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Abstract

This paper introduces a wavelet-based method for the characterization of spatiotemporal patterns. Based on the wavelet
multiresolution analysis, two wavelet indices, multiscale accumulative density (MAD) and multiscale accumulative change
(MAC), are proposed for the characterization of the dynamics of the spatiotemporal patterns. Both indices are constructed
by using orthogonal wavelet projection operators. The MAD is a measure of the spatial complexity of a pattern at a given
time, whereas the MAC characterizes the spatial complexity of instantaneous change of the spatiotemporal patterns at a
given time. The ratio of the MAD indices between the lowest and the highest scales reflects the order of coherence in a
pattern. The time series of both MAD and MAC provide the dynamical information of morphological pattern evolutions.
Numerical experiments based on the Cahn–Hilliard equation indicate that the proposed method is efficient for quantitatively
characterizing the dynamics of the spatiotemporal patterns. © 2002 Published by Elsevier Science B.V.

PACS: 05.45.-a; 47.54.+r
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1. Introduction

The formation of spatially extended patterns is one of the most fascinating phenomena in nature [1]. The in-
vestigation of pattern formation has great impact on many scientific disciplines, including physics, chemistry,
biology, materials science and the life sciences. Considerable attention has been drawn to this field in the past few
decades. At present, much of our understanding of the dynamics of pattern formation is based on our knowledge
of low-dimensional dynamical systems whose dynamics can be well characterized by a few measures, such as
the Lyapunov exponents, fractal dimensions and the Kolmogorov–Sinai (KS) entropy [2], etc. However, pattern
formation inherently takes place in spatially extended dynamical systems [3,4]. An essential difference between a
low-dimensional system and a spatially extended system is the degrees of freedom involved. Due to the large number
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of degrees of freedom in spatially extended systems, the characterization of spatiotemporal dynamics remains a
major challenge.

Nevertheless, there is a great deal of effort in the characterization of spatiotemporal patterns. Three main classes
of methods are developed. The first class of methods attempt to generalize the existing concepts and approaches
developed in the low-dimensional dynamical systems. These methods focus on the temporal evolution of the spa-
tiotemporal patterns. The dynamics of the spatially extended systems can be characterized in terms of metric
measures of the underlying attractors such as Lyapunov exponents and fractal dimensions. For example, Kaneko
[5] proposed several indices, such as co-moving Lyapunov exponents and mutual information for the quantita-
tive characterization of spatiotemporal dynamics based on the coupled map lattices (CML) models. Several other
invariant measures have also been proposed, including Lyapunov dimension density [6–9,13], Karhunen–Loéve
decomposition density [10], finite-time dimension density [11], the KS entropy [12] and KS entropy density [7,13].
Among them, the Lyapunov dimension density is frequently used. However, it is well known that the accurate
numerical computation of the Lyapunov spectrum for spatially extended dynamical systems is usually difficult and
expensive in terms of computer resources. For this reason, several methods have been proposed to estimate the
attractor dimension of spatially extended systems [14–16].

The second class of methods utilize the linear decomposition of the spatiotemporal patterns in terms of a set
of (known) spatial modes. The most commonly used spatial modes include Fourier modes and Karhunen–Loéve
(KL) modes. The Fourier modes are orthogonal and complete for describing the ordered state patterns. However,
the expansion in Fourier modes might suffer from slow convergence for sharply varying systems which may excite
thousands of Fourier modes. The KL modes, obtained by using the KL decomposition [17,18], can be regarded as
a set of special bases. The essence of the KL decomposition is to find a minimal set of spatial modes that can be
used to provide a good approximate description of the ordered state patterns, as well as the essential information
about the dynamics of the system [19]. Stone and Cutler [20] have extended the KL decomposition to the archetypal
analysis and used it to analyze spatiotemporal dynamics. The advantage of KL modes is that they are adapted to the
spatiotemporal patterns under consideration. However, the computation of KL modes for a spatiotemporal system
is often time-consuming, particularly, if the spatial field or the temporal evolution of the system is recorded at a
high resolution.

The third kind of methods attempt to draw analogies to thermodynamic and statistical systems. For example,
thermodynamic formalism characterizes the spatiotemporal dynamics by using certain appropriately defined ther-
modynamic functions [21,22]. Many other useful statistical approaches were proposed, including spectra entropy
[23,24], correlation length [25,26], coherent clusters [27], structure factor [28–30], and local pattern properties [31].

At present, linear decomposition methods are frequently used for analyzing spatiotemporal patterns (or spatiotem-
poral time series), especially in the “small system” regime where the system size is comparable with the typical
correlation length of the system [3]. In this regime, due to the dissipation and coupling among different degrees
of freedom, it is possible that most degrees of freedom are either “dissipated” (in self-organization language) or
“enslaved” (in synergetic language) by a few dominant degrees of freedom. Physically, this corresponds to the forma-
tion of spatially coherent structures or patterns [3]. In this case, the temporal complexity and the spatial complexity
in the spatially extended systems are relatively independent of each other. In general, if there are only a few dominant
spatial modes in the system, then the dynamics of the system can be effectively reduced and characterized by the
temporal evolutions of these few dominant modes [32]. The mode decomposition approach is generally efficient
only if the attractor of the spatially extended system is actually low-dimensional. However, in some cases, even if
the spatiotemporal dynamics is governed by a low-dimensional attractor, the spatial mode decomposition might still
not be efficient because of the incompatibility between the mode basis and the physical system under investigation
[39,40]. Moreover, in many cases, the modal decomposition shows that the total energy may distribute over a large
number of spatial modes and then linear decomposition methods lose their efficiency and become inapplicable.



S. Guan et al. / Physica D 163 (2002) 49–79 51

Therefore, it remains a challenging task to characterize the temporal evolution of spatiotemporal patterns under
such circumstance.

Recently, we utilized a Fourier–Bessel decomposition method for the characterization of spatiotemporal pat-
terns simulated in a circular domain [33]. A series of spatiotemporal patterns have been observed by using the
Cahn–Hilliard equation as a theoretical model. It is found that the pattern morphology can be controlled by the
boundary conditions and the geometric size of the circular domain [34]. Theoretical analysis revealed that for
a small geometric domain, the ordered state patterns can be efficiently decomposed as a linear combination of
Fourier–Bessel modes. For example, for the ordered state pattern shown in Fig. 1(a), Fourier–Bessel decomposi-
tion demonstrates that there are only three active modes which capture 99% pattern energy (defined as the total
Fourier–Bessel decomposition amplitudes), as shown in Fig. 1(c). Among them the principal mode [1,4] is the
dominant one which contributes most to the pattern morphology. In this “small system” regime, the Fourier–Bessel
decomposition method provides an efficient characterization to the rich morphological evolutions observed in the cir-
cular domain, including steady states, uniform oscillations, modulated oscillations and chaotic dynamics. However,
the method becomes less efficient as the geometric domain increases. In such a case, the number of Fourier–Bessel
modes that can be simultaneously excited at certain control parameter becomes large, and the spatially coherent
structures are easily destroyed by the simultaneous excitation and competition of multiple Fourier–Bessel modes.
As a consequence, the dynamics of the system is no longer dominated by a few Fourier–Bessel modes. Fig. 1(b)
shows a pattern observed at a moderately large control parameter. The Fourier–Bessel decomposition in Fig. 1(d)
demonstrates that the total energy of the pattern distributes over a large number of Fourier–Bessel modes rather
than a few principal ones as shown in Fig. 1(c). There are a total of 21 modes whose decomposition amplitudes
are greater than 0.01. It can be expected that with the further increase in the control parameter, it is impossible to
track the dynamics of a large number of active modes. Therefore the Fourier–Bessel decomposition method is no
longer efficient to characterize the temporal evolution of the spatiotemporal patterns in moderately large and large
domains.

