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Abstract. In this work, we investigate a model of an adaptive networked
dynamical system, where the coupling strengths among phase oscillators
coevolve with the phase states. It is shown that in this model the oscillators
can spontaneously differentiate into two dynamical groups after a long time
evolution. Within each group, the oscillators have similar phases, while
oscillators in different groups have approximately opposite phases. The network
gradually converts from the initial random structure with a uniform distribution
of connection strengths into a modular structure that is characterized by strong
intra-connections and weak inter-connections. Furthermore, the connection
strengths follow a power-law distribution, which is a natural consequence of
the coevolution of the network and the dynamics. Interestingly, it is found that
if the inter-connections are weaker than a certain threshold, the two dynamical
groups will almost decouple and evolve independently. These results are helpful
in further understanding the empirical observations in many social and biological
networks.
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Modularity frequently occurs in many social and biological networked systems [1], which is
generally believed to correspond to certain functional groups [2]. Usually, in modular networks,
the intra-connections are stronger than the inter-connections [3]–[6]. However, they both play
important roles in maintaining network structure and functions. Csermely pointed out that
the strong links can define the system, while the weak links are crucial to the stabilization
of the complex system [7]. Such examples can be found in many situations, such as the
connectivity of social networks [3], group survival [8], social efficiency [9], firm efficiency [10]
and ecosystem stability [11]. Furthermore, in many networks, such as natural food webs [12],
mobile networks [3], author collaboration networks [13], metabolic networks [14] and neural
networks [15], it is found that most of the interactions are weak and only a few interactions
are strong, which usually leads to a power-law distribution of the connection strengths
[3, 13–15].

In the past decade, there have been extensive works exploring networked complex systems.
Mainly, these works focus on either the topological structures of the networks [16] or the
dynamics on the networks [17]. Nevertheless, in various realistic systems, especially biological
and social systems, in principle the network topology and dynamics are strongly dependent
on each other. Thus any network structures and dynamical patterns that emerged are actually
the results of the coevolution of the network dynamics and topology [18]. For example, the
change of the synaptic coupling strength between neurons depends on the relative timing of
the presynaptic and postsynaptic spikes in neural networks [19], and in mobile communication
networks [3], the connection strengths are determined by the dynamical behavior of the mobile
agents.

Recently, attention has been paid to adaptive coevolutionary networks [18]. These include
adaptive rewiring links [20, 21] and adaptive altering connection strength [22]–[25] based on
the states of local dynamics. However, previous studies still focus mainly on the topological
properties of the networks, while neglecting the dynamical evolution and characteristics, which
are actually a very important aspect of networked dynamical systems. We noticed that in many
social and biological networked systems, with the evolution of network topology, dynamically
the system may form different functional groups corresponding to different dynamical states.
One such example is the mammalian brain, in which the connections are plastic [19]. It is known
that the mammalian brain is composed of a number of functional groups, within which the
nodes can be regarded as sharing similar dynamical states. However, so far, how the dynamical
groups are generated during the coevolution of network structure and dynamics has not been
investigated from the point of view of complex networks.

Motivated by this idea, in the present work, we set up a toy adaptive network model
consisting of phase oscillators. Due to the simplicity of the dynamics, phase oscillators have
been frequently used to describe many simplified real dynamical systems, such as biological
networks, chemical oscillators and so on [26]. In our model, the coupling functions adopt the
higher-order Fourier modes, and the connection strengths are coupled with the local dynamical
states following the plasticity function. Particularly, we investigate what kinds of dynamical
states and network structures can be formed as a result of the coevolution of both network
dynamics and topology. Mainly, our study presents three new results. (i) The dynamical groups
can be spontaneously formed in our model, i.e. in-phase and anti-phase synchronized states
simultaneously exist in our system. In the previous work [27], although the desynchronized
states and the synchronized states coexist and are both stable, the network only tends to be one
of two states, depending on its initial mean coupling. However, in our model, the oscillators
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within (between) groups tend to in-phase (anti-phase) synchronization. (ii) The connection
strengths in the network can self-organize into a power-law distribution from the initial random
distribution. In addition, communities, which correspond to the dynamical groups in our model,
can also be spontaneously formed. The community structure and the power-law distribution of
the connection strengths are common in many empirical networked systems. (iii) The resource
constraint can significantly affect the formation of dynamical groups. If the total connection
strength is a finite constant, the network tends to split into two dynamical groups: within each
group the oscillators are in-phase synchronized, while the oscillators in different groups are anti-
phase synchronized. However, if there is no resource constraint, the two groups finally merge
into one.

