
Characterizing generalized synchronization in complex networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 New J. Phys. 12 073045

(http://iopscience.iop.org/1367-2630/12/7/073045)

Download details:

IP Address: 137.132.250.13

The article was downloaded on 03/08/2010 at 07:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/12/7
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Characterizing generalized synchronization
in complex networks

Shuguang Guan1,2,3, Xiaofeng Gong2,3, Kun Li2,3, Zonghua Liu1

and C-H Lai3,4

1 Institute of Theoretical Physics and Department of Physics, East China
Normal University, Shanghai 200062, People’s Republic of China
2 Temasek Laboratories, National University of Singapore, Singapore 117411,
Singapore
3 Beijing–Hong Kong–Singapore Joint Center of Nonlinear and Complex
Systems (Singapore), Singapore 117508, Singapore
4 Department of Physics, National University of Singapore, Singapore 117543,
Singapore

New Journal of Physics 12 (2010) 073045 (16pp)
Received 16 February 2010
Published 30 July 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/7/073045

Abstract. Recently, it was shown that generalized synchronization (GS) can
generally occur in systems of networked oscillators. In this paper, we further
characterize the states of GS by both theoretical analysis and numerical
experiments. We show that the entrainment of local dynamics in a network can
be characterized by the conditional Lyapunov exponent of the local oscillator.
Meanwhile, different types of states of GS can be identified by analyzing the
Lyapunov exponent spectra of the coupled system. Most importantly, we further
provide direct evidence demonstrating that node dynamics in a network in a
chaotic GS state can indeed achieve functional relations, although they may not
directly connect to each other in typical complex networks.
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1. Introduction

Frequently we encounter two dynamical systems with different natures coupled and interacting
with each other. Since the coupled dynamics are different, generally there will be no manifold
of complete synchronization (CS) except for some very special cases [1]. Usually, the
collective coherence in such coupled non-identical dynamical systems could occur in the form
of generalized synchronization (GS) or other forms [2]–[4]. Specifically, GS refers to the
phenomenon where there exists a certain functional relation between the dynamics of two
coupled systems that are usually non-identical [5]–[8]. Initially, the GS concept was defined
in two unidirectionally coupled dynamical systems, i.e. the drive-response configuration.
Later, this concept was extended to mutually coupled dynamical systems [9]. In addition,
the phenomenon of GS was also observed and investigated in spatially extended systems.
For example, it was experimentally demonstrated that the GS relation exists in coupled
laser systems [10] and in liquid crystal spatial light modulators [11]. Very recently, the GS
phenomenon has been observed in microwave electronic systems in experiments [12]. So far, GS
has been extensively studied in the domain of chaotic synchronization [1], [5]–[15], [17]–[33].

It has been shown that the functional relation between two different dynamical systems in
GS is so complicated that it is generally difficult to identify it analytically [13]–[16]. However,
the signature of GS can still be characterized by various approaches. For example, typically
the occurrence of GS can be characterized by the largest conditional Lyapunov exponent of the
driven system [34, 35]. In [6], the auxiliary system approach was proposed, which has been
successfully used to detect the GS relation in two coupled dynamical systems, both numerically
and experimentally. Remarkably, if the underlying functional relation satisfies certain
conditions [8], the existence of GS between two dynamics can even be identified by certain
direct methods, such as nearest neighbors [5] and other methods along this line [17]–[19].

Recently, the GS phenomenon has been studied in the field of complex networks. In [36],
GS was reported in a special scale-free network with tree-like structure. In [37], it was
shown that oscillators in networks can be entrained by the local field of dynamics from their
network neighbors, and GS can generally take place in coupled oscillator systems in typical
complex networks, such as small-world, scale-free, random networks, as well as clustered
networks. Furthermore, it was revealed that the development of GS in networks is the result
of the interaction between the local dynamics and the network topology if the oscillators are
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different. The subtle point here is that, according to the auxiliary system approach criterion, the
entrainment of an oscillator in a network only implies that there is a GS relation between the
dynamics of the oscillator and the local driving field. In typical complex networks, usually most
of the node pairs are not connected, especially in sparse networks. In such situations, can the
dynamics of two oscillators, which may not directly connect to each other in a network, really
achieve GS in the strict sense, i.e. achieve the functional relation? Motivated by this important
and interesting question, in this work, we carried out both theoretical analysis and numerical
simulations to characterize GS states in systems of networked oscillators. Specifically, by
applying Lyapunov exponent spectra analysis, we have shown that both the entrainment of
local dynamics and the global bifurcations of the GS states can be characterized. It is found
that there exist two types of GS states for networked chaotic oscillators, namely the simple GS
(SGS) state and the chaotic GS (CGS) state. In particular, by applying the mutual false nearest-
neighbor method [5], we are able to provide direct evidence demonstrating that node dynamics
in a network in the CGS state can indeed achieve functional relations, no matter whether they
are directly connected or not.

