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Abstract

This paper presents the effective control of the formation and competition of cellular patterns. Simulation and theoretical
analyses are carried out for pattern formation in a confined circular domain. The Cahn–Hilliard equation is solved with
the zero-flux boundary condition to describe the phase separation of binary mixtures. A wavelet-based discrete singular
convolution algorithm is employed to provide high-precision numerical solutions. By extensive numerical experiments, a set
of cellular ordered state patterns are generated. Theoretical analysis is carried out by using the Fourier–Bessel series. Modal
decomposition shows that the pattern morphology of an ordered state pattern is dominated by a principal Fourier–Bessel
mode, which has the largest Fourier–Bessel decomposition amplitude. Interesting modal competition is also observed. It is
found that the formation and competition of cellular patterns are effectively controlled by the confined geometry and boundary
condition.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The synthesis and design of nanometer scale structures have attracted extensive research interest in the past
few years[1]. These nanometer scale structures include a host of nanophase, multifunctional materials such as
functional ceramics, functional films, supramolecular electronic packages, magnetic storage devices, and polymeric
drug delivery systems. Moreover, much effort has been devoted to the design of quantum wires and quantum dots
with specific properties by scientists and engineers. Physically, phase separation and pattern formation, which
occur in many binary systems such as alloys, glasses and polymers, etc., play an important role in nanometer
scale molecular assembly and synthesis. For example, the construction of highly ordered nanocomposites with
hexagonally packed cylinder morphology has been accomplished by the phase separation of polymers[2]. It is shown
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that self-organization is a crucial factor in the microscopic design of smart nano-materials[3]. Modern science and
technology enable the control to be carried out at the nanometer scale, or even at the molecular level which leads to
various functional materials[4]. Recently, a general experimental approach for controlled self-assembly of spherical
and cylindrical supermolecules has been reported[2,5]. Experiment shows that boundary-confined polymerizations
can lead to thin films which possess properties dramatically different from those of the ordinary polymer[6].

Obviously, a theoretical study of the corresponding control process is an interesting subject. It is believed that the
morphology of boundary-adapted polymeric self-assembly can be observed both experimentally and numerically
if the characteristic length of the microphase (i.e. the characteristic length of the supra- and/or supermolecules) is
comparable with the size of the confined domain. In terms of nonlinear dynamics, such a case corresponds to the
“small system” regime. In this regime, usually the confining geometry plays an important role in pattern formation
and selection[7]. Moreover, the phase separation process can be effectively controlled by the boundary conditions.
For a binary mixture, the spatial distribution of the individual component in the boundary region may be very
inhomogeneous. One component of the binary mixture might preferentially segregate to the confining surface so as
to minimize the total free energy, which involves material properties of both the binary mixture and the confining
surface[6]. Theoretically, this can be simulated by an appropriate boundary condition in association with a suitable
mathematical model.

The control of pattern formation has attracted much attention not only for the theoretical understandings but
also for the potential applications. For example, the method of directional quenching has been used to control the
microphase separation of diblock copolymer[8]. Spectral techniques have been used in the control of transverse
optical patterns and optical turbulence[9,10]. It was also found that the geometric size of the system can be useful in
controlling the formation of optical patterns[7]. Moreover, with the rapid development of nano-technology, pattern
formation now can be controlled at nanometer scale[11] or even be manipulated at the molecular level[4], resulting
in new surface and bulk nanostructured materials with unique or superior properties. In a more general sense, the
control and synchronization of dynamic systems, especially in the low-dimensional cases, have been extensively
studied in the last decade[12]. Very recently, the control mechanism has been investigated in the continuous spatially
extended systems[13–15].

The objective of the present work is to investigate the control of pattern formation and competition in a con-
fined circular domain. The use of the circular domain is based on the following considerations. First, circular
domain is a natural and important geometry for many physical systems. Extensive experiments on pattern formation
have been carried out in circular domains, including surface waves[16,17], Rayleigh–Bénard convections[18,19],
Taylor–Couette flow[20], combustion flames[21] and vibrated granular materials[22,23]. The rich physics ex-
hibited in these experiments leads us to believe that controlled pattern formation in binary systems in a circular
domain deserves a systematic investigation. Secondly, most of the existing theoretical studies of pattern formation in
binary systems are carried out in rectangular domains. We believe that the domain geometry and boundary condition
play important roles in the pattern-forming processes, such as thermal and mass diffusion, especially in the “small
system” regime. It can be expected that the phase separation and pattern formation in a small domain will dramati-
cally differ from that in a large one. In the present study, we particularly examine the effect of using both confining
geometry and boundary condition as controlling factors for regulating pattern morphology and modal selection.
Pattern formation through phase separation is studied by using the Cahn–Hilliard equation as a theoretical model.
The importance of choosing an appropriate boundary condition is emphasized. Our long-term goal is to simulate
the microscopic self-assembly of spherical and cylindrical supermolecules synthesized on a confined domain.