In our model, the dynamical equations for the networked phase oscillators read

θ̇m = ωm + γ
N∑

k=1

wmk0(θk − θm). (1)

Here, m, k = 1, 2, . . . , N are the oscillator (node) indices and γ is the uniform coupling
strength. θm and ωm are the instantaneous phase and intrinsic frequency of the mth oscillator,
respectively. W = {wmk} (wmk = wkm) is the weighted coupling matrix, where wmk > 0 is the
coupling strength if nodes m and k are directly connected, and wmk = 0 otherwise. In order to
generate possible dynamical groups in our model, we tentatively choose the coupling function
0(φ) as the higher order of Fourier modes, i.e. 0(φ)= sin(hφ) (h = 2, 3, 4, . . .) [28], where
the parameter h can control the number of groups. Without losing generality, we set h = 2
throughout this paper.

In the coevolutionary networked system, how the network topology couples with the
dynamics is crucial to both the dynamical pattern and topological structure that result. In our
model, we propose a coupling rule for the connection strength wmk based on the following
hypothesis: wmk is a finite real number, and the connections will be strengthened (weakened) if
the phase differences are smaller (bigger) than some threshold α. Actually, this can be regarded
as an extension of the spike-timing-dependent plasticity (STDP) rule [19]. In fact, in many
realistic networked systems, individuals with similar states usually tend to form the group
that has relatively stronger intra-connections inside. For instance, in human society, individuals
with similar attributes are easily organized into the same communities [4, 29, 30]. Meanwhile,
similarity will breed connection [30], indicating that relations among individuals with similar
attributes may be constantly strengthened, whereas those among individuals with dissimilar
attributes may be gradually weakened. Based on the above consideration, the change of the
connection strength is assumed to satisfy the following equation:

dwmk

dt
= εwmk2(1θmk, α)3(1θmk), (2)

where 1θmk = |θk − θm| (061θmk 6 π ) is the phase difference between oscillators m and k.
wmk on the right-hand side of the equation ensures that the rate of change of the link weight
is proportional to itself, and wmk > 0 always. ε is a constant that can be chosen to make the
time scale of the network topology evolution much longer than that of the local dynamics of
the oscillators. The function 2(φ, α) determines how the coupling strength evolves according
to the phase difference between oscillators. In this study, we set 2(φ, α)= e−2|φ−π/2|.
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The function 3(φ), which is similar to the sign function, controls either the strengthening or
weakening of the connections based on the phase differences. For simplicity, we assume the
form3(φ)= 0(φ). The form2(φ, α)3(φ) is similar to the STDP rule, which has been widely
used in neural network studies [19, 27]. The difference is that the STDP rule [19, 27] depends on
the relative timing 1t of presynaptic and post-synaptic spikes and the critical window τ , while
the plasticity function in our model depends on the phase difference 1θ and the connection
strength itself. In addition, the exponential function 2(φ, α)= e−2|φ−π/2| is modulated by the
sine function 3(φ)= sin(2φ), which makes the plasticity function not a monotone function on
the same side of the threshold value, e.g. 1θ < π/2.

With the above assumptions, the model is fully described by

θ̇m = ωm + γ
∑N

k=1wmk sin[2(θk − θm)],

dwmk

dt
= εwmke−2|1θmk−π/2| sin(21θmk).

(3)

In this study, the natural frequencies and initial conditions of the oscillators are chosen randomly
from the range [0, 1] and [−π, π], respectively. It is known that in many realistic adaptive
networks, the ‘resource’, which can be represented by the summation of all connection strengths
in the network, is usually limited. Consequently, all connections will compete for this resource.
Therefore, in our model we define the ‘resource’ as M = L〈w〉, where L is the number of
total connections and 〈w〉 is the average connection strength. In our simulation, we use the
normalization 〈w〉 = 1 during the evolution in order to make the ‘resource’ M = L , i.e. the total
‘resource’ to be allocated is a constant during evolution.