The purpose of the present work is to develop an alternative and more effective approach for resolving the
above mentioned difficulty in the characterization of the spatiotemporal patterns. To this end, we make the use of
wavelet analysis and its associated time–frequency multiresolution technique for spatiotemporal pattern dynamics.
Basically, the spatial pattern can be decomposed in the wavelet space according to different frequency sub-bands.
The relative wavelet energy at different frequency sub-bands can be used as an index to characterize the dynamics
of the spatiotemporal patterns. Fig. 1(e) and (f) illustrate the relative wavelet energy of the three high frequency
scales, which are obtained by the three-scale wavelet multiresolution analysis of Fig. 1(a) and (b). The use of wavelet
decompositions as a characterization of nonlinear pattern dynamics is addressed.

Wavelet analysis is a powerful mathematical tool and has had tremendous success in telecommunication, sig-
nal/image processing, image compression, and artificial intelligence. Wavelet multiresolution analysis has also
found its applications in the study of nonlinear dynamical systems. These include time series analysis [35–37],
recognition and noise filtering [38], low-dimensional dynamical prediction [40], and turbulence analysis [41–44]. It
is believed that wavelet analysis may play an important role in the study of pattern formation [1]. In a more general
sense, three-dimensional wavelet-based techniques have been successfully used in the field of spatiotemporal (i.e.,
three-dimensional) image compression [45–49]. By constructing appropriate multiresolution wavelet filter, e.g., the
adaptive motion-compensated filters, the correlated spatiotemporal features such as optical flow can be effectively
encoded so that the motion and structure of the moving objects in a three-dimensional video image can be extracted
base on their location, size and speed. In the present study, a method based on wavelet multiresolution is developed.
Our primary concern here is to characterize the temporal evolution of spatiotemporal patterns in the small and
moderately large spatially extended systems. In particular, we need to extract the time series which can be used to
characterize the dynamics of the spatiotemporal patterns in terms of periodic or chaotic evolution, etc. Obviously,
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Fig. 1. (a) A typical pattern atR = 7.5; (b) a typical pattern atR = 13.5; (c) Fourier–Bessel decomposition of pattern (a); (d) Fourier–Bessel
decomposition of pattern (b); (e) wavelet decomposition of pattern (a); (f) wavelet decomposition of pattern (b).
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Fig. 1. (Continued ).

our use of wavelets for nonlinear dynamics is different from that for the video image compression or pattern recog-
nition. Form the dynamical system point of view, the system considered in our study is entirely deterministic and
it is governed by a nonlinear partial differential equation. In certain sense, the dynamics governed by a nonlinear
partial differential equation might be relatively simpler compared with the three-dimensional video images which
are often unpredictable and very complicated. Therefore, video image characterization and tracking require a larger
set of physical observables (including the optical flow). As a result, wavelet algorithms used in video images are
often more sophisticated.

The rest of the paper is organized as the follows. A wavelet-based method for pattern analysis and characterization
is introduced in Section 2. A brief review of the wavelet theory is given as a background before we introduce our
approach. Two wavelet indices, a normalized multiscale accumulative density (MAD) and a normalized multiscale
accumulative change (MAC), are proposed for the dynamical characterization of the morphological evolution of
spatiotemporal patterns. In Section 3, we apply the present wavelet methods to the spatiotemporal patterns obtained
by integrating the Cahn–Hilliard equation in a circular domain. This paper ends with a conclusion.

2. Theory and method

2.1. Theoretical background

The theory of wavelets, including frames, is a new branch of mathematics developed in the last two decades
and has been widely applied in a variety of engineering and science disciplines [50–54]. Mathematically, wavelet
and frame systems are sets ofL2 functions generated from a single function by two elementary operations, trans-
lation and dilation. Compared to usual orthogonalL2 bases, wavelet and frame systems often have much better
properties for expanding anL2 function of a physical origin. Physically, wavelet transform can split a signal into
different frequency bands or components so that each component can be studied with a resolution matched to its
scale, thus providing excellent frequency and spatial resolution, and achieving high computational efficiency. One
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of the most important properties of wavelet and frame onL2(R) is that they can be simultaneously smooth and
decaying in both the position and momentum representations. What is equally important is the multiresolution
property. Hence, one can devise such anL2(R) system for representing physical information at various levels of
details, leading to the so-called mathematical microscopy. For these reasons, wavelet, frame and their associated
multiresolution analysis have been successfully used in a variety of telecommunication and engineering fields, such
as data compression, signal processing and image processing. For many physical systems, due to the multiscale
nature, wavelet multiresolution theory provides perhaps some of the most appropriate analysis tools. For example,
wavelet analysis has been used to analyze fractals and their associated dynamics. Moreover, wavelet packets are found
useful for local characterization of classic turbulence and for pattern recognition. In the field of pattern formation,
due to the multiscale nature of patterns, wavelet transform is regarded as “the bridge between theory and experiment”
[1]. It not only allows us to extract physical information from experimental and computational patterns, but also
provides us a convenient method to detect and locate pattern defects. In this study, we use wavelet multiresolution
to analyze the ordered state patterns and to characterize the morphological evolution of spatiotemporal patterns.

An orthogonal wavelets system is usually generated from a single function, either a scaling function (father
wavelet)φ or a mother waveletψ , by standard translation and dilation technique

φm,n(x) = 2m/2φ(2mx − n), m, n ∈ Z, (1)

ψm,n(x) = 2m/2ψ(2mx − n), m, n ∈ Z, (2)

where symbolZ denotes the set of all integers. This can be rephrased in terms of a multiresolution analysis, i.e., a
nested sequences of closed subspace{Vm}m∈Z such that

1. {φ(x − n)} is an orthogonal basis ofV0;

2. · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R);

3. f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1;

4. ∩mVm = {0} and∪mVm = L2(R).

Sinceφ ∈ V0 ⊂ V1, it must have an expansion in{φ1,n = 21/2φ(2x − n)}, which is an orthonormal basis forV1

φ(x) =
∑
n

cnφ1,n, (3)

where{cn} is a set of finite coefficients.
For an orthogonal system, the subspaceV1 can be further split into its orthogonal projection inV0 and its orthogonal

complementaryW0

V1 = V0 ⊕ W0, (4)

whereW0 is a subspace spanned by mother wavelets{ψ}. If suchψ can be found, then

ψm,n(x) = 2m/2ψ(2mx − n), m, n ∈ Z (5)

is an orthonormal basis ofWm. Furthermore,

⊕m∈ZWm = L2(R), (6)

and thus{ψm,n} (m, n ∈ Z) is an orthonormal basis ofL2(R). Similar to Eq. (3), the mother wavelet can also be
expanded as a superposition of{φ1,n}

ψ(x) =
∑
n

c1−n(−1)nφ1,n, (7)

where{cn} are expansion coefficients.
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For the purpose of multiresolution analysis, we define orthogonal subspace projectors

Vm =
∑
n∈Z

|φm,n〉〈φm,n|,

where the projectorVm has its domain inL2(R) and its range in the subspaceVm. For an arbitrary function
f ∈ L2(R), the projectorVM selects out the component belonging to subspaceVM

VMf = (VMf − VM−1f ) + · · · + (V1f − V0f ) + V0f = V0f +
M−1∑
m=0

Wmf, (8)

where

Wm = Vm+1 − Vm =
∑
n∈Z

|ψm,n〉〈ψm,n|

is the orthogonal projector fromL2(R) onto the subspaceWm, i.e., the wavelet space at a certain scalem. At a
certain specific scalem, we have

Wmf =
∑
n∈Z

〈ψm,n|f 〉|ψm,n〉 =
∑
n∈Z

dm,n|ψm,n〉, (9)

and

Vmf =
∑
n∈Z

〈φm,n|f 〉|φm,n〉 =
∑
n∈Z

cm,n|φm,n〉. (10)

Here, the coefficients{dm,n} contain the information for the details (high-pass part) off at scalem while {cm,n}
contain the information for a rough approximation (low-pass part) off at scalem. These two sets of coefficients
are related recursively through fast wavelet transform.