This paper is organized as follows. In section 2, we briefly describe the dynamical models.
In section 3, we characterize the entrainment of local oscillators by the conditional Lyapunov
exponent. In sections 4 and 5, we analyze and characterize two distinct GS states, namely the
SGS and the CGS. In section 6, based on the mutual nearest-neighbor method, we further
carry out an analysis to directly characterize the relations among the dynamics of networked
oscillators. Finally, a summary is given.

2. Dynamical model

The dynamical models in this study are the same as in [37]. For self-consistency, we here briefly
describe them in the following.

In this work, we investigate a large number of chaotic oscillators that are linearly coupled
in a network as

ẋi = Fi(xi) − ε
∑

j

ai j H(xi − x j), (1)

or

ẋi = Fi(xi) −
ε

ki

∑
j

ai j H(xi − x j), (2)

for i = 1, . . . , N , where xi denotes the dynamical variables of node i , Fi(xi) is the local vector
field governing the evolution of xi in the absence of interactions with other nodes, ai j is the
element of the network adjacency matrix A (ai j = 1 if there is a link between node i and node
j , ai j = 0 otherwise, and ai i = 0), H is the output matrix, ε is the coupling strength and ki is the
degree of node i , i.e. the number of neighbors connected to node i in the network. We emphasize
that generally the local dynamics described by Fi(xi) could be different.

To characterize the occurrence of GS in networks, the auxiliary system approach can still
be used [6]. The key point is to construct a replica for each oscillator in the original network,

ẋ′

i = Fi(x′

i) − ε
∑

j

ai j H(x′

i − x j), (3)
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for i = 1, . . . , N . Note that the driving variable x j is identical for both equations (1)
and (3). If, for initial conditions xi(0) 6= x′

i(0), we have |xi(t) − x′

i(t)| → 0 as t → ∞,
node i is then entrained in the sense that its dynamics are no longer sensitive to initial
conditions. If all nodes are entrained, we say that the networked oscillator system achieves the
GS state.

For the local node dynamics, we typically choose the chaotic Lorenz oscillator,

Fi(xi) = [10(yi − xi), ri xi − yi − xi zi , xi yi − (8/3)zi ]
T, (4)

where xi ≡ (xi , yi , zi) are the state variables of the Lorenz oscillator. Parameters ri can be
chosen to uniformly distribute in a certain interval, modeling different oscillators in the network.
In this work, the coupling between two nodes in equation (1) is through the x variable, i.e.
the output matrix is H = [1, 0, 0; 0, 0, 0; 0, 0, 0]. Besides the Lorenz oscillator, other node
dynamics, such as the logistic map and the Rossler oscillator, have also been used in our study.

For the network topology, we choose the Barabási–Albert (BA) model that has been
extensively used to represent the scale-free networks [38]. In such a model, the network grows
from the initial m0 nodes. Then, at each time step, m new nodes are added to the network. A
new node randomly picks an existing node to connect to, but with some bias. More specifically,
a node’s probability of being selected is directly proportional to its degree. This is the rule
that is called preferential attachment. In this way, a scale-free network with degree distribution
satisfying power law can be generated.