The collective behavior of the dynamical system can be conveniently described by two
order parameters R and F . The order parameter R, which characterizes whether global
coherence occurs or not, is defined as

R =
|
∑N

m=1 smeiθm |∑N
q=1 sq

, (4)

where sm is the strength of node m, i.e. sm =
∑

k wmk . This type of order parameter has
been widely used to characterize phase synchronization in complex networks [31]. From the
definition in papers [31], it seems natural to use equation (4) as the order parameter in weighted
networks. The order parameter F , which measures the fraction of all link weights synchronized
in networks [32], is defined as

F =
|
∑

mk wmkei(θm−θk)|∑
lq wlq

. (5)

In adaptive oscillator networks where connections are coupled with dynamical states, the order
parameters R and F can be jointly used to characterize whether local coherence within the
subnetwork takes place. For example, if R ≈ 0 and F � R after a long time evolution from
random initial phases on random networks, this indicates that local synchronization (rather
than global synchronization) emerges within subnetworks, i.e. dynamical groups have been
generated in the system.
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Figure 1. (a) Time evolution of the oscillator phases. After transients, oscillators
spontaneously differentiate into two dynamical groups with different states.
(b) Comparison between the analysis and the simulation results of phase
differences among oscillators. The network parameters are N = 100, 〈k〉 = 20,
γ = 0.04 and ε = 0.01. Initially ωm ∈ [0, 1] and wmn = 1.

First, we consider a simplified situation: a two-oscillator system. In this case, the dynamics
can be rewritten in terms of two variables, 1θ = (θ1 − θ2) and w, as

d1θ

dt
= ω1 −ω2 − 2γw sin(21θ),

dw

dt
= εwe−2|1θ−π/2| sin(21θ).

(6)

From the above equations, we can see that if |1ω| = |ω1 −ω2| = 0, the system will have stable
equilibrium states1θ∗

= 0 or π , and the final connection strength w∗ is a finite constant. These
two states correspond to the in-phase synchronization and anti-phase synchronization of the two
oscillators, respectively. If |1ω| 6= 0, strictly speaking the two-oscillator system does not have
any equilibrium states. This implies that the coupling strength will always be varying during the
evolution. Nevertheless, if the rate of change of the connection strength is much slower than
the phase dynamics, we can approximately consider w as a constant. In this case, we can obtain
the stable equilibrium states of 1θ provided that |1ω|6 2γw, i.e.

1θ∗
=


1

2
arcsin

∣∣∣∣ 1ω2γw

∣∣∣∣ ,
π −

1

2
arcsin

∣∣∣∣ 1ω2γw

∣∣∣∣ . (7)

In our numerical simulations, the above analysis has been verified.
Next, we consider the case of a many-oscillator system. Without losing generality, the

initial network topology is chosen as a random structure, and the initial connection strengths are
chosen uniformly from the range (0, 2]. To monitor the evolution, we record the instantaneous
phases of all the oscillators ({θm(t)}). It is found that after the transient period, the oscillators
can spontaneously separate into two dynamical groups. Within each group, all oscillators have
similar phases. Meanwhile, the two dynamical groups as a whole tend to approximate anti-phase
synchronization, as shown in figure 1(a). Through extensive numerical simulations, we found
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that the sizes of the two groups depend on the initial conditions. In general, they are almost
equal to each other when the initial phases are chosen uniformly. Of course, if all the oscillators
are identical, the coevolution can still generate two dynamical groups as a nonidentical system.
In this case, the phase states within each group are strictly identical.

The collective behavior of the dynamical system with multiple dynamical groups can also
be described by the following parameter [24]:

R′
=

|
∑N

m=1 smei2θm |∑N
q=1 sq

. (8)

If the order parameter R′ converges to 1 and the order parameter R converges to 0, this also
implies that dynamical groups have formed. The difference between F and R′ is that F can
characterize the properties of the dynamical states and the topology of weighted networks
simultaneously, while R′ can mainly characterize the properties of the dynamical states. In order
to explain the formation of different dynamical groups in our model equation (1), we rewrite it
in a more convenient form by defining the local order parameter according to equation (8):

r ′

mei2ψm =
1

sm

N∑
k=1

wmkei2θk . (9)

Here r ′

m with 0< r ′

m < 1 measures the local coherence among neighbors of oscillator m. ψm

is the average phase and sm is the strength of node m, i.e. sm =
∑

k wmk . With this definition,
equation (1) becomes

θ̇m = ωm + γ r ′

msm sin[2(ψm − θm)]. (10)

When γ → 0, equation (10) yields θm ≈ ωt + θm(0), that is, the oscillators evolve according to
their own natural frequencies. The oscillators are neither in-phase nor anti-phase synchronized,
i.e. r ′

m → 0 as t → ∞. On the other hand, in the limit of strong coupling, the oscillators tend
to anti-phase synchronization, r ′

m → 1 and 2ψm − 2θm ≈ 2qmπ (qm = 0,±1), i.e. 2ψm − 2θm −

2qmπ ≈ 0. Consequently, equation (10) can be rewritten as

θ̇m = ωm + 2γ sm(ψ
′

m − θm), (11)

where ψ ′

m = ψm − qmπ . Thus, the phase difference 1θmn = θm − θn between m and n becomes

d1θmn

dt
= ωm −ωn + 2γ [sm(ψ

′

m − θm)− sn(ψ
′

n − θn)]. (12)

From d1θmn
dt = 0, we can obtain the equilibrium value 1θmn, i.e.