So far the simplest example of wavelets is the Haar’s wavelets system [54], which is obtained by the dilation and
translation ofφ(x) = χ[0,1)(x), the characteristic function of interval [0,1). Here,φ(x) obviously has orthogonal
translations. The dilation ofφ results in characteristic functions for smaller (or larger) intervals and each of them
spans a subspaceVm by translations. Haar’s wavelets play an important role in the wavelet theory and application
for their simplicity.

It is not obvious that a multiresolution analysis exists forφ other than the Haar system. The construction of
the first few orthogonal wavelet bases was more or less an art rather than a procedure. This requires ingenuity,
special tricks and subtle computations. One procedure used by Meyer [50] is to start with a spline functionθ(x) =
(1 − |x − 1|)χ[0,2] which, by translations, spans a non-orthogonal Riesz basis (a frame of the least redundant
possible). The corresponding wavelet basis{φ} is obtained in the Fourier space by making the use of orthonormality
and periodicity. Daubechies [51] presented another scheme for constructing orthogonal wavelets. In her scheme,
the use is made for the dilation relation, together with the orthonormality and periodicity, to determine a wavelet
basis in the Fourier representation.

Apart from the Haar system, it is generally true that no other wavelet system can be simultaneously compactly
supported, orthogonal and linear phase for its corresponding quadratic mirror filter [51]. A compromise approach
is to construct a biorthogonal wavelet system [52] which is both compactly supported and linear phase. Like
orthogonal wavelets, biorthogonal wavelets can be used for perfect reconstruction and are very powerful for various
applications.
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2.2. Wavelet pattern analysis

Spatiotemporal patterns can be described by a scalar fieldf (r, t) ∈ L2(R3). Herer is a two-dimensional position
vector andt is the time. In this study, we assume that spatiotemporal patterns are either a set of discrete experimental
patterns or a series of computer simulated patternsf (xi, yj , tk), i, j ∈ Z, k ∈ Z+, which can be regarded as a
series of “images” in terms of digital image processing. In order to analyze the spatial patterns, without the loss
of generality, we consider a two-variable wavelet multiresolution analysis (WMA) inL2(R2). The latter is used to
analyze the two-dimensional ordered state patterns in Section 3. In general, theL2(R2) space can be constructed
as a tensor product of twoL2(R) subspaces.

Let {V i
m}m∈Z(i = x, y) of L2(R) be the subspace sequences in the one-dimensional MRA, we define

Sm = V x
m ⊗ V

y
m, m ∈ Z (11)

as the sequence of embedded subspaces inL2(R2). Then the two-dimensional MRA can be expressed as follows:

1. f (x, y) ∈ S0 ⇔ f (x − n, y − l) ∈ S0 ∀n, l ∈ Z;

2. · · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · ⊂ L2(R2);

3. f (x, y) ∈ Sm ⇔ f (2x,2y) ∈ Sm+1, m ∈ Z;

4. ∩m∈ZSm = {0} and∪m∈ZSm = L2(R2).

According to the one-dimensional MRA, we have

V i
m+1 = V i

m ⊕ Wi
m, i = x, y. (12)

Therefore, two-dimensional subspaces can be divided into

Sm+1 = V x
m+1 ⊗ V

y

m+1 = [V x
m ⊕ Wx

m] ⊗ [V y
m ⊕ W

y
m] = Sm ⊕ SLH

m ⊕ SHL
m ⊕ SHH

m , (13)

whereSm ≡ SLL
m = V x

m ⊗V
y
m, SLH

m = V x
m ⊗W

y
m, SHL

m = Wx
m ⊗V

y
m andSHH

m = Wx
m ⊗W

y
m. Here, L and H resemble

“low-pass” and “high-pass”, respectively. Appropriate basis functions for each wavelet subspace can be constructed
as the product of the one-dimensional basis functions, e.g.,

Ψ
αβ
m,n,l =




ψx
m,nψ

y
m,l, α = H, β = H,

φx
m,nψ

y
m,l, α = L, β = H,

ψx
m,nφ

y
m,l, α = H, β = L,

φx
m,nφ

y
m,l, α = L, β = L

(n, l,m ∈ Z), (14)

whereψi (i = x, y) are the wavelet functions corresponding to the one-dimensional MRA generated by the scaling
functionφi (i = x, y). Here,{Ψ HH

m,n,l}, {Ψ LH
m,n,l}, {Ψ HL

m,n,l} and{Ψ LL
m,n,l} are the orthonormal bases in the subspaces

SHH
m , SLH

m , SHL
m andSLL

m , respectively. Example applications of wavelet pattern analysis will be given in Section 3.

2.3. Wavelet pattern characterization

The concept of pattern characterization differs from that of pattern analysis. In pattern analysis, usually there is
no information loss in the representation of the original pattern. The commonly used analysis tools include Fourier
transform, wavelet transform, Wigner transform,Z transform and KL decomposition. For each of these methods,
there is a perfect reconstruction transform (inverse transform). This implies that there is no loss of information in
the transform process. In practice, we are facing the difficulty of handling enormously large pattern data sets of
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the order of 108 points. Our task is to extract useful dynamical information about pattern formation and evolution
from these huge data sets. The success of any potential method relies on its ability in the reduction of the spatially
extended data of the order 104 into a set of reduced indices which can reflect the spatial complexity and the dynamics
of the original spatiotemporal system. Therefore, pattern characterization methods provide a reduced representation
of the original pattern and there is an irreversible information loss in association with the characterization process.
A successful characterization method should be able to select out the essential information of interest by using a
minimum set of quantitative indices. To this end, we introduce a wavelet multiresolution framework as a measure
for pattern characterization.

In order to extract the detailed information of a spatial pattern in a certain frequency sub-band, we define four
projection operators which project a two-dimensional patternf (x, y) ∈ L2(R2) onto subspacesSm, SHH

m , SLH
m and

SHL
m , i.e.,

Sαβ
m =

∑
n,l∈Z

|ξxα
m,nξ

yβ
m,l〉〈ξxα

m,nξ
yβ
m,l |, (15)

whereα, β ∈ {L,H} and

ξ
iγ
m,n =

{
φi
m,n, γ = L, i = x, y,

ψi
m,n, γ = H, i = x, y.

The project operator of a given wavelet subspace has a multiresolution decomposition

SM = ⊕α,β∈{L,H}S
αβ

M−1 = S0 ⊕
M−1∑
m=0

SHH
m ⊕

M−1∑
m=0

SLH
m ⊕

M−1∑
m=0

SHL
m , (16)

whereSM ≡ SLL
M . Obviously, the summation of wavelet projections gives arise to the resolution identityI in

L2(R2)

⊕′
m,α,βS

αβ
m = I, α, β ∈ {H,L}, m ∈ Z, (17)

where the summation excludes allα = β = L.
The notation of the two-dimensional WMA is schematically shown in Fig. 2(a) withM = 3. After three-scale

two-dimensional WMA, the two-dimensional spatial pattern can be decomposed into different frequency sub-bands.
The upper left square labeled by LL1 corresponds to the lowest frequency sub-band in both the horizontal and vertical
directions, as shown in Fig. 2(a). The information contained in this sub-band is a coarse approximation of the original
pattern. The other nine regions involve higher frequency sub-bands and they contain the details of the original pattern
at different scales. Among them, the three diagonal regions labeled by HH3,HH2,HH1 correspond to the highest
frequency sub-band at each scale and they contain the most detailed information of the original pattern in their scale.