3. The conditional Lyapunov exponents

By applying the auxiliary system approach, the occurrence and development of GS in networks
can be revealed. For each node dynamics xi in the network, an imaginary auxiliary oscillator
x′

i can be constructed, as shown in equation (3). An important observation is that node xi and
its auxiliary counterpart have exactly the same ‘driving’ forces, i.e. they are in the same local
‘mean field’. If this local mean field is large enough, the dynamics on node i can be entrained
in the sense that its dynamics are no longer sensitive to the initial conditions. Theoretically,
the entrainment of local node dynamics can be characterized by the local largest conditional
Lyapunov exponent λc [34, 35]. Let us first recall the concept of the Lyapunov exponent and
its calculation. As we know, the most important dynamical property of chaotic system is its
sensitivity to initial conditions, i.e. from any two nearby starting points, the trajectories will
separate exponentially in phase space. This property of chaotic dynamics can be characterized
by the Lyapunov exponent, which can be understood as the averaged expanding rates of an
infinitesimal tangent vector along a chaotic trajectory in phase space. Specifically, suppose we
have chaotic dynamics described by ẋ = F(x). Given a trajectory {xn}

N−1
n=0 in phase space by time

discretization, the following matrix product determines this exponent,

Q ≡

N−1∏
n=0

DF(xn), (5)

where DF(xn) = ∂F/∂x|xn is the Jacobian matrix of the chaotic system evaluated at the
trajectory point (xn). The largest Lyapunov exponent is given by

λ1 = lim
N→∞

1

N
ln |Qu|, (6)
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Figure 1. Color maps of d(ε, id) (a) and the largest conditional Lyapunov
exponents λc(ε, id) (b) in the two-dimensional (2D) parameter space (ε, id),
characterizing the development of GS for 100 identical chaotic Lorenz oscillators
on a scale-free network described by equation (1). ri = 28 for all Lorenz
oscillators. id is the node index ranked according to the descending degree of
nodes throughout this paper. The network is the BA model with m0 = m = 3.

where u is a randomly chosen unit vector at the initial point x0 in the system. Wolf et al [39]
provided a method that is frequently used to compute Lyapunov exponents. In the drive-response
configuration of two coupled chaotic systems, we can treat the response system as a separate
dynamical system and calculate its Lyapunov exponents as usual for that system alone regardless
of the driving signals. These exponents will, of course, depend on the drivings, and for this
reason they are called the conditional Lyapunov exponents. Similarly, the conditional Lyapunov
exponents can be computed for nodes on a network. Given node i and coupling strength ε,
we treat the local dynamics of node i as an independent system driven by the local mean field
from its network neighbors and then calculate the conditional Lyapunov exponents accordingly.
In figures 1 and 2, we provide two examples where the color maps of λc(ε, id) matrices are
plotted to illustrate how the development of GS in a network can be characterized by the largest
conditional Lyapunov exponents of node dynamics. For comparison, we also characterize the
occurrence of GS by directly measuring the ‘distance’ between a node i and its auxiliary
oscillator, i.e.

d(ε, i) =
1

t2 − t1

∫ t2

t1

|xi(t) − x′

i(t)| dt, (7)

where [t1, t2] is a time interval, and t1 should be chosen to be larger than the typical transient
time of the local dynamics. This definition is suitable for continuous chaotic flow, such as the
Lorenz system and the Rossler system. For maps like the Logistic map, the integral can be
replaced by summation. From figures 1 and 2, we can see that the results of these two methods
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Figure 2. The same as figure 1 except that the dynamical model is equation (2).

are totally consistent. This implies that, for mutually coupled oscillators on networks, the largest
conditional Lyapunov exponent is still a useful concept to characterize the local dynamical
behavior.

4. The simple generalized synchronization (GS) states

In the above section, we have shown that the entrainment of local oscillators in a network
can be characterized by the largest conditional Lyapunov exponents. If they are negative for
all network nodes, we say that the networked oscillator system has achieved the GS state.
Interestingly, by carefully examining the GS states at different coupling strengths, we reveal that
the GS states can be different in terms of the final state of node dynamics. In this section, we
extend the concept of GS to characterize one typical entrainment state for networked identical
oscillators, namely the SGS state. By SGS we mean that all oscillators in the network are in
trivial asymptotic states, either fixed points or limit cycles. However, the important point here is
that all the trivial local attractors are different in phase space. For networked identical oscillators
and linear diffusive coupling, as described by equation (1), it is easy to verify that there exists
the CS manifold, i.e. all node dynamics coincide with each other, either on a trivial attractor
or on a chaotic attractor. However, for the networked identical oscillator system (1), our work
reveals that the system may go to such an asymptotic state that the dynamics of any two nodes
i and j have the trivial functional relation xi = x j + di j , where xi and x j could be fixed points
or limited cycles, and di j 6= 0.

