsin(

rj

KR
), ωj < 0.

(5)

Equation (5) implies that, in the phase-locked state, the
oscillators in the system will evenly split into two clus-
ters which are symmetric with respect to the real axis in
the complex plane. If the coupling strength K further in-
creases, they both approach the real axis gradually. Only
in the limit case of K → ∞, the two clusters coincide into
one. This result has been numerically verified as shown in
fig. 3.

Noticing that the system will form two very compact
clusters in the phase space when K is large enough, we can
approximately regard the whole system as two oscillators
at the centroids of these two clusters. They are located
at (r, η+) and (r, η−), rotating with frequency ω > 0 and
−ω < 0, respectively. Then eqs. (2) become

ṙ = (1 − r2 − Kω)r + Kωr[1 + cos(η+ − η−)]/2,

η̇+ = ω + Kω sin(η− − η+)/2,

η̇− = −ω + Kω sin(η+ − η−)/2. (6)

By setting Θ = η+ − η−, we obtain

ṙ = (1 − r2 − Kω)r + Kωr[1 + cosΘ]/2,

Θ̇ = 2ω − Kω sin Θ. (7)

From the above equations, Θ has steady solution Θ∗ only
when K ≥ 2, i.e.,

sin Θ∗ = 2/K, (8)

Fig. 4: (Color online) Comparison of the theoretical prediction
of the backward transition process with numerical simulations.
They agree with each other well, showing that the backward
transition is universal, i.e., independent of specific FDs.

or Θ∗

1 = arcsin(2/K) and Θ∗

2 = π − arcsin(2/K). Further
linear analysis shows that the former steady solution is
stable while the latter is unstable. For the amplitude equa-
tion, the steady solution satisfies the following equation:

(1 − r∗2 − Kω)r∗ + Kωr∗[1 + cosΘ∗]/2 = 0. (9)

When K → ∞, Θ∗ → 0 according to eq. (8), thus
cosΘ∗ → 1, and the steady solution of r should obey

1 − r∗2 = 0, (10)

which gives r∗ = 1 for the steady states.
Now, let us solve the order parameter R for the back-

ward transition process. According to the definition,

R = Re

⎛

⎝

1

N

N
∑

j=1

rje
iηj

⎞

⎠ =
r∗

2
(cos η∗

+ + cosη∗

−
). (11)

Substituting eq. (5) and r∗ = 1 into eq. (11), we get the
analytical form of the order parameter as

R1(K) =

√
2

2

√

1 +
√

1 − 4/K2, (12)

R2(K) =

√
2

2

√

1 −
√

1 − 4/K2. (13)

These two branches correspond to the stable and unstable
solutions of eq. (8), respectively. Since R must be real,
eqs. (12) and (13) imply that the (fully) coherent state
in the system only exists for K ≥ 2, i.e., the OD state
only exists when K ≥ 2. If one continuously decreases K
from ∞, the stable and unstable OD states will gradually
approach each other. Finally they collide and disappear
via saddle-node bifurcation at Kt

b = 2 (the superscript t
means theory), which just marks the first backward tran-
sition point in the system. Numerical results have verified
that in all three cases of EOD, the backward transition oc-
curs at Kb ≈ 2.02, independently of the forms of specific
FDs. In fig. 4, we compare the analytical curves of the
order parameter with numerical results. It is shown that
the backward transition processes with different FDs ap-
proximately follow a universal curve. The numerical and
theoretical results are in quite good agreement with each
other.
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Conclusion. – In this paper, we reported the phe-
nomenon of EOD in a system of coupled SL oscillators.
By extensive numerical experiments, we classified three
typical types of EOD, i.e., OEOD, HEOD, and CEOD,
corresponding to triangle, Lorentzian, and uniform FDs,
respectively. In the case of OEOD, all oscillations sud-
denly cease at a critical point. In the case of HEOD,
a few oscillators with large frequencies successively form
two clusters first, then EOD suddenly occurs for the whole
system. In the case of CEOD, there are two transitions
towards OD, i.e., first two giant clusters are formed in an
explosive way; then they gradually absorb drifting oscilla-
tors until all oscillations are finally completely suppressed.
We provided a self-consistent analysis, which enables us to
predict a universal backward transition point, and prove
that it is independent of the specific FDs. The theoreti-
cally results are supported by the numerical observations.

The present work demonstrated that, apart from the
Kuramoto model, an explosive transition might occur in
a certain dynamical system involving amplitudes. There-
fore, it broadens our view of explosive phase transitions,
and helps us to better understand the collective behaviors
of networked systems. In our simulations, we have also
observed that explosive OD will not occur in the present
model if the network topology is scale free. This raises an
important issue, i.e., the interplay between network topol-
ogy and dynamics in the process of OD/AD. In addition,
could other coupling schemes also lead to explosive OD?
Is it possible to observe explosive AD, and could such AD
convert into OD [34]? Certainly, these questions deserve
further investigation in the future.
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