1θmn =
1ωmn

γ (sm + sn)
+ψ ′

m −ψ ′

n +
sm − sn

sn + sm
(ψ ′

m − θm +ψ ′

n − θn), (13)

where 1ωmn = ωm −ωn, and sm−sn
sn+sm

(ψ ′

m − θm +ψ ′

n − θn) is the high-order infinitesimal, which
can be neglected. When oscillators m and n tend to in-phase (anti-phase) synchronization,
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ψ ′

m −ψ ′

n ≈ qπ (q = 0,±1), so the equilibrium values of the phase difference 1θ∗

mn are

1θ∗

mn =


|1ωmn|

γ (sm + sn)
,

π −
|1ωmn|

γ (sm + sn)
.

(14)

As shown in figure 1(b), our numerical simulations of the phase differences are consistent with
the analytical results.

Physically, the spontaneous formation of two different dynamical groups in our model can
be attributed to the adaptive evolution rule described by equation (2). Based on this equation, the
connection strength among oscillators with initially close phases will be enhanced. Meanwhile,
if two oscillators initially have large phase difference (e.g. 1θ > π/2), the connection strength
between them will be weakened during evolution. As a combined effect of these two ‘forces’,
the networked oscillators self-organize into two dynamical groups after a long time evolution.
Within the same group, the oscillators have similar states, while oscillators in different groups
have approximate anti-phases. Interestingly, in many social and biological systems, we often
find that two groups are formed with opposite states. For instance, in human society, individuals
with homogeneous character, e.g. the same generation or living in the same neighborhood, are
disposed to associate [4], and conflicting (accordant) characters could weaken (strengthen) the
social contacts. In food webs, if the living habits of predator and prey are similar (different), the
predator–prey relationships are strong (weak) [6]. Our model can thus shed light on the origin
of the formation of such dynamical groups.

With the formation of dynamical groups, how the network structure evolves is another
important question. In this work, we do not consider the rewiring of network connections.
Instead, we fix the network topology and focus on how the network connections compete for
the limited ‘resource’, i.e. the reallocation of the connection strength. At every time step, we
normalize 〈w〉 = 1, i.e. w∗

mn =
Mwmn∑

j>i wi j
, in order to make the ‘resource’ M = L . In figure 2,

we illustrate, using one typical example, the properties of the network structure. As shown
in figure 2(a), the oscillators in the network self-organize into two dynamical groups with
different phase states, i.e. oscillators within the same group have similar but nonidentical
states, while oscillators in different groups have approximate anti-phases. The formation of
the dynamical groups can be characterized by the two order parameters R and F . As shown
in figure 2(b), F keeps increasing during the evolution, but R always maintains very small
values. This suggests that local dynamical patterns (rather than global ones) gradually form
in the system. To characterize the emerging network structure, we show the average strength
of the inter-connections 〈winter〉 and the intra-connections 〈wintra〉 as a function of time in
figure 2(c). It is evident that average strength of the inter-connections 〈winter〉 decreases, while
the intra-connection strength 〈wintra〉 keeps increasing with time. These results indicate that
with the appearance of dynamical groups, the distribution of connection strengths in the
network also changes. From the initial random distribution, the connection strengths within
the groups are gradually strengthened, while the connection strengths between the two groups
are weakened simultaneously. In this way, after a long time evolution, the topological structure
of the networked system has the following characteristics, as shown in figures 2(d) and (e).
Firstly, the network evolves into a modular structure with the formation of dynamical groups.
Secondly, the network consists of many weak connections and a few strong connections.
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Figure 2. Characterization of the formation of the dynamical groups and modular
structure of network. (a) Evolution of the oscillator states. (b) Evolution of the
order parameters, where F keeps increasing, but R always maintains very small
values, indicating that the dynamical groups have formed. (c) Evolution of the
average connection strength, where the average strength of the inter-connections
(〈winter〉) decreases all the time, while the intra connection strength (〈wintra〉)
keeps increasing. (d) Distribution of the connection strength for the network at
t = 3000, 9000 and 15 000. The longer the time t, the more obvious the power-
law distribution of connection strength. This result is the average of 20 runs
with different initial conditions. (e) Snapshot of weight matrix wmk at t = 3000,
where modular structure occurs simultaneously with the formation of dynamical
groups. The indices of the oscillators have been rearranged according to the
phase. The parameters are the same as those of figure 1, except for wmn ∈ (0, 2]
initially.