The existence of the SGS state can be understood by the following heuristical analysis.
Consider networked identical oscillators described by equation (1). Suppose that, in the
asymptotic state, the local dynamics settle down on fixed points, and these fixed points have
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Figure 3. The largest Lyapunov exponent λ1 versus the coupling strength ε,
characterizing the bifurcations from the spatiotemporal chaos to the SGS state,
and finally to the CS state for networked identical oscillators with the increase
in coupling strength. The dynamical model is the same as described in figure 1.
m0 = m = 3 for (a) and m0 = m = 6 for (b).

the relation xi = x j + di j . Then equation (1) becomes

0 = F(xi) − ε
∑

j

ai j H(xi − x j), (8)

i.e. ∑
j

ai j Hdi j = Ci , (9)

where Ci = F(xi)/ε is a constant (vector) for each i . Equation (9) is a linear algebraic equation
with respect to the unknowns di j for oscillator i . Therefore, for all N oscillators, we can have
a set of linear algebraic equations where the number of unknowns di j equals

∑
ki/2 and the

number of equations is N . For typical complex networks, the total degree is much larger than
the node number. Therefore, equation (9) could generally have non-zero solutions, i.e. di j 6= 0.

Our numerical simulations have verified the above analysis. In the previous section, GS is
characterized by the largest conditional Lyapunov exponents of oscillators or distances between
oscillators and their auxiliary systems. For networked identical oscillators, these methods cannot
distinguish GS and CS because CS can also be regarded as a special kind of GS with identical
functional relation. In fact, for a system of networked chaotic oscillators, initially it is in the
spatiotemporal chaos regime if the coupling strength is small. With the increase in coupling
strength, they may bifurcate into the GS regime. Given that the network connectivity is not
too sparse, finally the networked system will enter into the CS regime if the coupling strength
is large enough. These global bifurcations of networked dynamics can be characterized by
computing the largest Lyapunov exponent for the networked system.

In figures 3 and 4, we provide examples to support our arguments. In figure 3, the
bifurcations with the increase in coupling strength for a system of networked identical oscillators
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Figure 4. Two SGS states corresponding to figure 3(a) at ε = 2 (a and b) and
ε = 5.25 (c and d). The left panels are the snapshots of the system at t = 1000.
The circles and stars denote the oscillators in equation (1) and their auxiliary
counterpart, respectively. They coincide with each other. The right panels are the
evolution of the variable x at nodes 1, 34 and 100.

have been characterized by the largest Lyapunov exponent of the system. Typically, with the
increase in coupling strength, the system will experience the spatiotemporal chaos, the SGS and
the CS regimes, respectively. The spatiotemporal chaos regime is characterized by the positive
largest Lyapunov exponent. Then, in the SGS regime, the oscillators are all entrained to become
trivial attractors, and the largest Lyapunov exponent of the system is less than or equal to zero.
Finally, when the coupling strength is further increased, the largest Lyapunov exponent of the
system becomes positive again, showing that the coupled system has settled down on the chaotic
CS manifold. Comparing figure 3(b) with 3(a), it was found that, if the network connectivity
is increased, normally the SGS regime will shrink. For fully connected networks, we cannot
observe the SGS state.

In figure 4, we show two typical SGS states in phase space for 100 identical chaotic Lorenz
oscillators in a scale-free network. Figures 4(a) and (b) plot the SGS states where the asymptotic
states for all nodes in the network are fixed points. In this state, the largest Lyapunov exponent
of the system is negative. Figures 4(c) and (d) plot the SGS states where the asymptotic states
for all nodes in the network are limited cycles. In such a state, the largest Lyapunov exponent
of the system is equal to zero. Here, we emphasize that the most important point for the SGS
state is that all the trivial local attractors are not identical. Mathematically, they have simple
functional relations that can be regarded as the trivial case of normal GS relation.