An image or a pattern is a square integrable function that can be decomposed into appropriate subspace components
by means of the projection operator

f αβ
m = Sαβ

m |f 〉 =
∑
n,l∈Z

|ξxα
m,nξ

yβ
m,l〉〈ξxα

m,nξ
yβ
m,l |f 〉 =

∑
n,l∈Z

d
αβ
m,n,l |ξxα

m,nξ
yβ
m,l〉, (18)

where{dαβ
m,n,l} are the decomposition coefficients. Each component,f

αβ
m , provides a mathematical microscopy of

the patternf in an appropriate frequency sub-band. The larger them value, the higher frequency the sub-band is.
Physically, high frequency sub-band is associated with the variance or the “edge” of the pattern under study. For
example, noisy or irregular patterns, texture image, and turbulence flow field have large frequency responses at high
frequency sub-bands. In contrast, smooth pattern, soft-tissue image, and laminar flow field have relatively small
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Fig. 2. (a) Sub-bands of the three-scale wavelet transform. (b) Standard images: (1) Pepper; (2) Lena; (3) Barbara and (4) Mandrill.
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frequency responses at high frequency sub-bands. Based on this observation, we propose to use the MAD at each
given scalem as a quantitative measure to assess the spatial complexity of patternf (x, y, ti) at a given timeti

ραβm(ti) = ‖f αβ
m (ti)‖2 =

∥∥∥∥∥∥
∑
n,l∈Z

|ξxα
m,nξ

yβ
m,l〉〈ξxα

m,nξ
yβ
m,l |f (ti)〉

∥∥∥∥∥∥
2

=
∑
n,l∈Z

∑
n′,l′∈Z

d
αβ
m,n,l(ti)[d

αβ

m,n′,l′(ti)]
∗〈ξxα

m,n′ξ
yβ

m,l′ |ξxα
m,nξ

yβ
m,l〉

=
∑
n,l∈Z

∑
n′,l′∈Z

d
αβ
m,n,l(ti)[d

αβ

m,n′,l′(ti)]
∗δn,n′δl,l′ =

∑
n,l∈Z

|dαβ
m,n,l(ti)|2, (19)

where the∗ denotes the complex conjugate. Using the resolution identity, Eq. (17), the total density of the pattern
f (x, y, t) is given by

‖f ‖2 =
∑
m∈Z

′∑
α,β∈{L,H}

‖f αβ
m ‖2. (20)

Here, the summation
∑′

α,β∈{L,H} excludesα = β = L. It is more appropriate to define a normalized MAD as

ρ
αβm

MAD (ti) = ‖f αβ
m (ti)‖2

‖f ‖2
=

∑
n,l∈Z

|dαβ
m,n,l(ti)|2
‖f ‖2

. (21)

The MAD of a given pattern is a positive definite number for a given scalem. Obviously, an irregular pattern has
a larger MAD value than that of a smooth one. Hence, the value of MAD, or the “MADness”, is a characteristic
of spatial complexity for a given spatial pattern at a given time. In ordinary situations, the MAD provides a good
description of a spatiotemporal system as a function of time. Fig. 2(b) depicts standard patterns, e.g., Peppers, Lena,
Barbara and Mandrill images. In Table 1, we list their MAD indices. For simplicity, as shown in Fig. 2(a), we denote
the MAD indices by abbreviation HHm(ti) = ρHHm

MAD (ti) throughout this paper. Generally, it is found that the MAD
indices of the Barbara and Mandrill are larger than that of the Peppers and Lena. This is reasonable because the
Barbara and Mandrill have more high frequency response than that of the Peppers and Lena.

An efficient algorithm used in a video compression is to encode the difference of each two successive time steps
at each spatial location. Such an approach can greatly increase the compression ratio and peak signal to noise ratio.
Similarly, this idea can be utilized in the characterization of spatiotemporal systems. Let us define a new scalar field

Table 1
The MAD indices of some standard images

MAD index Pepper Lena Barbara Mandrill

HH3 0.103E− 3 0.769E− 4 0.638E− 3 0.174E− 2
LH3 0.137E− 2 0.854E− 3 0.103E− 1 0.300E− 2
HL3 0.953E− 3 0.291E− 3 0.632E− 3 0.888E− 2
HH2 0.309E− 3 0.426E− 3 0.160E− 2 0.240E− 2
LH2 0.191E− 2 0.200E− 2 0.344E− 2 0.340E− 2
HL2 0.166E− 2 0.798E− 3 0.123E− 2 0.686E− 2
HH1 0.864E− 3 0.102E− 2 0.507E− 3 0.191E− 2
LH1 0.484E− 2 0.421E− 2 0.354E− 2 0.311E− 2
HL1 0.351E− 2 0.130E− 2 0.204E− 2 0.361E− 2
LL 1 0.984 0.990 0.976 0.965
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as the difference of two successive values of the functionf

δf (x, y, ti) = f (x, y, ti+1) − f (x, y, ti). (22)

Note that, at the limit of$t = ti+1 − ti → 0, δf (x, y, ti)/$t gives rise to the rate of change of a pattern at timeti .
Hence,δf (x, y, ti) provides the information of the temporal change of the spatiotemporal patterns. Such dynamical
change is especially important in the spatiotemporal intermittency. However, for spatially extended systems, it is
too expensive to track all the time series at each location. Instead, to characterize the dynamical change, we define
a normalized MAC as

ρ
αβm

MAC(ti) = ‖(δf )
αβ
m (x, y, ti)‖2

‖δf ‖2
=

∑
n,l∈Z

|(δd)αβm,n,l(ti)|2
‖δf ‖2

, (23)

where{(δd)αβm,n,l} are the wavelet decomposition coefficients ofδf ,

‖δf ‖2 =
∑
m∈Z

′∑
α,β∈{L,H}

‖(δf )αβm ‖2, (24)

and the summation
∑′

α,β∈{L,H} also excludesα = β = L. Similarly, the above WMA projects the dynamical change
into different frequency sub-bands. This enable us to observe the dynamical change at different scales. Therefore,
MAC characterizes the spatial complexity of the rate of change of the spatiotemporal system at each time. For
simplicity, we also denote the MAC indices by abbreviation hhm(ti) = ρHHm

MAC (ti).

3. Numerical experiments

In this section, we examine the validity and demonstrate the utility of the proposed wavelet method for spatiotem-
poral pattern characterization. The Cahn–Hilliard (CH) equation in a circular domain is used as a model to create
spatiotemporal patterns. Theoretical analysis of experiments is presented in three subsections.

3.1. The mathematical model and numerical solution

The CH equation [55,56] is a well known phenomenological model describing the dynamics of phase separation
and pattern formation in many physical systems, such as alloys, polymer blends and other binary mixtures. In its
dimensionless form, the CH equation is given by

∂Ψ

∂t
= 1

2
∇2(−∇2Ψ − Ψ + Ψ 3), (25)

where the scalar field,Ψ (r, t) (−1 ≤ Ψ (r, t) ≤ 1), is a conserved order parameter. In the present work, we consider
the CH equation in a circular domain. Such a geometry and the nonlinear nature of the governing equation give rise
to fascinating spatiotemporal patterns [34].