The organization of this paper is as follows.Section 2is devoted to the theoretical model, stability analysis,
selection of boundary condition and computational techniques. A phenomenological model, the Cahn–Hilliard
equation, is chosen for the simulation of microscopic pattern formation. A discrete singular convolution (DSC)
algorithm[24–27]is used in the present simulation to perform high-precision numerical integrations. The selection
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of appropriate boundary conditions is discussed. The results of numerical simulations are presented inSection 3. A
complete set of cellular ordered state patterns have been observed by varying the control parameter, i.e., the size of
the geometric domain. InSection 4, the Fourier–Bessel analysis is carried out to analyze the ordered state patterns
observed in the numerical experiments. This paper ends with a conclusion inSection 5.

2. Theoretical and computational aspects

A model is a crucial element for theoretical analysis. In this section, we discuss a phenomenological model and its
stability analysis. The use of appropriate boundary conditions is discussed and the method of solution is presented.

2.1. The model

It is well known that for a binary mixture (A+ B), the dynamics of the pattern formation and phase separation
is described by the Cahn–Hilliard equation (for a review, see[28]) [29–31]. Its dimensionless form reads

∂Ψ

∂t
= 1

2
∇2(−∇2Ψ − Ψ + Ψ 3), (1)

whereΨ (r, t) (|Ψ (r, t)| ≤ 1) is a conserved scalar order parameter. It is usually chosen to be the difference between
the local densities of components A and B.

The Cahn–Hilliard equation is a nonlinear partial differential equation. Due to the nonlinearity and the fourth-order
derivative, no general analytical solution is available at the present time. Although analytical approximation ap-
proaches are very useful for understanding asymptotic behaviors, they often have limited regions of validity (for
a review, see[28]). Accordingly, numerical simulation provides comprehensive theoretical understanding of the
Cahn–Hilliard equation and the underlying physics. Throughout this paper, we will useEq. (1)as a theoretical model.

So far, most simulations were carried out on rectangular domains partly for computational simplicity. Motivated by
experimental results[5,6], we integrate the Cahn–Hilliard equation in a circular domain to simulate the microscopic
phase separation and pattern formation, which is the underlying physics of the spherical and cylindrical molecular
assembly. With the circular domain, it is expected that certain symmetric patterns would appear in the final ordered
states. The appearance of these patterns should be greatly influenced by the size of the confined computational
domain and the boundary condition of the model equation.

2.2. Linear stability analysis

Linear stability analysis is a useful tool for investigating the long wavelength instability in the process of pattern
formation in spatially extended systems. It is assumed that the system is near the reference uniform steady state
Ψ (r, t) = 0 which corresponds to the homogeneously mixed state of the binary mixture. For small fluctuations of
the order parameterΨ , a separation of variables is possible and the solution has the form of

Ψ = Ψ0 eωt eik·r. (2)

By substituting this into the linearized Cahn–Hilliard equation, one obtains the following dispersion relation:

ω(k) = −1
2(k4 − k2), (3)

wherek = |k|. The dispersion relation is schematically shown inFig. 1. According toFig. 1, any mode with
k < kc = 1, will be linearly unstable becauseω(k) ≥ 0. Activated by the small fluctuations of the order parameter,
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Fig. 1. Linear dispersion relation of the Cahn–Hilliard equation.

the instability arising at the microscale is able to organize the system into macroscale domains. Thus the spatially
coherent states (or spatiotemporal patterns) can be established due to the balance of linear instability and nonlinear
regulation. Unlike the linear case, the nonlinearity plays an important role in the pattern formation. It not only
converts the linearly decaying short wavelength modes into the growing long wavelength ones, but also regulates the
exponentially growing tendency of long wavelength modes. As a result, patterns of certain characteristic wavelength
will be stabilized. Physically, this process corresponds to the formation of relatively large macrophase domains.

2.3. Boundary conditions

Mathematically, as a fourth-order differential equation, it takes two boundary conditions at each side of a finite
domain to uniquely determine the solution ofEq. (1). The boundary conditions can be differential equations having
derivatives of the order from 0 to 3. In fact, the spatial behavior of the Cahn–Hilliard equation is mainly influenced
by the biharmonic equation∇4w(x, y) = ω2w(x, y), which is the governing equation for the Kirchhoff plate[32].
In vibration analysis, four types of standard boundary conditions are often used for the biharmonic equation in
rectangular domain[32], i.e.:

• simply supported edge:

w = 0,
∂2w

∂n2
+ ν

∂2w

∂s2
= 0, (4)

• clamped edge:

w = 0,
∂w

∂n
= 0, (5)
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• free edge:

∂2w

∂n2
+ ν

∂2w

∂s2
= 0,

∂3w

∂n3
+ (2 − ν)

∂3w

∂n∂s2
= 0, (6)

• and transversely supported edge with nonuniform elastic rotational restraint:

w = 0, −D

(
∂2w

∂n2
+ ν

∂2w

∂s2

)
= K(s)

∂w

∂n
, (7)

whereν is Poisson’s ratio,K(s) the varying elastic rotational stiffness of the plate elastic edge andn ands denote,
respectively, the normal and tangential coordinates with respect to the plate edge. These studies not only give us an
indication of the possible complexity of the boundary conditions for the present simulation but also offer a physical
interpretation for potential boundary conditions.

