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Abstract

Usually, phase synchronization is studied in chaotic systems driven by either periodic force or chaotic force. In the present work, we consider
frequency locking in chaotic Rössler oscillator by a special driving force from a dynamical system with a strange nonchaotic attractor. In this case,
a transition from generalized marginal synchronization to frequency locking is observed. We investigate the bifurcation of the dynamical system
and explain why generalized marginal synchronization can occur in this model.
© 2006 Elsevier B.V. All rights reserved.

PACS: 05.45.Xt; 47.52.+j
1. Introduction

Recently phase synchronization (PS) in chaotic systems has
attracted much research attention [1–12]. This interesting syn-
chronization phenomenon was first reported by Rosenblum
et al. in 1996 [3,4]. They found that for certain autonomous
chaotic flow systems, a suitable phase variable can be defined.
Interestingly, it is shown that the phases between two chaotic
oscillators can be locked while their amplitudes remain chaotic
and uncorrelated. Frequently, PS also refers to the weaker con-
dition when the mean frequencies between two chaotic oscil-
lators are locked. PS between two coupled slightly different
chaotic oscillators can be characterized in terms of the Lya-
punov exponent (LE) spectra [3]. When PS occurs, the sys-
tem’s null LE becomes negative. Meanwhile, the largest LE
of the system remains positive showing that the amplitude is
still chaotic. So far, the investigations on PS in chaotic sys-
tems are mainly carried out in the following directions. Firstly,
the chaotic oscillator entrained by external periodic force is ex-
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plored [4,5]. Secondly, PS between two coupled chaotic oscil-
lators with different natural frequencies have been intensively
studied [3,6–11]. Thirdly, PS in the array of coupled chaotic
oscillators has also attracted much attention [12]. In addition to
the theoretical works, PS has already been demonstrated exper-
imentally in various fields, such as in electrical circuits [13–15],
lasers [16,17], fluids [18], and biological systems [19,20].

In the present work, we investigate the frequency locking in
chaotic Rössler oscillator under a special external driving force.
For the existing works along this line [4,5], usually the driving
force is either periodic or chaotic. Unlike these studies, the
driving force considered in this work is from a dynamical sys-
tem which exhibits a strange nonchaotic attractor (SNA). SNA
is a kind of special attractor that is geometrically complicated,
but dynamically not chaotic, i.e., the trajectories on it do not
show sensitive dependence on initial conditions asymptotically
[21]. Therefore, the properties of the dynamics on the SNA are
essentially different from that of periodic or chaotic systems.
Typically, dynamical system with SNA is driven by quasiperi-
odical forces, i.e., forces with two incommensurate frequencies.
Since signals from the SNA system have two characteristic time
scales (see Fig. 1(a) and (b)), is it possible for a phase-coherent
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chaotic system to be frequency-locked to such signals? If so,
are there any distinguishing features compared with existing
PS in chaotic systems? Motivated by these questions, in this
work we study frequency locking in chaotic Rössler system
driven by signals from a system with SNA. Interestingly, we
observe a transition from generalized marginal synchroniza-
tion (GMS) [22] to frequency locking with the increase of the
coupling strength. Specifically, when the coupling strength is
relatively small, the frequency of the driven Rössler oscillator
is changed by the driving force, but not locked to it. We observe
parameter regimes where the largest conditional Lyapunov ex-
ponent (LCLE) in the driven Rössler system is null, indicating
that GMS occurs between the coupled systems at this stage. In
GMS regime, numerically it is found that two Rössler oscilla-
tors under the same driving force exhibit lag synchronization
in practical sense. When the coupling strength exceeds certain
critical value, it is found that the frequency of the Rössler oscil-
lator becomes locked to one of the driving frequencies. To our
knowledge, such a transition from marginal synchronization to
frequency locking in chaotic system has not been reported so
far. We characterize the bifurcation by the Lyapunov exponent
and analyze why GMS can occur in the present model.

This Letter is organized as follows. In Section 2, we briefly
introduce the dynamical model. In Section 3, the results of
GMS and frequency locking in the Rössler system driven by
SNA signals are presented in detail. An analysis to the results
can also be found in this section. This Letter ends with the con-
cluding remarks.

2. The dynamical model

In the present work, we aim to study the possible frequency
locking between a phase-coherent chaotic oscillator and the
SNA system. Usually, SNA appears in dissipative dynami-
cal system driven by several incommensurate frequencies, i.e.,
in quasiperiodically driven systems. The SNA model used in
this work describes the dynamics of quasiperiodically forced
damped pendulum [21]. The dynamical equations read

φ̇ = v,

v̇ = P

{
K + V

[
cos

(
ω1

ω2
w

)
+ cos(w)

]
+ cos(φ) − v

}
,

(1)ẇ = ω2.