Thirdly, to be specific, we have verified that the distribution of the connection strengths
follows a power law, as compared to the initial random distribution. It should be pointed
out that this power-law distribution of the link weights in the present model is a natural
consequence of the coevolution of the network topology and dynamics. These results are
consistent with the empirical observations of social systems [3, 13], biological systems [12, 14]
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Figure 3. Characterization of the dynamical and topological properties of the
network after an extremely long time evolution. (a) Schematic diagram of
the evolution of the two groups of oscillators as a whole, where each group
of oscillators behaves like an individual oscillator. (b, c) Evolution of order
parameters and the average inter- and intra-connection strength, showing that
when the inter-connections become very small, the two groups of oscillators
almost decouple. All the network parameters are the same as in figure 2.

and neural networks [15, 25]. For instance, in neural networks [15, 25], the synaptic strengths
of experimental data follow a power-law distribution.

As shown by figure 2, with the evolution of networked dynamics, the oscillators begin
to separate into two groups with different states. Figure 2(c) shows that during the evolution
process the average intra-connection strength is gradually enhanced while the average inter-
connection strength is always weakened. Here, the question is: how would the two groups
behave when the connections between them become weak enough? In figure 3, we further
explore this situation. Interestingly, it is found that when the inter-connections between the
two groups are too weak, e.g. 〈winter〉< 0.16, the two dynamical groups effectively decouple
and evolve independently according to their own frequencies. As shown in figure 3(a), the
frequencies of the two groups are almost equal to each other, and during the evolution
their phases will slowly approach the same value and then begin to separate. This occurs

6 This is an approximate value, which depends on the initial condition of the system.
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Figure 4. Characterization of the properties of observable networks consisting
of active connections. (a) Weighted matrix of observable networks, where the
modularity is more distinct when compared with figure 2(e). (b) Distribution of
the active connection strengths, which follows a power law. This result is the
average of 20 runs with different initial conditions. All network parameters are
the same as in figure 2.

repeatedly, which leads to regular oscillation of the global order parameter R as shown in
figure 3(b). Meanwhile, when the phase differences between the two groups become small
enough, according to equation (3), the inter-connection strength will be enhanced. However,
this trend will not last long because the phase differences of the two groups will begin
to be significant soon. As shown in figure 3(c), although both the average inter-connection
strength and the average intra-connection strength oscillate with a small range, the trends are an
overall decrease for the average inter-connection strength and an increase for the average intra-
connection strength. This implies that these two dynamical groups will become more and more
independent after a long time evolution. Moreover, even in the collective oscillatory regime, the
distribution of the link weights still follows a power law (as shown in figure 2(d)).

In realistic networked systems, if the connections are extremely weak, it may be impossible
to measure them. As a consequence, any observed real network should consist of connections
whose strengths are strong enough to be measured. In our model, we found that there exists
a large number of weak links and many of these have no opportunity to be enhanced again.
Therefore, from a practical point of view they may not be observable at all after a long time
evolution. To distinguish them, we can define the active connections as follows: if wmk exceeds
a threshold value, the connection between oscillator m and k is regarded as ‘active’; otherwise it
is ‘inactive’. The threshold can be reasonably taken as the average of the inter-connections, i.e.
〈winter〉. Using this criterion, we obtain observable networks after a long time evolution based
on our model. Numerically, we let the networked system evolve from many different initial
conditions. After t = 5000, we start taking snapshots of wmk . After discarding the ‘inactive’
connections, we obtain the observable networks consisting of only the ‘active’ connections. It is
found that in these observable networks, the modular property becomes even more distinct. As
shown in figure 4, the oscillators can be reasonably partitioned into two communities, and the
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Figure 5. Characterization of the dynamical and topological properties of the
network after an extremely long time evolution, where the total connection
strength is not limited. (a) Order parameters F and R characterize three distinct
stages of network evolution: first the dynamical groups form; then the two
groups of oscillators almost decouple; and finally all oscillators achieve in-phase
synchronization. (b) Evolution of the average intra-connection strength, keeps
increasing. (c) Evolution of the average inter-connection strength, which first
decreases and then increases. All the network parameters are the same as in
figure 2.

distribution of connection strengths still approximately satisfies the power-law relation. These
results suggest that the widely observed community structure and the power-law distribution
of link weights in complex networks could emerge simultaneously from the coevolution of the
network topology and the dynamics.