The problem of solving the Cahn–Hilliard equation with appropriate boundary conditions has, to our knowledge,
rarely been discussed in the literature. The boundary conditions used in structural analysis cannot be directly
employed in the present study, although they provide a guidance for our selection. Of primary importance to the
present study is the conservation of the order parameter, i.e., the order parameter should obey the following constraint
at any time:∫

Ω

dr Ψ (r, t) = C, (8)

whereΩ is the domain of interest andC is a constant. In the present study, we consider only equal ratio composition,
i.e., C = 0 in Eq. (8). This implies that the possible morphology in this system is the polarization of the order
parameter.

Another important physical constraint on the order parameter is

sup|Ψ (r, t)| ≤ 1 ∀r ∈ Ω, t ∈ [0, ∞]. (9)

However, as a generalized reaction–diffusion equation, the Cahn–Hilliard equation does not automatically satisfy
Eq. (9). All unphysical solutions are to be excluded from the present integration numerically.

It remains to choose two other conditions to determine the solution uniquely. To this end, many conditions used in
the plate analysis are possible candidates. In particular, both the Dirichlet and Neumann boundary conditions have
simple physical interpretations for the present phase separation. For example, the Dirichlet boundary condition

Ψ (rb, t) = 0 (10)

implies that there is no phase polarization at the boundary. (Hererb denotes the domain boundary.) The pattern
formation of the Cahn–Hilliard equation under conditions(8)–(10)was studied in the literature. In the present paper,
we consider an alternative choice.

It is well known that the Cahn–Hilliard equation is akin to the time-dependent Ginzburg–Landau equation.
In particular, the Cahn–Hilliard equation can be viewed as a special case derived from the minimization of the
Ginzburg–Landau type free energyF

F (Ψ ) =
∫

Ω

[f (Ψ ) + K(∇Ψ )2] dr, (11)

whereΩ is the domain of interest,K a positive parameter andf (Ψ ) the free energy per unit volume. Noveick-Cohen
and Segel[31] argued that the zero-flux boundary condition

∂Ψ

∂n
= 0, (12)



24 S. Guan et al. / Physica D 176 (2003) 19–43

is a prerequisite for arriving atEq. (11). Here, the direction of the coordinatesn is normal to the boundary surface.
Therefore, a complete set of boundary conditions can be given byEqs. (8), (9) and (12). Physically, boundary
selection and boundary segregation[6] can be simulated by the zero-flux boundary condition.

2.4. Numerical aspects

Integrating the Cahn–Hilliard equation in a circular computational domain is not an easy task. It is necessary
to integrate the governing equation in polar coordinates (r, θ ), so that the O(2) symmetry is preserved. Due to the
lack of periodic boundary conditions, Fourier spectral methods cannot be directly applied. In polar coordinates, the
derivative

∇4 = ∂rrrr + 2r−1∂rrr − r−2∂rr + r−3∂r + 2r−2∂rrθθ − 2r−3∂rθθ + 4r−4∂θθ + r−4∂θθθθ (13)

causes artificial singularities up to fourth order at the origin. Conventional local methods, such as finite ele-
ments and finite differences encounter difficulties of insufficient accuracy. Moreover, the nonlinear terms may
cause additional complexity in the phase space geometry. Therefore, it is technically very demanding to inte-
grate the Cahn–Hilliard equation in the circular domain. In the present simulation, we overcome these numeri-
cal difficulties by utilizing a wavelet-based DSC algorithm[24–27]. The DSC algorithm has been successfully
applied in many scientific and engineering computations. For example, it has been successfully used in the in-
tegration of the sine-Gordon equation when the initial values are chosen to be close to the most excitable ho-
moclinic orbit [26]. In the analysis of high frequency vibrations of aerospace structures, the DSC algorithm
is the only available approach at present that is capable of predicting tens of thousand vibration eigenmodes
[27].

Due to the fourth-order derivative in space, it is efficient to employ an implicit scheme for the time integration. The
standard implicit Crank–Nicolson scheme is chosen for the time discretization. The nonlinear terms are linearized
by using the Newton-like technique. Coupled collocation equations are solved at each time step by a standard
direct method. For all simulations, we choose 32 and 64 grid points in ther andθ directions, respectively. The
DSC regularization parameters[24] are set asσq/∆q = 3.8 (q = r, θ ) in both directions. The DSC bandwidth
parameters are set to 30 in both dimensions. The initial order parameter fieldΨ0 is given by random noise of small
amplitudes (about 10−2) inside the computational domain. In this simulation, the boundary conditions described
in the last subsection, i.e.,Eqs. (8), (9) and (12), are implemented. Since the Cahn–Hilliard equation has no
intrinsic control parameters, we use the geometric control parameter, i.e., the radiusR of the circular domain, to
regulate the pattern morphology. Due to the numerical limitation in computer memory and time, our simulations
focus on the small and moderately large geometric sizes. (Any increase in the domain size requires enlarging the
computational grids.) The control parameter ranges from 1 to 13. At each given radius,Eq. (1) was integrated
up to 1000 time steps, and some particular runs were integrated up to 2000 time steps. In order to maintain a
spectral level of accuracy, the computations are extremely expensive and time consuming in terms of computer
resources.