Here, ω1 and ω2 are the two incommensurate frequencies of
the driving forces. P , K , and V are parameters. Throughout
this Letter, the parameters are chosen as: ω1 = (

√
5 − 1)/2

(the inverse golden mean), ω2 = 1, P = 0.9715, K = 0.8, and
V = 0.55. With such parameter values, system (1) exhibits SNA
as shown in Fig. 1(c). To visualize the SNA in system (1),
usually it is convenient to use the Poincaré surface of section
technique. Specifically, we sample the system at time inter-
vals corresponding to the variable wn = ω2tn = 2πn, where
n = 0,1, . . . (the stroboscopic surface of section). We then ex-
amine the dynamical variables φn (mod 2π ) and vn. Fig. 1(c)
shows the (φ,v) projection of a trajectory of 10 000 iterations
(after 10 000 preiterations) on the stroboscopic surface of sec-
Fig. 1. (a) A time series of v(t) in Eqs. (1). It is used as the driving force in
the present work. (b) The power spectrum magnitude (PSM) of (a), where two
driving frequencies are visible. (c) The stroboscopic plot of SNA in system (1).

tion. We use system (1) as the drive system. A time series of
the driving signals, i.e., the variable v in Eqs. (1) is shown in
Fig. 1(a).

For the response system, we choose the phase-coherent
Rössler oscillator. The dynamical equations with the driving are

ẋ = −Ωy − z,

ẏ = Ωx + ay − ε(y − v),

(2)ż = b + z(x − c),

where a = b = 0.2 and c = 5.7 are parameters; ε is the cou-
pling strength. Ω characterizes the natural time scale of the
Rössler oscillator. We set Ω = 1.01 and numerically found that
the natural frequency of the Rössler oscillator (without driving)
is about 1.08.
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Fig. 2. SNA system (1) drives the Rössler system (2) with Ω = 1.01. (a), (c), (e) and (g): the stroboscopic plots (black dots) and attractors (gray curves) for the
response system at ε = 0, 0.1, 0.25, and 1.0, respectively. (b), (d), (f) and (h): the PSM of response system corresponding to (a), (c), (e) and (g), respectively.
Ω0 corresponds to the mean frequency of the Rössler system under driving.
3. From GMS to frequency locking

Unlike previous studies, in the present work the Rössler os-
cillator (2) is driven by signals from the SNA system (1). Since
the quasiperiodic driving signals from Eqs. (1) contain two fre-
quencies, i.e., ω1 = (

√
5 − 1)/2 and ω2 = 1, it can be expected

that under certain condition it is possible for the Rössler os-
cillator to be phase-locked with one of them. In the present
model, the natural frequency of the Rössler oscillator (with-
out forcing) is chosen to be about 1.08. With the driving from
system (1), it is found that the frequency of the Rössler oscilla-
tor gradually changes and finally becomes locked to one of the
driving frequency, i.e., ω2 = 1. These results are demonstrated
in Fig. 2, where the stroboscopic plots of the forced Rössler
oscillator as well as the power spectra with different coupling
strengths are shown. For comparison, the attractors of the re-
sponse system have also been shown as background in gray.
With the increase of the coupling strength, successive changes
occur for the Rössler attractor as shown in Fig. 2. In Fig. 2(a),
(c) and (e), the Rössler attractors are phase-coherent. However,
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when the coupling strength is large enough as in Fig. 2(g), it
becomes no longer phase-coherent. Comparing Fig. 2(a) with
Fig. 2(c) and (e), it is seen that for small coupling strength such
as ε = 0.1, the Rössler attractor becomes more phase-coherent
under the driving from system (1). Meanwhile, the mean fre-
quency of the Rössler oscillator under driving (denoted as Ω0
in Fig. 2) has decreased to Ω0 = 1.04, which corresponds to
the basic frequency shown in Fig. 2(d). With further increase
of the coupling strength, the Rössler oscillator becomes much
more coherent as shown in Fig. 2(e). At this stage, the phase
of the Rössler oscillator has already been locked to one of the
driving frequency. This can be directly seen from the strobo-
scopic plot in Fig. 2(e). In Fig. 2(a) and (c), the phases are
spread over the whole attractor, while in Fig. 2(e), the phases
are concentrated in a small domain on the attractor, indicating
phase locking occurs. The phase locking shown in Fig. 2(e) has
been further confirmed in Fig. 2(f), where the basic frequency
of the driven Rössler oscillator is shown to be locked to the
driving frequency, i.e., Ω0 = ω2 = 1 when ε = 0.25. Numer-
ically, it is found that the Rössler attractor under driving can
remain phase-coherent when ε < 0.4. Large driving force will
destroy the coherence of the attractor. An example when ε = 1
is given in Fig. 2(g) and (h). In this case, the phases in stro-
boscopic plot are spread over the attractor and the dominant
frequency in Fig. 2(f) has almost submerged in the background
in Fig. 2(h). Throughout this Letter, we will limit our discussion
within the phase-coherent regime of the driven Rössler oscilla-
tor, i.e., ε < 0.4.