It turns out that this numerical integration is very technically demanding [34]. A wavelet-based discrete sin-
gular convolution (DSC) algorithm [57] is utilized to overcome the numerical difficulties. The standard implicit
Crank–Nicolson scheme is used for the temporal discretization. The nonlinear terms are linearized by using a
Newton-like technique. Coupled collocation equations are solved at each time step by a standard direct solver.
For all simulations, we choose 32 and 64 grid points in ther andθ directions, respectively. The DSC bandwidth
parameters and regularization parameters [57] are set to 30 andσq/$q = 3.8 (q = r, θ ) in both directions.
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The radius (R) of the circular domain is used as a control parameter to regulate the pattern morphology and its
temporal evolution. A given random field, generated by small amplitude noise (about 10−2) inside the circular
domain, is used as the initial values for all computations. Motivated by the underlying physics, we impose the
Dirichlet boundary condition (Ψ (r, t) = 0) at the edge of the circular domain.

Spatiotemporal patterns are generated by integrating Eq. (25) at a set of selected control parameters, ranging
from R = 1 to 14. At each given radius, we integrated Eq. (25) up to 2000 time units, and some particular runs are
integrated up to 2600 time units to obtain certain ordered state patterns [34]. Fig. 3 shows the mesh and contour
plots of some typical ordered state patterns which are observed from the long time propagation of the initial random

Fig. 3. (a) The initial values; (b)–(h) mesh and contour plots of typical ordered state patterns classified by their corresponding prin-
cipal Fourier–Bessel modes (the most energetic modes) [n,m]. (b) [1,1], R = 4.0, t = 1000; (c) [1,8], R = 11.375, t = 1000;
(d) [2,1], R = 6.5, t = 910; (e) [2,6], R = 12.5, t = 1000; (f) [3,0], R = 8.25, t = 760; (g) [3,1], R = 9.75, t = 740;
(h) [3,2], R = 10.875, t = 1000.
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Table 2
A comparison of control parametersR used for attaining ordered state patterns and the corresponding non-trivial roots,ρm,n, of the Bessel
function

m n = 1 n = 2 n = 3 n = 4

R ρ1,m R ρ2,m R ρ3,m R ρ4,m

0 – – 5.5 5.520 8.25 8.654 11.0 11.792
1 4.0 3.832 6.5 7.016 9.75 10.173 – –
2 5.0 5.136 8.0 8.417 10.875 11.620 – –
3 6.0 6.380 9.25 9.761 12.0 13.015 – –
4 7.5 7.588 10.5 11.065 – – – –
5 8.5 8.771 11.5 12.339 – – – –
6 9.375 9.936 12.5 13.589 – – – –
7 10.0 11.086 – – – – – –
8 11.375 12.225 – – – – – –

values. The basic morphology of these patterns is that of concentric rings of cells. Each cell is actually a single-phase
domain of either component A or component B, which is formed through microphase separations. Notably, there
exist interesting symmetric aspects in the observed ordered state patterns. Traditionally, the circular spatiotemporal
patterns can be analyzed and characterized by Fourier–Bessel decomposition. Fourier–Bessel decomposition reveals
that the ordered state patterns can be expressed as linear combinations of Fourier–Bessel functions [34]. For small
control parameter, usually there exists a principal Fourier–Bessel mode which contributes most significantly to the
ordered state pattern and predominantly determines the morphology of the pattern. This principal Fourier–Bessel
mode is excited when the control parameterR is close to the corresponding theoretical roots of Bessel functions.
In Fig. 3, we only selectively illustrate a few observed patterns. The control parameters corresponding to all the
four complete series of ordered state patterns are listed in Table 2. Moreover, morphological evolution of the
spatiotemporal patterns gives rise to diverse dynamical behaviors, including steady states, uniform oscillations,
modulated oscillations and chaotic dynamics [33].

3.2. Multiscale pattern analysis

To analyze the ordered state patterns, three-scale WMA as illustrated in Fig. 2(a) is performed. Daubechies-8
wavelets [52] are used for all computations. Fig. 4(b)–(e) depicts the contour plots of the three-scale wavelet
decomposition amplitudes of the ordered state patterns shown in Fig. 3(b)–(e). In order to achieve an enhanced
visualization effect, results plotted in Fig. 4 are obtained by the wavelet transform of the square of patternsf 2. Since
Fig. 3(b) contains a relatively smooth pattern, its three-scale wavelet transform, Fig. 4(b), has non-zero components
concentrating in a few low frequency sub-bands, such as LL1, LH1 and HL1. The smoothest sub-band, LL1, has
most of the “density”. The pattern in Fig. 3(c) contains more high frequency components than that in Fig. 3(b).
Therefore, its wavelet transform, Fig. 4(c), has non-zero components in all the 10 sub-bands, most notably, in
sub-bands LH2 and HL2. Similarly, Fig. 4(d) indicates that the pattern in Fig. 3(d) has little high frequency wavelet
filter response, whereas the pattern in Fig. 3(e) displays much dramatical spatial variance as can be noted from
its wavelet decomposition, Fig. 4(e). Fig. 4(a) depicts the wavelet sub-band filter responses of the initial Gaussian
random noise. Unlike the ordered state patterns, the random noise has intensive scattered filter responses over all
the frequency sub-bands, particularly in the HH3 sub-band. In Table 3, the MAD indices are listed for a comparison
for the initial values of Fig. 3(a) and the typical ordered state patterns shown in Fig. 3(b)–(e). Ordered state patterns,
Fig. 3(b) and (d), have relatively large MAD indices in the low frequency sub-bands (LH1,HL1 and LL1). These
two patterns have relatively large single-phase domains. In contrast, ordered state patterns Fig. 3(c) and (e) have
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Fig. 4. (a)–(e) Contour plots of the wavelet decomposition amplitudes of the initial condition (Fig. 3(a)) and the ordered state patterns shown in
Fig. 3(b)–(e).
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Fig. 4. (Continued ).
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Fig. 4. (Continued ).

relatively large MAD indices in the high frequency sub-bands (LH3,HL3 and HH3). Their morphology is more
complicated than that of Fig. 3(b) and (d). Nevertheless, a common feature for the MAD indices of ordered state
patterns is that the ratio of LL1/HH3 is much larger than one. Such a ratio reflects the spatial coherence order in the
pattern. In general, the larger the ratio, the higher the coherence order is in the pattern. The values of LL1/HH3 ratio
for Fig. 3(a)–(e) are 0.278, 0.305× 107, 0.262× 105, 0.708× 106, 0.116× 105, respectively. Clearly, the initial
Gaussian random noise has a very small ratio (0.278) and consequently, a very low coherence order. The pattern
in Fig. 3(b) has the largest single-phase domains and the highest coherence order as indicated by the largest ratio

Table 3
The MAD indices of the initial values and some typical ordered state patterns

MAD index Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d) Fig. 3(e)

HH3 0.930E− 1 0.327E− 6 0.229E− 4 0.137E− 5 0.461E− 4
LH3 0.217 0.303E− 5 0.136E− 3 0.181E− 5 0.238E− 3
HL3 0.218 0.577E− 6 0.136E− 3 0.178E− 4 0.239E− 3
HH2 0.932E− 1 0.908E− 6 0.747E− 4 0.444E− 5 0.248E− 3
LH2 0.133 0.283E− 4 0.479E− 2 0.566E− 4 0.943E− 2
HL2 0.115 0.526E− 5 0.479E− 2 0.391E− 3 0.946E− 2
HH1 0.396E− 1 0.616E− 5 0.532E− 2 0.185E− 3 0.101E− 1
LH1 0.317E− 1 0.159E− 2 0.192 0.412E− 2 0.217
HL1 0.337E− 1 0.314E− 3 0.192 0.255E− 1 0.217
LL 1 0.258E− 1 0.998 0.600 0.970 0.536
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of 0.305× 107. Therefore, the ratio of LL1/HH3 can be quantitatively used to measure the formation of spatially
coherent structures in the present pattern-forming system.