3. Pattern morphology

Fig. 2 shows the mesh and contour plots of the ordered state patterns. These cellular patterns are obtained by
long time propagations of the initial random state with different control parametersR. Initially, we systematically
explore theR values from 1 to 13 with a typical step size of 0.5. Then a few more runs with a smaller step size
(about 0.1) are added to locate some “expected” ordered state patterns at certain radii. By extensive numerical
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Fig. 2. Mesh and contour plots of the typical ordered state patterns and the initial values: (1) [1, 1](t = 500); (2) [1, 2] (t = 1000); (3) [1, 3]
(t = 1000); (4) [1, 4] (t = 700); (5) [1, 5] (t = 1170); (6) [1, 6] (t = 1240); (7) [1, 7] (t = 400); (8) [1, 8] (t = 440); (9) [1, 9] (t = 1230);
(10) [1, 10](t = 540); (11) [1, 11](t = 1000); (12) [1, 12](t = 750); (13) [2, 0](t = 600); (14) [2, 1](t = 1150); (15) [2, 2](t = 1240); (16)
[2, 3] (t = 1190); (17) [2, 4] (t = 800); (18) [2, 5] (t = 1250); (19) [2, 6] (t = 820); (20) [2, 7] (t = 660); (21) [3, 0] (t = 700); (22) [3, 1]
(t = 920); (23) [3, 2](t = 480); (24) [3, 3](t = 790); (25) [3, 4](t = 1220); (26) [3, 5](t = 560); (27) [4, 0](t = 950); (28) [4, 1](t = 630);
(29) [4, 2](t = 990); (30) the initial values. The corresponding control parameters are listed inTable 2.
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Fig. 2. (Continued ).

experiments, four complete classes of ordered state patterns have been observed. It is found that all the ordered
state patterns consist of several concentric rings of cells. Notably, the outermost concentric ring of the ordered
state patterns actually comprises “half cells”, which is obviously seen from the contour plots shown inFig. 2. The
zero-flux boundary condition is very similar to the free edge boundary in the structural analysis. Unlike the Dirichlet
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Fig. 2. (Continued ).

boundary condition, it does not require specific boundary values.Eq. (12)usually leads the order parameter to attain
a local extremum at the boundary. In the next section, we will offer a reasonable explanation from the point of
view of the Fourier–Bessel analysis. In general, the spatial distribution of the cells is interlaced, which implies that
any two neighboring cells are at different phases. Such a phase separation can be regarded as local polarization
of the order parameter and it is consistent with the conservation of the order parameter, i.e.,Eq. (8). Moreover,
the complexity of patterns increases as the control parameterR increases, and a careful examination reveals that
the ordered state patterns can be regularly classified by a pair of integers [l, m] (l = 1–4), as shown inFig. 2.
Herel denotes the number of the concentric rings in the ordered state patterns, whilem denotes the number of the
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Fig. 2. (Continued ).

one-phase domains in each ring. In the next section, we will show that this pair of integers [l, m] is related to the
Fourier–Bessel modes in the circular domain. InFig. 2, all the four classes of ordered state patterns observed when
R ≤ 13 are plotted according to their characteristic integer pairs. The pattern [1,0] is absent inl = 1 series because it
does not satisfy the conservation of the order parameter. InTable 2, we list all the control parameter values at which
these ordered state patterns were attained. Experimentally, cellular patterns have been observed in other systems,
such as convective fluids[16], combustion flames[21], and nonlinear optical media[7]. Nevertheless, due to the
constraint of experimental conditions, only limited cellular pattern morphology was observed[7,16,21].



S. Guan et al. / Physica D 176 (2003) 19–43 29

4. Fourier–Bessel analysis

In order to further investigate the pattern morphology of the ordered patterns, a quantitative analysis is needed.
The linearized stationary Cahn–Hilliard equation

∇2(∇2 + 1)Ψ̃ = 0 (14)

can be factorized into the Laplace and Helmholtz equations. In polar coordinates, by the separation of variables,
these two equations both lead to the Bessel equation in ther direction. Hence, a general solution toEq. (14)can be
expressed as

Ψ̃ (r, θ) =
∞∑

m=0

[AmJm(r) + BmNm(r)] eimθ , m = 0, 1, . . . , (15)

whereJm(r) andNm(r) are the Bessel functions of the first and the second kinds, respectively. Since the circular
domain includes the origin, in order to avoid singularity at the origin,Bm must be set to zero. Thus the solution to

Fig. 3. Mesh and contour plots of the ordered state pattern atR = 7.0, t = 550. Its corresponding principal Fourier–Bessel mode is [3, 0].
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Eq. (14)is