It should be noted that the SGS state studied above has both relations with and differences
from the phenomenon of amplitude (or oscillation) death in coupled dynamical systems [40].
The latter refers to the fact that the oscillation in coupled dynamical systems, either limit cycles
or chaotic oscillators, can be quenched so that the system settles down on fixed points in a certain
parameter regime. Usually, strong coupling, large parameter mismatch, time-delay coupling or
dynamic coupling can lead to this behavior. Physically, this is because the interaction among
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oscillators can induce new trivial fixed points or just stabilize the unstable fixed points already
existing in the uncoupled system. In the present work, the concept of SGS has a certain overlap
with amplitude death, but is broader, because the SGS is defined as the trivial asymptotic states
in a networked chaotic oscillator system, including both fixed points and limit cycles. In fact,
it is found that these two states usually occur alternately in a certain parameter regime. As
we mentioned above, although CS manifold exists for the networked system with identical
oscillators, the system finally goes to a trivial state in which all nodes are different from
each other. This suggests that this state, although trivial, is induced by the interaction among
oscillators in the network. Thus it is reasonable to think that there are certain relations among
the trivial node dynamics in this state. For this reason, we extend the concept of GS to this trivial
state. We emphasize that the SGS between two fixed points is merely a pro forma extension of
the GS concept. In the strict sense, GS should refer to the functional relation between two
oscillatory dynamics.

5. The chaotic GS states

For networked identical oscillators, we have observed transitions from non-synchronization
to the SGS state and then to the global CS. One natural question is: how about the system
of networked non-identical oscillators? Actually, GS is inherently defined in such coupled
nonidentical systems, whether they are high-dimensional or low-dimensional. In our study,
as expected, we have also observed both the SGS and the CGS states for coupled non-
identical oscillators in networks. In the following, we provide two examples to illustrate them.
Figures 5–7 characterize the GS state occurring in a system of 100 non-identical Lorenz
oscillators in a scale-free network. The system is described by equation (1). To make the
oscillators different, we specially choose parameter ri from the uniform distribution in the
interval [28, 38]. In this parameter regime, the individual Lorenz oscillator has the chaotic
attractor. We first characterize the occurrence of GS in this system by computing the largest
conditional Lyapunov exponents on the parameter plane (ε, id). The results are shown in
figure 5(a). It is found that approximately when ε > 0.5, GS can be achieved in this system.
In figures 5(b) and (c), we further characterize the GS states by the Lyapunov exponent spectra
of the coupled system. From figure 5(b), it is found that the largest Lyapunov exponent of
the system can exhibit different behavior within the GS regime, showing that different GS
states exist. By carefully examining the evolution of local dynamics, we have confirmed that
both the SGS and the CGS states exist in such a system. As shown in figure 5(b), the SGS
state is characterized by the non-positive largest Lyapunov exponent, and the CGS state is
characterized by the positive largest Lyapunov exponent. We have also computed the Lyapunov
exponent spectra, as shown in figure 5(c). It is seen that in the spatiotemporal chaos regime,
the largest Lyapunov exponent is positive, while in the SGS regime it is equal to or less
than zero. Interestingly, in the CGS regime, only the largest Lyapunov exponent is positive;
the second largest Lyapunov exponent is equal to zero, and all other Lyapunov exponents are
negative. This suggests that, although the original networked system is high-dimensional, in the
CGS state it behaves just like a 3D chaotic attractor although all oscillators are parametrically
different!

We have carried out detailed computation of the largest Lyapunov exponent in the SGS
state. The results show that this regime alternately consists of many small intervals of negative
largest Lyapunov exponent and many small intervals of zero largest Lyapunov exponent, as

New Journal of Physics 12 (2010) 073045 (http://www.njp.org/)

http://www.njp.org/


10

i d

 

 

0 1 2 3 4 5 6

20
40
60
80

100

−1

0

1

0 1 2 3 4 5 6
−1

0

1

2

λ 1

0 1 2 3 4 5 6
−2

0

2

ε

LE
s

A

B

C

(b)

(c)

(a)

Figure 5. Characterizing the GS bifurcations for 100 non-identical chaotic
Lorenz oscillators on a scale-free network. The dynamical equation is (1), and
ri ∈ [28, 38]. The network is the BA model with m0 = m = 6. (a) Color map
of the largest conditional Lyapunov exponents λc(ε, id) in the two-dimensional
parameter space (ε, id). (b, c) The largest Lyapunov exponent (b), and spectra of
the largest ten Lyapunov exponents (c) versus the coupling strength ε.

shown by points A and B in figure 5(b). Similar to the case of coupled identical oscillators,
in the SGS state with negative largest Lyapunov exponent, the local dynamics of the coupled
system settle on different fixed points, whereas in the SGS state with zero largest Lyapunov
exponent, the local dynamics go to different limit cycles. In figures 6 and 7, we provide two
such examples to directly illustrate the SGS and CGS states. Figure 6 corresponds to point B
shown in figure 5(b), where the largest Lyapunov exponent is zero and the asymptotic attractors
of the local dynamics are limit cycles. Figure 7 corresponds to point C shown in figure 5(b),
where the largest Lyapunov exponent is positive and all node dynamics go to different chaotic
attractors.