The observation in Fig. 2 suggests that certain bifurcation
occurs with the increase of the coupling strength. In order
to characterize the bifurcation, we calculate the LE spectra
of the response system as well as the frequency difference
�Ω = Ω0 − ω2 between the response system and one of the
driving periodic force. The results are shown in Fig. 3(a). With
the increase of the coupling strength, it is found that the fre-
quency difference �Ω gradually decreases. When the coupling
strength is greater than a critical value εc � 1.9, the frequency
difference becomes zero, indicating that frequency locking be-
tween the Rössler oscillator and one of the periodic force has
been established. Numerically, we test many other Ω values in
Eqs. (2) and found that as long as they are close to ω2 = 1,
with sufficient large coupling strength the Rössler oscillator
will eventually be frequency-locked to the driving frequency
ω2 = 1. In Fig. 3(b), we show the synchronization zone for Ω

when the coupling strength is fixed at 0.25. It should be noted
that within this synchronization zone, the Rössler oscillator is
in the chaotic regime without forcing.

From the LE spectra shown in Fig. 3(a), it can be found that
basically there are two qualitatively different regimes. When
ε > εc , the LCLE becomes negative showing that general-
ized synchronization (GS) between the two systems has been
achieved. In fact, the frequency difference �Ω also vanishes
at this point. Therefore, the critical value εc is a two-fold bi-
furcation point. Both GS and frequency locking between two
systems occur at this point. In other words, in the present model
the frequency locking can only be observed after GS has been
achieved. As we know, GS and PS both occur in coupled dif-
ferent chaotic systems. Usually they take place at different
coupling strength. The relation between these two types of syn-
chronization has been discussed in several works [3,6–8,11].
For coupled system with small parameter mismatch, usually PS
is found to occur before GS. Nevertheless, for coupled system
with large parameter mismatch or for coupled essentially dif-
ferent system, phase locking or frequency locking might occur
after GS, i.e., after the amplitudes of two systems become cor-
related. In this case, usually relatively large coupling strength
is needed to achieve phase locking or frequency locking. From
Fig. 3(a), it is also found that the second LCLE λ2, i.e., the
originally null LE becomes negative at much smaller coupling
strength than the bifurcation point εc. This result is consis-
tent with the previous studies on frequency locking in coupled
different chaotic systems [8,11], where the occurrence of fre-
quency locking usually cannot be characterized by the origi-
nally null Lyapunov exponent. Interestingly, when ε < εc, there
are relatively wide parameter ranges where the LCLE is null.
With the null LCLE, the driving and driven system can achieve
a special relation known as marginal (projective) synchroniza-
tion [22–24]. Therefore, in the present model, with the increase
of the coupling strength, a transition from marginal synchro-
Fig. 3. Characterizing frequency locking in the Rössler system (2) with Ω = 1.01 driven by system (1). (a) The first and the second LCLE (λ1 and λ2) and the
frequency difference between the response system and one driving periodic force, i.e., �Ω = Ω − ω2 vs. the coupling strength ε. (b) �Ω vs. Ω with the coupling
strength ε = 0.25.
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Fig. 4. The evolution of state variables in the drive (D), response (R) and auxiliary (A) systems. (a) ε = 0. (b) ε = 0.01. (c) ε = 0.1. (d) ε = 0.25. In (b) and (c),
lag synchronization occurs between R and A, indicating a GMS relation between R and D. In (d), complete synchronization exists between R and A, indicating a
generalized synchronization relation between R and D.