Ψ̃ (r, θ) =
∞∑

m=0

AmJm(r) eimθ , m = 0, 1, . . . , (16)

i.e., the linearized stationary Cahn–Hilliard equation has the solution of the Bessel functions of the first kind.
On the other hand, a careful examination of the typical ordered state patterns inFig. 2reveals that they resemble the

Fourier–Bessel modes truncated to a certain radius in the finite circular domain. The above consideration suggests
that the solution of the full Cahn–Hilliard equation with the zero-flux boundary condition in the circular domain
can be expressed as a Fourier–Bessel series

Ψ (r, θ) =
∑
l,m

Zl,mΦl,m(r, θ) + c.c., (17)

where

Φl,m(r, θ) = Jm

(µl,mr

R

)
eimθ , m ≥ 0, l > 0 (18)

is a Fourier–Bessel mode characterized by [l, m], and c.c. denotes the complex conjugate. Here,Jm(µl,mr/R) is
themth Bessel function of the first kind[34] andµl,m its lth nontrivial extremum, i.e.,{µl,m} (l = 1, 2, . . . ) are the
nontrivial roots of the equation

J ′
m(µR) = 0. (19)

Fig. 4. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 3.
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Table 1
The fractional amplitudes corresponding to the three most important Fourier–Bessel modes, as well as the entropies of the ordered state patterns
shown inFig. 2

Pattern First Second Third Pattern entropy

1 A1,1 = 0.957 A10,1 = 0.00512 A1,3 = 0.00491 0.0471
2 A1,2 = 0.603 A10,2 = 0.0587 A9,2 = 0.0556 0.271
3 A1,3 = 0.805 A1,9 = 0.0435 A10,3 = 0.0624 0.177
4 A1,4 = 0.680 A10,4 = 0.0451 A9,4 = 0.0430 0.244
5 A1,5 = 0.662 A10,5 = 0.0512 A9,5 = 0.0490 0.240
6 A1,6 = 0.656 A10,6 = 0.0483 A9,6 = 0.0463 0.252
7 A1,7 = 0.878 A10,7 = 0.0525 A9,7 = 0.00883 0.127
8 A1,8 = 0.878 A2,8 = 0.0525 A10,8 = 0.00884 0.108
9 A1,9 = 0.715 A10,9 = 0.0451 A9,9 = 0.0437 0.210

10 A1,10 = 0.981 A1,14 = 0.00276 A2,6 = 0.00221 0.0262
11 A1,11 = 0.591 A3,4 = 0.0633 A1,12 = 0.0365 0.380
12 A1,12 = 0.773 A2,8 = 0.0992 A1,8 = 0.0492 0.175
13 A2,0 = 0.408 A1,0 = 0.124 A10,0 = 0.0560 0.395
14 A2,1 = 0.898 A3,1 = 0.0237 A1,1 = 0.0106 0.102
15 A2,2 = 0.611 A1,2 = 0.110 A10,2 = 0.0448 0.260
16 A2,3 = 0.650 A1,3 = 0.171 A10,3 = 0.0281 0.224
17 A2,4 = 0.763 A3,4 = 0.0660 A1,4 = 0.0241 0.189
18 A2,5 = 0.710 A3,5 = 0.0608 A10,5 = 0.0356 0.225
19 A2,6 = 0.671 A1,6 = 0.165 A4,1 = 0.0813 0.218
20 A2,7 = 0.725 A1,7 = 0.0597 A3,7 = 0.0427 0.202
21 A3,0 = 0.662 A2,0 = 0.0945 A4,0 = 0.0806 0.217
22 A3,1 = 0.717 A4,1 = 0.0990 A1,1 = 0.0447 0.208
23 A3,2 = 0.674 A4,2 = 0.0827 A2,2 = 0.0571 0.246
24 A3,3 = 0.652 A2,3 = 0.116 A1,3 = 0.102 0.228
25 A3,4 = 0.915 A4,4 = 0.0207 A1,4 = 0.0110 0.0876
26 A3,5 = 0.590 A2,8 = 0.0592 A4,5 = 0.0567 0.381
27 A4,0 = 0.667 A5,0 = 0.0857 A1,0 = 0.0586 0.236
28 A4,1 = 0.668 A5,1 = 0.0821 A3,1 = 0.0533 0.250
29 A4,2 = 0.693 A3,2 = 0.0782 A5,2 = 0.0752 0.233

Table 2
A comparison of control parametersR used for observing the ordered state patterns and the corresponding nontrivial extrema of the Bessel
functions under the zero-flux boundary condition

m l = 1 l = 2 l = 3 l = 4

R µ1,m R µ2,m R µ3,m R µ4,m

0 – 0 4.0 3.832 7.0 7.016 9.75 10.173
1 2.5 1.841 5.25 5.331 8.25 8.536 11.1 11.706
2 3.75 3.054 6.75 6.706 9.75 9.969 12.75 13.170
3 4.25 4.403 7.75 8.015 10.75 11.346 – –
4 5.875 5.318 8.75 9.282 11.8 12.682 – –
5 6.25 6.416 10.0 10.564 13.0 13.998 – –
6 7.25 7.501 11.1 11.804 – – – –
7 8.5 8.578 12.2 13.032 – – – –
8 9.25 9.647 – – – – – –
9 10.25 10.711 – – – – – –