The mechanism of the formation of ordered state patterns can be regarded as the results of a frequency competition
process, which is driven by the nonlinear force in the CH equation. By competition, only a few spatial frequencies
can survive to dominate the system. Physically, this corresponds to the formation of the spatially coherent structures.
If the “energy” of the system is measured by(1/2)

∫ |∇Ψ |2 dx, it is easy to prove that the formation of ordered
state patterns is a nonlinear dispersive process. This energy loss can be visualized directly from wavelet sub-band
filter responses. Note that Eq. (25) itself says nothing about energy conservation. Physically, the reduction in total
energy leads to stable states. Moreover, the formation of large smooth domain in wavelet sub-band LL1 indicates
the mass transfer in the pattern formation process.

It should be noted that patterns discussed in this subsection are ordered state patterns which are obtained from
the long time integration of the CH equation. Since the system under study is in the “small” and “moderately
large” regime, the characterization length of the ordered state patterns is comparable to the system size. Our wavelet
analysis indicates that ordered state patterns can be effectively analyzed by wavelet sub-band energy. In other words,
each wavelet quadratic mirror filer response can be used as a quantitative monitoring index for mass transfer and
energy dispersion. Quantitative wavelet characterization of the dynamics of the spatiotemporal patterns is presented
in the next section.

3.3. Characterization of morphological pattern evolution

In this section, the wavelet multiresolution indices, the MAD and MAC are used to characterize the morphological
evolution of the spatiotemporal patterns. We first carry out the MAD index analysis to the spatiotemporal patterns.
This is done by computing the MAD index at each time step. The dynamical information is revealed in the time
series of the MAD index which is constructed from the solution of the CH equation. The MAC analysis is performed
for a few selected cases. By using the time series of MAD and MAC as indices, a wide variety of morphological
pattern evolutions are characterized.

3.3.1. MAD Characterization
Steady state. A typical example of a steady state is shown in Fig. 5. The temporal evolutions of three MAD indices

HH3(ti),HH2(ti) and HH1(ti) are plotted. Obviously, the system stabilizes at the steady state only after a short
transient period. During this transient period, the coherence order is very low and the ordered state has not been
established. The morphology of the system is characterized by the random arrangement of the small single-phase
domains. Physically, this corresponds to the mass transfer and energy dispersion during the phase separation and
pattern formation in the non-equilibrium systems.

Fig. 5. The MAD indices HHm(ti ) (m = 1,2,3),R = 5.5.
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Fig. 6. (a)–(c) The MAD indices HHm(ti ) (m = 1,2,3); (d) solid: HH3(ti ); dotted: HH2(ti ); dashed: HH1(ti ). R = 4.0.

Uniform oscillation. The time evolution of principal Fourier–Bessel modes often oscillates periodically in the
present system. The observed periodic oscillations can be further divided into two types. One is the uniform
oscillation and the other is the modulated oscillation.

Fig. 6 demonstrates a typical example where the MAD indices undergo a uniform oscillation. It is found that all
the three MAD indices HHm(ti) (m = 1,2,3) are frequency-locked and they change from the positive maximal
amplitude to the negative minimal amplitude alternatively. This implies that the morphological pattern evolution in
this example is a period-2 orbit and the spatial patterns have certain self-similar properties. One of involved ordered
state patterns is shown in Fig. 3(b).

Modulated oscillation. Figs. 7 and 8 depict two examples of the modulated oscillations. It is found that the
morphological pattern evolutions are period-3 orbit and period-7 orbit, respectively. Usually, there are several
transient states inside one modulated period. Although inside one modulated period, three MAD indices are not
totally frequency-locked as in the uniform oscillation described in the last example, they can correctly characterize
the global trend of the morphological pattern evolution. Therefore, the MAD indices at any of the three scales can
be used to characterize the dynamics of the spatiotemporal patterns.

Fig. 9(a) and (b) presents two more examples of the modulated morphological evolution. These two typical
examples have very long modulated period orbits. In Fig. 9(a), the orbit of the MAD indices is period 24, while
in Fig. 9(b) the orbit of the MAD indices is period 50. In both cases, the evolutions inside one period are strongly
modulated due to the complicated competition inside the system.

The morphological pattern evolution atR = 12.5 is very special, as demonstrated by the MAD indices in Fig. 10.
At the beginning, the system goes into the steady state after a short period of transient states. Then after a period
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Fig. 7. (a)–(c) The MAD indices HHm(ti ) (m = 1,2,3); (d) solid: HH3(ti ); dotted: HH2(ti ); dashed: HH1(ti ). R = 7.0.

Fig. 8. (a)–(c) The MAD indices HHm(ti ) (m = 1,2,3); (d) solid: HH3(ti ); dotted: HH2(ti ); dashed: HH1(ti ). R = 9.25.
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Fig. 9. The MAD indices HH1(ti ): (a)R = 9.75, (b)R = 12.0.

of evolution of the steady state, the system converts to the modulated oscillation. A typical ordered state pattern is
depicted in Fig. 3(e).

Chaotic oscillation. Besides the periodic morphological evolutions, the chaotic morphological evolutions also
occur frequently in the present system. In Figs. 11 and 12, we demonstrate the chaotic morphological evolution of
patterns characterized by the disordered evolution of the MAD indices. A typical ordered state pattern corresponding

Fig. 10. The MAD indices HHm(ti ) (m = 1,2,3),R = 12.5.
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Fig. 11. The MAD indices HHm(ti ) (m = 1,2,3),R = 6.5.

to Fig. 11 is depicted in Fig. 3(d). In Fig. 13, we plotted the morphological evolution of the “patterns” at successive
six time steps corresponding to Fig. 12. Fourier–Bessel analysis shows that these “patterns” are actually the mixture
of many Fourier–Bessel modes [33]. From Fig. 13, we can see that the spatially coherent structures are partially
destroyed due to the modal competition. Nevertheless, there still exist many single-phase domains. In the literature,
this phenomenon is known as “weak turbulence”. For chaotic evolutions of spatiotemporal patterns, it is found that

Fig. 12. The MAD indices HHm(ti ) (m = 1,2,3),R = 13.5.
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Fig. 13. The six successive “patterns” fromt = 814 to 819,R = 13.5.

the MAD indices at different scales are different. It is noted that the scalings of the vertical axis in Figs. 11 and
12 are different. There is more “density” distributed in the lower frequency band in Fig. 12. In general, the MAD
indices of HH1(ti) are larger than those of HH3(ti) and HH2(ti).

Intermittency is a typical kind of chaotic motion. Its evolution is observed in the present study. Two typical
examples are shown in Figs. 14 and 15. In these cases, the irregular oscillation and the regular oscillation dominate
the evolution alternatively for different time intervals. In Fig. 14, three MAD indices all demonstrate the same
intermittent evolution. Fig. 15 depicts another case of intermittency dynamics, which is similar to that shown in
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Fig. 14. The MAD indices HHm(ti ) (m = 1,2,3),R = 6.0.

Fig. 10. For the first 800 time steps, the system undergoes intermittent oscillation. Subsequently, the system converts
to modulated oscillations.