Fig. 5. Characterizing the lag synchronization. (a) Similarity function S(τ) for different values of coupling strength. For lag synchronization (ε = 0.01,0.1,0.15),
the minima approximately approach zero. (b) xR(t) vs. xA(t + τ) with τ = 0.27 showing lag synchronization between the response and auxiliary systems.
nization (MS) to frequency locking (or GS) has been observed.
To our knowledge, the transition has not been reported so far.

Marginal synchronization actually is an interesting synchro-
nization-like dynamical behavior in coupled systems. Since the
LCLE of the response system is zero rather than negative, the
response system is not a totally passive system under driving.
It is only partially entrained by the drive system. The trajecto-
ries from different initial conditions in the response system do
not converge together, instead they evolve in perfect correlation
with the drive dynamics. When the drive and the response sys-
tems are identical, the attractor of the response system could
be either an amplification of the drive attractor or a shift of the
attractor to a different region in phase space. When the drive
and the response systems are not identical, generalized marginal
synchronization (GMS) can be observed in coupled systems
[22]. In this case, if two response systems, usually known as
the response and the auxiliary system, are forced by the same
driving system, there exists MS relation between them. For-
tunately, the response–auxiliary system method [25], which is
effective to detect GS, can also be used to detect GMS.

In our work, it is found that the observed GMS exhibits dif-
ferent characteristics. Namely, the attractors in the response and
the auxiliary systems do not exhibit invariance under amplifica-
tion or translation in phase space like in the previous works.
However, a careful examination of the evolution of amplitudes
in the response and auxiliary system suggests they actually
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evolve with a time lag, i.e., not only the phases between them
are locked, but also their amplitudes coincide with a time lag.
These results have been shown in Fig. 4. To verify the lag syn-
chronization between the two driven systems, we calculate the
similarity function defined in Ref. [9]. As shown in Fig. 5(a),
within the GMS regime, where the LCLE is zero, it is clearly
shown that the minima of the similarity function approach zero.
This implies that the amplitudes of the two driven systems be-
come approximately the same, but shifted in time with respect
to each other. Therefore, for the GMS observed in this work,
the response system and the auxiliary system exhibit lag syn-
chronization in practical sense.

In order to explain the approximate lag synchronization be-
tween two Rössler oscillators driven by the same signals in the
GMS regime, we can introduce the amplitude and phase vari-
able [9]

(3)φ = arctan(y/x), A =
√

x2 + y2.

Then the amplitude variables of two Rössler system, Eqs. (2),
can be rewritten as

Ȧ1,2 = (a − ε)A sin2 φ1,2 − z1,2 cosφ1,2 + εv sinφ1,2,

(4)ż1,2 = b + z1,2(A1,2 cosφ1,2 − c).

This is a system of two oscillators driven by periodic forces
sinφ1,2 and cosφ1,2, as well as the common driving force v

from system (1). Since the two driven oscillators are the same
and subjected the same driving force, their frequencies are
locked. Without losing generality, we assume φ1 = Ωt and
φ2 = Ωt − �φ where �φ is a constant phase shift. Without
this phase shift, the driving forces are the same and one could
expect complete synchronization between these two identical
oscillators; with the phase shift, an approximate lag synchro-
nization occurs. This can be verified if we introduce the lag
variables for the second system A′

2 = A2(t + τ), z′
2 = z2(t + τ)

where τ = (φ1 −φ2)/Ω and reasonably assume the driving am-
plitude v(t) is a slow variable, i.e., v(t) ≈ v(t + τ) as long as τ

is small. In this way, under transformation t → t − τ , equations
of variables (A′

2, z
′
2) are the same as that of variables (A1, z1).

Therefore, we have A1 ≈ A′
2 and z1 ≈ z′

2 and this implies the
approximate lag synchronization between two oscillators de-
scribed in Eqs. (4). It should be pointed out that strict MS is
related to the symmetries of the system’s dynamical equation.
As shown in Refs. [23], the amplification and the phase space
shift of the driving attractor can be attributed to the invariance of
the dynamical equation under transformation of coordinate am-
plification and translation, respectively. However, in the present
model, the lag synchronization observed between two driven
systems described by Eqs. (4) is in practical sense. Physically,
it originates from the approximate invariance under translation
of time in Eqs. (4).

4. Concluding remarks

In this Letter, we investigate the frequency locking in chaotic
Rössler oscillator driven by a dynamical system with SNA.
With the increase of the coupling strength, a transition from
GMS to frequency locking is observed. Further analysis reveals
that for the GMS found in this model the response system and
the auxiliary system turn out to be synchronized with a time lag.
This lag synchronization is related to the approximate invari-
ance under translation of time in driven dynamical equations.
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