10 11.25 11.771 – – – – – –
11 11.9 12.826 – – – – – –
12 13.0 13.879 – – – – – –
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In other words, the Bessel function takes the extreme values at{µl,m}. Under the zero-flux boundary condition, the
orthonormality and completeness of the functionsΦl,m(r, θ) provide

Zl,m = 1

πR2[1 − (m/µl,m)2]J 2
m(µl,m)

∫ 2π

0

∫ R

0
Ψ (r, θ)Φ̄l,m(r, θ)r dθ dr, m > 0, (20)

where the coefficientsZl,0 take half of the value given by the above formula. Here the bar denotes the complex
conjugate.Eq. (17)paves the way for a quantitative analysis of the ordered state patterns described in the last
section. Based onEq. (17), the Fourier–Bessel decomposition of the ordered state patterns can be carried out. In a
more general perspective, Fourier–Bessel analysis[33] is suitable for the quantitative characterization of cellular
patterns.

4.1. Modal control

Due to the nonlinearity of the Cahn–Hilliard equation, it is unlikely that pure Fourier–Bessel modes will occur
as the solution of our theoretical model. Thus a quantitative analysis in terms of Fourier–Bessel modes is needed
for the detailed composition of the ordered state patterns. This can be achieved by computing the Fourier–Bessel
decomposition (expansion) coefficientsZl,m for each ordered state pattern. Based on the Fourier–Bessel decom-
position, two quantities can be defined to characterize the ordered state patterns. The first quantity is the fractional
amplitudeAl,m captured by a Fourier–Bessel mode [l, m]. It is defined as

Al,m = |Zl,m|
A

, (21)

where|Zl,m| is the Fourier–Bessel decomposition amplitude of mode [l, m]. Here,A is the total Fourier–Bessel
decomposition amplitude which denotes the sum of all Fourier–Bessel decomposition amplitudes

A =
∑
l,m

|Zl,m|, m, l ∈ Z, m ≥ 0, l > 0. (22)

Fig. 5. Phase diagram aroundR = 5.0.
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Obviously, the fractional amplitude can be understood as the “energy” captured by each Fourier–Bessel mode. The
sum of fractional amplitudes approaches 1 as the number of Fourier–Bessel modes in the decomposition increases
to infinity. The second quantity that can be used for characterizing the ordered state patterns is the pattern entropy

ε = − lim
N→∞

1

ln N

∑
l,m

Al,m ln Al,m, (23)

wherel, m are the indices of Fourier–Bessel modes [l, m] andN the total number of Fourier–Bessel modes used in
the decomposition. The pattern entropy measures the fractional amplitude distribution among the Fourier–Bessel
modes and varies between 0 and 1, as the number of Fourier–Bessel modes increases. For a given ordered state
pattern, the pattern entropy is relatively small when the total Fourier–Bessel decomposition amplitude, i.e., the

Fig. 6. Mesh and contour plots of the ordered state patterns atR = 5.0: (a) [2, 1] (t = 730); (b) [1, 3] (t = 900).
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total energy of the pattern, is mainly captured by a few Fourier–Bessel modes. An extreme case is that there
is only one Fourier–Bessel mode which contributes to the ordered state pattern. As such, the value of the pat-
tern entropy will be zero according toEq. (23). On the contrary, when the total Fourier–Bessel decomposi-
tion amplitude spreads across a large number of Fourier–Bessel modes, the value of the pattern entropy will
approach 1.

Fig. 3depicts a typical ordered state pattern. Its Fourier–Bessel decomposition is illustrated inFig. 4, where the
fractional amplitudesAl,m are sorted in the decreasing order and only the Fourier–Bessel modes whose fractional
amplitudes are greater than 0.01 are shown. FromFig. 4, it is found that fractional amplitudes of most modes are
very small (below 10−2) except for a few active ones. Among eight Fourier–Bessel modes shown in the figure, there
is a dominant mode whose fractional amplitude is significantly larger than those of the others.

In Table 1, the three largest fractional amplitudes and the pattern entropies are listed for all the ordered state
patterns shown inFig. 2. It is found that all the entropies are less than 0.4 and the averaged value is about 0.2. This
implies that there are only a few dominant Fourier–Bessel modes contributing to the ordered state patterns. On an
average, the first largest fractional amplitude is about 0.74, while the second largest amplitude is usually below 0.1.
We describe this dominant Fourier–Bessel mode asthe principal Fourier–Bessel mode, which contributes the most
to the morphology of an ordered state pattern. InFig. 2, we have classified the typical ordered state patterns accord-
ing to their “quantum number”, [l, m], of the principal Fourier–Bessel modes. Moreover, fromFig. 2andTable 1, it
is found that the morphology of the ordered state pattern is mainly determined by the principal Fourier–Bessel

Fig. 7. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 6(a).
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Fig. 8. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 6(b).