For periodic oscillations, all the MAD indices can characterize the same dynamics. In such cases, actually only
one index is sufficient for the characterization of the morphological pattern evolution. On the other hand, for chaotic
oscillations, the indices at different scales can be very different. In this case, we conjecture that among all the MAD

Fig. 15. The MAD indices HH1(ti ), R = 9.375.
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indices, as long as there exists one index series whose dynamics is chaotic (characterized by positive Lyapunov
exponent), the morphological evolution of the spatiotemporal patterns can be regarded as chaotic. This conjecture
has been confirmed by estimation of the Lyapunov exponents of the MAD indices for chaotic morphological pattern
evolutions. For instance, although the three Lyapunov exponents of HH3(t), HH2(t) and HH1(t) shown in Fig. 14
are not the same, they are all positive. This implies that the MAD indices can correctly represent the global trend
of the morphological evolution of the spatiotemporal patterns.

Fig. 16. Power spectra of the MAD indices HH1(ti ): (a) R = 4.0; (b) R = 7.0; (c) R = 9.25; (d)R = 12.5; (e)R = 6.5; (f) R = 13.5;
(g) R = 6.0; (h)R = 9.375. To minimize the influence of the initial condition to the dynamics, the data of the first 500 time steps are excluded.
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Fig. 17. Phase plane plots of HH1(ti ) vs HH1(ti+1): (a)R = 7.0; (b)R = 9.25; (c)R = 13.5; (d)R = 6.5. The data of the first 500 time steps
are excluded.

The dynamics of the MAD indices can be further analyzed and confirmed by their power spectra and phase plane
plots. Fig. 16 shows some of the power spectra and Fig. 17 depicts some typical phase plane plots of some typical
dynamics of the spatiotemporal patterns discussed above. The results are consistent with our previous Fourier–Bessel
analysis [33].

Fig. 18. The MAC indices hhm(ti ) (m = 1,2,3),R = 4.0.
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Fig. 19. (a)–(c) The MAC indices hhm(ti ) (m = 1,2,3); (d) enlarged plot of hh1(ti ). R = 7.0.

Fig. 20. (a)–(c) The MAC indices hhm(ti ) (m = 1,2,3); (d) enlarged plot of hh1(ti ). R = 9.25.
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Fig. 21. The MAC indices hhm(ti ) (m = 1,2,3),R = 6.5.

Fig. 22. The MAC indices hh1(ti ), R = 9.375.
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Fig. 23. “Phase plane” plots of HH1(ti ) vs hh1(ti ): (a)R = 7.0; (b)R = 9.25; (c)R = 13.5; (d)R = 6.5. The data of the first 500 time steps
are excluded.

3.3.2. MAC characterization
Complementary to the MAD indices HHm(ti) (m = 1,2,3), the MAC indices hhm(ti) (m = 1,2,3) can provide

another faithful representation of the morphological evolution of the spatiotemporal patterns. Figs. 18–22 give some
examples. The MAC time series in Fig. 18 corresponds to the MAD indices of Fig. 6. The underlying dynamics is a
uniform oscillation. Since the MAC indices characterize the spatial complexity of the change, uniformly oscillatory
MAD indices in Fig. 6 reduce to steady MAC indices in Fig. 18. Figs. 19 and 20 present two other examples of MAC
indices corresponding to those in Figs. 7 and 8, respectively. It is found that the MAC indices exhibit modulated
oscillations which are similar to those found in the MAD indices. Moreover, numerical experiments show that the
MAC indices can provide correct dynamical information of the chaotic morphological evolutions. Figs. 21 and 22
illustrate two examples which correspond to the cases of Figs. 11 and 15, respectively. From these plots, it is seen
that the dynamics characterized by the MAC indices are consistent with that characterized by the MAD indices. In
Fig. 23, we depict the phase plane plots of HH1(ti) vs hh1(ti). They can be understood as the “reduced coordinate
vs momentum” phase plots. It is found that the results in Fig. 23 is consistent with that of Fig. 17. This implies that
both MAD and MAC indices can provide the same dynamical information of morphological pattern evolutions.

4. Conclusion

In this study, a wavelet-based method is proposed for both the analysis of the ordered state patterns and the
characterization of the dynamics of spatiotemporal patterns. It is found that wavelet multiscale analysis can provide
useful information for microphase size, modal spatial variation and formation of ordered state patterns. Wavelet
decomposition also provides valuable information on mass and “energy” transport in the process of pattern formation.
Based on the wavelet multiscale analysis, two wavelet indices, MAD and MAC, are introduced for the dynamical
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characterization of spatiotemporal patterns. In particular, the ratio of the MAD indices between the highest and
lowest scales reflects the order of coherence in a pattern. The order of coherence can in turn be used to measure
the size of single-phase domains. The utility of MAD and MAC is illustrated by using numerically generated
spatiotemporal patterns. It is found that a wide variety of morphological pattern evolutions, including steady state,
uniform oscillation, modulated oscillation and chaotic dynamics, can be well characterized by the proposed approach.
The results obtained from this method are consistent with our previous results obtained by Fourier–Bessel analysis.
In contrast to existing linear decomposition methods, the use of the proposed approach does not depend on the prior
knowledge about the pattern system. In addition, the proposed method is computationally efficient in the sense that it
does not need to store the huge spatiotemporal data, which is necessary in the KL decomposition method. Numerical
experiments indicate that the proposed method is general and efficient for the characterization of spatiotemporal
patterns generated from a nonlinear dynamic system.

Acknowledgements

The authors are very grateful to the referees for the valuable comments and suggestions. The authors also thank
Ms. Y. Gu for some technique assistance. This work was supported by the National University of Singapore.

References

[1] C. Bowman, A.C. Newell, Natural patterns and wavelets, Rev. Mod. Phys. 70 (1998) 289.
[2] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 1997.
[3] M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993) 854.
[4] D. Walgraef, Spatio-temporal Pattern Formation, Springer, New York, 1997.
[5] K. Kaneko, in: G. Ikegami (Ed.), Dynamical Systems and Singular Phenomena, World Scientific, Singapore, 1987.
[6] A. Torcini, A. Politi, G.P. Puccioni, G. D’Alessandro, Fractal dimension of spatially extended systems, Physica D 53 (1991) 85.
[7] N. Parekh, V.R. Kumar, B.D. Kulkarni, Analysis and characterization of complex spatio-temporal patterns in nonlinear reaction–diffusion

systems, Physica A 224 (1996) 369.
[8] M. Bauer, H. Heng, W. Martienssen, Characterization of spatiotemporal chaos from time series, Phys. Rev. Lett. 71 (1993) 521.
[9] L.S. Tsimring, Nested strange attractors in spatiotemporal chaotic system, Phys. Rev. E 48 (1993) 3421.