In our study, we have also observed the CGS state in coupled identical dynamical systems
in networks. Here we show one typical example. The networked system is described by
equation (2), and the local dynamics are chosen as the chaotic logistic maps, i.e. f (x) =

4x(1 − x) for all nodes. In figure 8(a), we plot the color map of the distance matrix d(ε, id)

on the parameter plane (ε, id). Due to the normalized coupling in equation (2), all nodes in
the network are entrained almost simultaneously despite the heterogeneous structure of the
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and 100 in the (x, z) plane. The middle row: the variable z versus the variable
z′ of the auxiliary oscillator, showing the local entrainment of oscillators. The
bottom row: SGS relation among nodes 1, 34 and 100.

scale-free topology. Since the local dynamics in the coupled system are identical, generally
both GS and CS could occur. To distinguish them, in figures 8(b) and (c), we plot, respectively,
the distance of global GS as lg(ε) = 〈d(ε, i)〉, where 〈·〉 denotes the spatial average over all
nodes, and the distance of global CS, lc(ε), which is basically the asymptotic time average of
the instantaneous standard deviations of the dynamical variables, i.e.

lc(ε) =
1

t2 − t1

t2∑
t1

〈|xi(t) − 〈xi(t)〉|〉. (10)

Here, the meaning of t1 and t2 is the same as that in equation (7), which are chosen after
discarding a number of transients. Apparently, if lc = 0, global CS has been achieved in the
whole network. It is shown that, for this networked system, it has a GS regime before it finally
goes to the CS state. To our surprise, unlike the networked identical oscillators we studied
in section 3, this GS state can be further characterized as CGS by computing the Lyapunov
exponent spectra of the coupled system. In figure 9, we plot the full Lyapunov exponent spectra
for 300 networked logistic maps. Immediately, we have the following observations. Firstly, the
system has three distinct dynamical regimes, i.e. the spatiotemporal chaos, the CGS and the CS,
which can be characterized by the largest Lyapunov exponent of the system. In particular, the
GS state in this example has the positive largest Lyapunov exponent, showing that this state
is physically different from the SGS states studied in coupled identical dynamical systems
in previous sections. Secondly, we have found that the second largest Lyapunov exponent
plays a unique role in characterizing the bifurcations of the system. As shown in figure 9, the
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Figure 7. Characterizing the local dynamics in the CGS state corresponding to
point C in figure 5(b), ε = 5. The figure caption is the same as in figure 6.

bifurcation from the spatiotemporal chaos state to the GS state is manifested by the separation
of the largest Lyapunov exponent and the second largest Lyapunov exponent of the system.
Thirdly, at the very initial stage, all the Lyapunov exponents are positive, showing that the
system is in spatiotemporal chaos with very high dimension. With the increase in coupling
strength, the oscillators in the network have been gradually entrained and the system enters
the CGS stage. At the beginning of the CGS stage, the system still has a large number of
positive Lyapunov exponents, showing that the dynamics of the networked system are in a
certain high-dimensional phase space. In this sense, there is no distinct difference between the
spatiotemporal chaos regime and the CGS regime. At the CGS stage, with further increase in
coupling strength, the number of positive Lyapunov exponents gradually decreases until all the
Lyapunov exponents except the largest one become negative, when the system finally goes to the
CS state. Interestingly, during this stage, the largest Lyapunov exponent of the networked system
keeps increasing until it reaches a plateau when the system goes to the CS regime. Therefore, the
Lyapunov exponent spectra in the CGS regime present a vivid scenario of the transition of high-
dimensional dynamical systems: the dimension of the coupled system continuously collapses
while simultaneously the system’s dynamics become more and more chaotic!