Fig. 9. Phase diagram aroundR = 7.0.
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mode, whereas the contributions from the nonprincipal Fourier–Bessel modes can slightly modulate the cell
shapes.

4.2. Controlled pattern selection and competition

The single phase state atR = 0 does not satisfy the physical constraint. According to linear stability analysis,
simultaneous symmetry polarization can be induced from the initial homogeneous distribution by the random noise
of an extremely small amplitude (∼10−2) for an appropriateR > 0. Fourier–Bessel decomposition shows that an
ordered state pattern is usually dominated by the principal Fourier–Bessel mode. By extensive simulations, it is
found that the system tends to stabilize at a Fourier–Bessel mode [l, m] when the control parameterR is close to
the nontrivial extremumµl,m of the Bessel function, i.e., whenR is close to the values at which the Bessel function
takes the nontrivial extreme values.

The first extreme point ofJ0 is atµ1,0 = 0. However, it is a trivial point and is unphysical in the present system.
The ordered state pattern [1, 1] is first observed atR = 2.5, which is close to the theoretical extremumµ1,1 = 1.841.
For all the ordered state patterns, a comparison ofR values(R ≤ 13) at which the patterns are observed and the
corresponding theoretical extreme pointsµl,m of the Bessel function are listed inTable 2. Although the observedR
values differ slightly from the theoretical values, generally the numerical results match theoretical predictions well.
Actually, in our numerical experiments we have made use of this modal selection mechanism to guide us to locate
or control some “expected” patterns. Moreover, a careful examination reveals that the order of the appearance of
the ordered state patterns are consistent with the interlacing of Bessel function’s extrema[34]:

0 < µ1,m < µ1,m+1 < µ2,m < µ2,m+1 < µ3,m < · · · .

Fig. 10. Mesh and contour plots of ordered state patterns atR = 7.0: (a) t = 730; (b) t = 480; (c) t = 780. The corresponding principal
Fourier–Bessel modes are [1, 6], [2, 2] and [3, 0], respectively.
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For a givenm value, whenR is large, it approximately takes aπ increment inR to observe the pattern with one
more ring of cells, i.e., the value ofl increases 1.

Although the morphology of the ordered patterns appears diverse, it can be understood from the point of view
of “energy”. The square of the ratio ofµl,m and R is the “energy” of the linearized stationary Cahn–Hilliard
equation (E = µ2

l,m/R2). This value is 1 in the present case which is determined by the nontrivial eigenvalue

of ∇2(∇2 + 1)Ψ = 0. Therefore, all observed ordered state patterns approximately have the same energy. This
degeneracy is due to the symmetry of the circular domain. The present findings of the mechanism of pattern selection
might shed light on the control of microphase separation and pattern formation in more complicated systems in a
circular domain.

In the present simulation, modal competition is often observed when the control parameterR is simultaneously
close to two or moreµl,m values. In this case, the formation of the ordered state patterns can be complicated by
possible competition among different Fourier–Bessel modes since either mode [l, m] or mode [l′, m′] can be excited.
Numerically, it is possible to observe two or more different patterns at a given control parameter.

A typical case of two-mode competition is observed atR = 5.0. Fig. 5illustrates the phase diagram aroundR =
5.0. As shown inFig. 5, the control parameterR = 5.0 is in the overlap region of two Fourier–Bessel modes [2, 1]
and [1, 3], since the correspondingµ values of these two modes areµ2,1 = 5.331 andµ1,3 = 4.403, respectively. As
a result, both these two Fourier–Bessel modes can be excited and compete to dominate the formation of ordered state
patterns. Two typical ordered state patterns at different time steps are shown inFig. 6, corresponding to the principal
Fourier–Bessel modes [2, 1] and [1, 3], respectively. InFigs. 7 and 8, we depict the Fourier–Bessel decomposition

Fig. 11. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 10(a).
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of these two ordered state patterns. It is clearly shown that for patternFig. 6(a), the principal Fourier–Bessel mode
is [2, 1], while for patternFig. 6(b), the principal Fourier–Bessel mode is [1, 3].

With the increase of the control parameter, i.e., the size of the geometric domain, generally more Fourier–Bessel
modes can be simultaneously excited. Thus the competition among these active modes can be expected to occur
more frequently. For example, three principal Fourier–Bessel modes [1, 6] (µ1,6 = 7.501), [2, 2] (µ2,2 = 6.706)
and [3, 0] (µ3,0 = 7.016) have been observed to take part in the competition atR = 7.0. Once again, the control
parameter value is close to these theoretical extrema of the Bessel function.Fig. 9plots the phase diagram around
R = 7.0. It is shown that the control parameterR = 7.0 is in the overlap region of the above-mentioned three
Fourier–Bessel modes. Three typical ordered state patterns are shown inFig. 10, corresponding to the principal
Fourier–Bessel modes [1, 6], [2, 2] and [3, 0], respectively. This is further illustrated by the results of Fourier–Bessel
decomposition of these three ordered state pattern, as shown inFigs. 11–13.