[10] S.M. Zoldi, H.S. Greenside, Karhunen–Loéve decomposition of extensive chaos, Phys. Rev. Lett. 78 (1997) 1687.
[11] D.A. Egolf, Dynamical dimension of defects in spatiotemporal chaos, Phys. Rev. Lett. 81 (1998) 4120.
[12] L. Pezard, J. Martinerie, J. Müller-Gerking, F.J. Varela, B. Renault, Entropy quantification of human brain spatio-temporal dynamics,

Physica D 96 (1996) 344.
[13] R. Carretero-González, S. Ørstavik, J. Huke, D.S. Broomhead, J. Stark, Scaling and interleaving of subsystem Lyapunov exponents for

spatio-temporal systems, Chaos 9 (2) (1999) 466.
[14] S. Ciliberto, B. Nicolaenko, Estimating the number of degrees of freedom in spatially extended systems, Europhys. Lett. 14 (4) (1991) 303.
[15] A. Hutt, C. Uhl, R. Friedrich, Analysis of spatiotemporal signals: a method based on perturbation theory, Phys. Rev. E 60 (1999) 1350.
[16] R. Vautard, M. Ghil, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D 35 (1989)

395.
[17] L. Sirovich, Turbulence and the dynamics of coherent structures, Parts I–III, Quart. Appl. Math. 45 (1987) 561.
[18] D. Armbruster, R. Heiland, E.J. Kostelich, KLTOOL: a tool to analyze spatiotemporal complexity, Chaos 4 (2) (1994) 421.
[19] A. Palacios, G.H. Gunaratne, M. Gorman, K.A. Robbins, Karhunen–Loéve analysis of spatiotemporal flame patterns, Phys. Rev. E 57

(1998) 5958.
[20] E. Stone, A. Cutler, Archetypal analysis of spatio-temporal dynamics, Physica D 96 (1996) 110.
[21] A. Politi, A. Torcini, Towards a statistical mechanics of spatiotemporal chaos, Phys. Rev. Lett. 69 (1992) 3421.
[22] H. Shibata, Quantitative characterization of spatiotemporal chaos, Physica A 252 (1998) 428.
[23] H. Xi, J.D. Gunton, Spatiotemporal chaos in a model of Rayleigh–Bénard convection, Phys. Rev. E 52 (1995) 4963.
[24] R.V. Cakmur, D.A. Egolf, B.B. Plapp, E. Bodenschatz, Bistability and competition of spatiotemporal chaotic and fixed point attractors in

Rayleigh–Bénard convection, Phys. Rev. Lett. 79 (1997) 1853.
[25] D. Stassinopoulos, G. Huber, P. Alstrøm, Measuring the onset of spatiotemporal intermittency, Phys. Rev. Lett. 64 (1990) 3007.
[26] G.K. Harkness, J. Lega, G. Oppo, Measuring disorder with correlation functions of averaged patterns, Physica D 96 (1996) 26.



S. Guan et al. / Physica D 163 (2002) 49–79 79

[27] P. Jung, Coherent structure analysis of spatiotemporal chaos, Phys. Rev. E 61 (2000) 2095.
[28] H.R. Schrober, E. Allroth, K. Schroeder, H. Müller-Krumbhaar, Dynamics of periodic pattern formation, Phys. Rev. A 33 (1986) 567.
[29] M.C. Cross, D.I. Meiron, Domain coarsening in systems far from equilibrium, Phys. Rev. Lett. 75 (1995) 2152.
[30] Q. Hou, S. Sasa, N. Goldenfeld, Dynamical scaling behavior of the Swift–Hohenberg equation following a quenching to the modulated

state, Physica A 239 (1997) 219.
[31] D.A. Egolf, I.V. Melnikov, E. Bodenschatz, Importance of local pattern properties in spiral defect chaos, Phys. Rev. Lett. 80 (1998) 3228.
[32] F. Kwasniok, The reduction of complex dynamical systems using principal interaction patterns, Physica D 92 (1996) 28.
[33] S.G. Guan, C.-H. Lai, G.W. Wei, Characterization of spatiotemporal dynamics in a circular domain, unpublished.
[34] S.G. Guan, C.-H. Lai, G.W. Wei, Fourier–Bessel analysis of patterns in a circular domain, Physica D 151 (2001) 83.
[35] D. Permann, I. Hamilton, Wavelet analysis of time series for the duffing oscillator: the detection of order within chaos, Phys. Rev. Lett. 69

(1992) 2607.
[36] S. Thurner, M.C. Feurstein, M.C. Teich, Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those

with cardiac pathology, Phys. Rev. Lett. 80 (1998) 1544.
[37] A. Marrone, A.D. Polosa, G. Scioscia, S. Stramaglia, A. Zenzola, Multiscale analysis of blood pressure signals, Phys. Rev. E 60 (1999)

1088.
[38] S. Boccaletti, A. Giaquinta, F.T. Arecchi, Adaptive recognition and filtering of noise using wavelets, Phys. Rev. E 55 (1997) 5393.
[39] L. Sirovich, Chaotic dynamics of coherent structures, Physica D 37 (1989) 126.
[40] U. Parlitz, G. Mayer-Kress, Predicting low-dimensional spatiotemporal dynamics using discrete wavelet transforms, Phys. Rev. E 51 (1995)

R2709.
[41] C. Meneveau, Dual spectra and mixed energy cascade of turbulence in the wavelet representation, Phys. Rev. Lett. 66 (1991) 1450.
[42] L. Hudgins, C.A. Friehe, M.E. Mayer, Wavelet transforms and atmospheric turbulence, Phys. Rev. Lett. 71 (1993) 3279.
[43] R. Benzi, L. Biferale, E. Trovatore, Ultrametric structure of multiscale energy correlations in turbulent models, Phys. Rev. Lett. 79 (1997)

1670.
[44] J. Fröhlich, K. Schneider, Computation of decaying turbulence in an adaptive wavelet basis, Physica D 134 (1999) 337.
[45] T.J. Burns, S.K. Rogers, D.W. Ruck, M.E. Oxley, Discrete, spatiotemporal, wavelet multiresolution analysis method for computing optical

flow, Opt. Eng. 33 (7) (1994) 2236.
[46] J.P. Leduc, J.M. Odobez, C. Labit, Adaptive motion-compensated wavelet filtering for image sequence coding, IEEE Trans. Image Process.

6 (6) (1997) 862.
[47] J.P. Leduc, F. Mujica, R. Murenzi, M.J.T. Smith, Spatiotemporal wavelets: a group-theoretic construction for motion estimation and tracking,

SIAM J. Appl. Math. 61 (2) (2000) 596.
[48] S.J. Choi, J.W. Woods, Motion-compensated 3D sub-band coding of video, IEEE Trans. Image Process. 8 (2) (1999) 155.
[49] J.K. Chang, L. Huntsberger, Dynamic motion analysis using wavelet flow surface images, Pattern Recog. Lett. 20 (4) (1999) 383.
[50] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, Vol. 37, Cambridge University Press, Cambridge, 1992.
[51] I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math. 41 (1988) 909.
[52] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, PA, 1992.
[53] S. Mallat, Multiresolution approximations and wavelet orthonormal bases ofL2(R), Trans. Am. Math. Soc. 315 (1989) 68.
[54] C.K. Chui, An Introduction to Wavelets, Academic Press, San Diego, CA, 1992.
[55] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258;

J.W. Cahn, J.E. Hilliard, Spinodal decomposition—a reprise, Acta Metall. 19 (1971) 151.
[56] J.D. Gunton, M.S. Miguel, P.S. Sahni, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 8, Academic

Press, London, 1983, pp. 267–482.
[57] G.W. Wei, Discrete singular convolution for the solution of the Fokker–Planck equation, J. Chem. Phys. 110 (1999) 8930;

G.W. Wei, Discrete singular convolution for the sine-Gordon equation, Physica D 137 (2000) 247;
G.W. Wei, A unified approach for the solution of the Fokker–Planck equation, J. Phys. A 33 (2000) 4935.


	A wavelet method for the characterization of spatiotemporal patterns
	Introduction
	Theory and method
	Theoretical background
	Wavelet pattern analysis
	Wavelet pattern characterization

	Numerical experiments
	The mathematical model and numerical solution
	Multiscale pattern analysis
	Characterization of morphological pattern evolution
	MAD Characterization
	MAC characterization


	Conclusion
	Acknowledgements
	References