In the above studies, we have limited the total connection strength as a constant in the
network. This consideration makes sense in certain practical circumstances. For example, the
bandwidth of a local area network in a university is always limited. However, in other networks,
e.g. the social acquaintance network, there is no need to limit the total connection strength
during the network evolution. In this case, how would the dynamics and the network structure
coevolve? In the following, we investigate one such example. It is found that the initial stage
of the network evolution is quite similar to the case when the total network connection strength
is limited. As shown in figure 5(a), the global order parameter R remains small, while the
local order parameter F keeps increasing. This indicates that the two dynamical groups have
been generated. In figures 5(b) and (c), it is shown that the average intra-connection strength
continues to increase, while the average inter-connection strength keeps decreasing. This leads
to the formation of the dynamical groups. When the inter-connection strength among the
groups is small enough, the two groups almost decouple and behave just like two independent
oscillators. However, with the further increase of time, contrary to the previous situations,
the inter-connection strength starts to gradually increase as shown in figure 5(c). Due to this
strengthening of inter-connections, the two dynamical groups eventually merge into one, and
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all oscillators achieve in-phase synchronization. Therefore, our results suggest that during the
evolution of a network, the limitation of the total connection strength is in favor of the formation
of stable dynamical groups.

In summary, we have investigated a coevolutionary networked model. In this model, the
node dynamics are described by phase oscillators, and the connections among oscillators are
coupled with the dynamical states. By adopting a simple evolution rule, it is shown that the
evolution of the networked system naturally leads to two dynamical groups with different phase
states. Simultaneously, with the formation of the dynamical pattern, the network also converts
from the initial random structure with a uniform distribution of connection strengths to the final
modular network with a power-law distribution of the connection strengths. Interestingly, it is
found that if the total connection strength is limited as a constant, the two dynamical groups
will almost decouple eventually when the inter-connection is too weak. In contrast, if the total
connection strength does not have an imposed limit, the two dynamical groups will finally
merge into one with all the oscillators achieving in-phase synchronization. In our numerical
simulations, the above results were qualitatively verified on networks with sizes up to N = 1000.
Although the model studied is simple, it essentially captures the interplay between network
topology and dynamics. Thus, it can exhibit reasonable results that are useful for us to better
understand the behavior of many real networked dynamical systems, such as the evolution of
social networks [4] and the evolution of food webs [6].

In this paper, we only investigate the particular case with two groups, i.e. h = 2. In fact, the
above analysis can be conveniently generalized to a general case with h groups if we replace
2 by h in the sine function and the exponential function of equations (6), (8), (9) and (10). For
the case of a two-oscillator system, the stable equilibrium states of the phase difference are
1θ∗

= 2qπ/h ± arcsin |
1ω

2γw |/h (q = 0, 1, 2, . . . , [h/2]), where the symbol [x] means taking
the integer part of the real number x . For the case of a many-oscillator system, the equilibrium
values of the phase difference are1θ∗

mn =
2qπ

h ±
2|1ωmn |

hγ (sm+sn)
(q = 0, 1, 2, . . . , [h/2]). Of course, the

mechanism of changing the connection strengths in equation (2) should be modified accordingly
for the case of h > 2, e.g. dwmk

dt = S(β)εwmke−h|1θmk−α|
|sin(h1θmk)|, where β = [h1θmk/π ],

α = {β + [1 + (−1)β]/2}π/h, and S(0)= 1 or S(β > 0)= −1. Our numerical simulations have
verified the analysis.

In our model, the connection strengths are assumed to respond immediately to the change
of phase difference. Nevertheless, time delay inevitably exists in realistic networked systems.
For example, electric signals can only propagate along neural axons at a finite speed in neural
networks. Recently, time delays have been investigated in some theoretical models of neural
networks [33] and networked oscillator systems [26]. Interestingly, it is shown that these models
can present very rich dynamical behavior. We believe that the extension of our current model to
the delay-coupling case may provide more helpful insights in understanding the coevolution of
realistic networked systems. We keep this problem as our future research topic.
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