The intermediate “patterns” between two stable ordered state patterns are usually irregular as a result of the sponta-
neous multi-mode excitation. However, in some special cases, when the fractional amplitudes of two Fourier–Bessel
modes are comparable to each other, these two modes will contribute together to dominate the pattern morphology.
For example,Fig. 14(a) and (b) show two “mixed patterns” of such situation. Fourier–Bessel decomposition of
these two “mixed patterns” are illustrated inFigs. 15 and 16. In the pattern shown inFig. 14(a), the two dominant
Fourier–Bessel modes are [3, 0] and [1, 6], with the fractional amplitudesA3,0 = 0.379 andA1,6 = 0.293, re-
spectively. Similarly, for the pattern shown inFig. 14(b), the two leading fractional amplitudes areA3,0 = 0.337
andA1,6 = 0.298, respectively. Since these two fractional amplitudes are of the same order, the corresponding

Fig. 12. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 10(b).
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Fig. 13. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 10(c).

Fig. 14. Mesh and contour plots of the mixed patterns atR = 7.0: (a)t = 520; (b)t = 970; (c) a reconstructed pattern corresponds to the mixed
pattern (b).
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pattern morphology is mainly due to the contribution of these two competing Fourier–Bessel modes. This feature
can be obviously seen inFig. 14(a) and (b), especially in the contour plots. InFig. 14(c), we depict a reconstructed
pattern. It is obtained by the linear combination (c1Φ3,0 + c2Φ1,6, wherec1 = 0.337 andc2 = 0.298) of the two
pure Fourier–Bessel modes [3, 0] and [1, 6]. Obviously, the reconstructed pattern,Fig. 14(c), resemblesFig. 14(b).
Similar “mixed” cellular patterns have also been observed in the experiment of combustion flames[21]. It is found
that the Fourier–Bessel decomposition provides a good explanation for the formation of such patterns.

Interestingly, the spatial distribution of the pattern shown inFig. 14(a) is approximately a “mirror image” of
the pattern shown inFig. 14(b), i.e., the distribution of order parameter fields of these two patterns are symmetric.
The occurrence of mirror images is due to the conservation of the order parameter, i.e.,Eq. (8). Because of such a
constraint, the phase separation can only occur as the order parameter polarization with respect to the(r, θ) plane.
Thus, if Ψ is an ordered state of the system,−Ψ should also be a possible ordered state of the system which has
the symmetric distribution of the order parameter field as that ofΨ . In fact, these two patterns can be observed at
the same control parameterR. Statistically, they should have equal probability to appear if the time integration is
sufficiently long. Apart from these symmetric pairs of “mixed patterns”, the ordered state patterns shown inFigs. 3
and 10(c) are another example of approximate mirror patterns. They both are observed at control parameterR = 7.0.

Our computations are limited to the “small system” regime, i.e., the control parameterR ≤ 13. So far, four
complete classes (l = 1–4) of ordered state patterns have been observed. Both the confined circular geometry and
the boundary condition are crucial factors in controlling the pattern morphology in the present case. Obviously, as
the control parameterR continues to increase, other series of ordered state patterns (l ≥ 5) can also be expected to

Fig. 15. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 14(a).
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Fig. 16. Fourier–Bessel decomposition of the ordered state pattern shown inFig. 14(b).

appear. When the system enters the “large system” regime, it is believed that there are more Fourier–Bessel modes
that can be simultaneously excited at given control parameter. From the statistical point of view, the density of states
(number of modes per unit radius) increases as the control parameterR increases on the circular domain for a given
energy. As a consequence, the total pattern energy in this case distributes over a large number of modes rather than
a few principal ones. This multi-mode excitation and competition usually destroy the spatially coherent structures
and result in spatiotemporal chaos. In other words, the effect of geometry and boundary control will become less
important for pattern formation and competition in such circumstance.

5. Conclusion

This paper investigates the effective control of the formation of the ordered state patterns in a confined circular
domain. The Cahn–Hilliard equation with a zero-flux boundary condition is used as a theoretical model to simulate
the phase separation and pattern formation in binary systems. High-precision numerical solutions are obtained by
using a wavelet-based DSC algorithm. Theoretical analysis is carried out via the Fourier–Bessel decomposition.
Four complete classes of cellular ordered state patterns have been obtained through extensive numerical simulations.
For the present “small system” regime (R ≤ 13), the size of the characteristic microphase domain is comparable
with the size of the confined domain. Therefore, the pattern morphology is effectively controlled by the domain size,
as well as the boundary condition. Usually a finite number of spatial modes can be excited when the domain size is
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small. In such a case, the Fourier–Bessel analysis provides a good characterization of the ordered state patterns. In
addition, the control mechanism of modal selection and modal competition has been revealed. The results of present
numerical simulations and theoretical analysis not only provide understandings of self-assembly of supermolecules
via phase separation conducted over spheres or cylinders, but also might shed light on the practical (experimental)
design of supra- and supermolecules through phase separation in a confined circular domain.
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