6. Identifying functional relations among node dynamics

In previous sections, we have shown that coupled oscillators in networks can be entrained to
form the GS state. So far, the GS state only means the entrainment of local node dynamics by
its network neighbors, as described in equations (1) and (2). This entrainment of local dynamics
can be characterized by the largest conditional Lyapunov exponent of oscillators. In our study,
we find a subtle conceptual problem when GS in networks is considered. As we know, GS in
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the strict sense requires a functional relation between two dynamics. However, according to the
auxiliary system approach criterion, the entrainment of an oscillator in a network only implies
that there is a GS relation between the dynamics of the oscillator and the local driving field.
Whether there is indeed a functional relation between the dynamics of any pair of nodes in the
network remains unknown. Especially in typical complex networks, usually most of the node
pairs are not directly connected. In such situations, do the dynamics of two oscillators in a
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(b) The matrix of the MFNN parameter for ε = 5 showing the CGS state.

network (they may not be directly connected) really achieve GS in the strict sense or not? This
is a very important and interesting question concerning network synchronization.

In this work, we are able to answer the above question by providing direct evidence that
there indeed exist functional relations among node dynamics when the networked oscillator
system is entrained. For this purpose, we investigate a system of 100 coupled Lorenz oscillators
in a scale-free network. The dynamical equations of such a system are described by equation (1),
where the local dynamics are chosen to be different by setting r in [28, 29] uniformly. In
figure 10(a), the largest Lyapunov exponent of the networked system versus the coupling
strength is plotted. It is shown that the networked system successively experiences different
dynamical regimes as the coupling strength is increased, namely the spatiotemporal chaos
regime, the SGS regime and the CGS regime. Here, we want to demonstrate that, in the CGS
regime where all the oscillators are entrained, GS in the strict sense occurs between any two
pairs of node dynamics in the network.

In order to show this relation directly, we apply the mutual false nearest neighbor (MFNN)
method proposed in [5]. The MFNN parameter P is defined as

P(i, j) =

〈
|x j

n − x j
n(N N I )|

|xi
n − xi

n(N N I )|

|xi
n − xi

n(N N J )|

|x j
n − x j

n(N N J )|

〉
. (11)

Here, n is the time index. xi
n is an arbitrary point in the phase space of oscillator i and x j

n
is its corresponding counterpart for oscillator j . The nearest phase space neighbor of xi

n has
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time index n(N N I ) and the nearest phase space neighbor of x j
n has time index n(N N J ). The

〈·〉 denotes the average of the reference point on the attractor. This parameter will be of the
order of unity if a certain functional relation exists between oscillators i and j . Otherwise, it
is approximately the square of the size of the local chaotic attractor, which is much larger than
unity for the Lorenz oscillator. In figures 10(b) and (c), we plot the color maps of the MFNN
parameter P(i, j) for two typical spatiotemporal chaos states and the CGS state, respectively.

In figure 10(b), the coupling strength is small (ε = 0.2). At this stage, none of the oscillators
is entrained, as shown in figure 10(a). From the color map of the MFNN parameter P(i, j), we
can see that all the elements are of the order of 102–104 (269–23 912). Apparently, there is no
functional relation among node dynamics at this phase. In figure 10(c), the coupling strength is
large enough to entrain all the oscillators in the network. Remarkably, in this case, all elements
in the matrix P(i, j) are of the order of 1, showing that certain functional relations have been
achieved among the dynamics of nodes in the network. Combining the results in figure 10, we
can conclude that, for networked non-identical oscillators in the CGS state, i.e. when all the
oscillators have been entrained, the node dynamics can indeed achieve GS in the strict sense,
although they may not be directly connected to each other in the network.

7. Summary

In this work, we carry out both theoretical analysis and numerical experiments to characterize
the GS occurring on a scale-free network. It is shown that the entrainment of oscillators in
networks can be characterized by the conditional Lyapunov exponent of the local dynamics. By
analyzing the Lyapunov exponent spectra, we are able to characterize the global bifurcations
of the networked system. We reveal that there are two different types of GS states existing
in the GS regime, i.e. the SGS and the CGS. In the former state, the system has non-positive
largest Lyapunov exponent, and the oscillators in the network go to different trivial attractors,
such as fixed points or limited cycles. In the latter, the system has the positive largest Lyapunov
exponent, and the oscillators in the network go to chaotic attractors. Furthermore, we provide
direct evidence to show that node dynamics in a network in the CGS state can indeed achieve
functional relations although they may not be connected directly on typical complex networks.
Our work will be helpful to understand the collective behavior and coherence in networked
dynamical systems.
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