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Currently, synchronizability of networks is mainly studied in terms of the eigen ratio
of the coupling matrix, which is a pure property of network topology. In this work, we
clarify that although the eigen ratio is relevant to the possible range of coupling strength

for achieving synchronization, it cannot fully determine the latter. The magnitude of the
eigenvalues also plays a decisive role. We emphasize that synchronizability of networks
is inherently related to the local dynamics on networks. It is not appropriate to discuss
synchronizability of networks without considering the specific dynamics on them. For
three typical types of local dynamics, we discuss the implication of synchronizability of
networks.
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Synchronization of networks inherently involves two factors: the network topol-

ogy and the local dynamics. The interplay between the network topology and the

dynamics is the central issue in the investigation of synchronization of complex

networks. Recently there have been many important works contributed in this area

which have greatly enhanced our understanding.1–12 In these studies, however, the

synchronizability of a network is represented by a pure quantity of network topology,

i.e. the eigen ratio r = λN/λ2, where λN and λ2 are the largest and first nonvan-

ishing eigenvalues of the coupling Laplacian matrix, respectively. What is the exact

meaning of synchronizability represented by the eigen ratio? Is it appropriate for

us to discuss synchronizability of a network without mentioning any dynamics on

it? These questions have not been clearly addressed in existing publications. In this

paper, we study the synchronizability of a network for three typical types of master

stability functions (MSFs), which are determined by the local dynamics. We clarify

the meaning of synchronizability of a network for each situation. We emphasize

that in strict sense it is impossible for us to discuss synchronizability of a network

without considering the specific dynamics on it.
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Fig. 1. The first type of master stability functions. (a) The local dynamics is the Rossler system:
ẋ = −0.97y − z, ẏ = 0.97x + 0.25y, ż = 0.4 + z(x− 0.85), the coupling is in the equation of x via
variable x. (b) The local dynamics is the Lorenz system: ẋ = 10(y−z), ẏ = 23x−y−xz, ż = xy−z,
the coupling is in the equation of z via variable z.

Let us first recall the theory of master stability function. In 1998,13 Pecora and

Carroll studied the following coupled systems:

ẋi = F(xi) − ε
∑

j

gijH(xj) , (1)

where xi denotes the dynamical variable on node i, F(xi) is the local dynamics of

node i, ε is the coupling strength, gij is the element of coupling matrix G repre-

senting the network topology, and H is the coupling function for each node. Under

several assumptions, i.e.

(1) the coupled oscillators are all identical,

(2) the coupling functions are all the same, and

(3) the synchronization manifold is an invariant manifold, it is shown that the sta-

bility of synchronization manifold of system (1) is determined by the following

N variational equations:

ξ̇k = [DF − ελkDH]ξk , (2)

where λk is the eigenvalue of G, k = 1, 2, . . . , N . When k = 1, the variational

equation corresponds to the synchronization manifold. All the other (N − 1)

equations correspond to the transverse modes. If we define a normalized cop-

uling strength α = ελ, we obtain a generic variational equation:

ζ̇ = [DF − αDH]ζ . (3)

The maximum Lyapunov exponents λmax of Eq. (3) is a function of α, which

is called a master stability function (MSF). Given a coupling strength ε, if the

values of MSF at the following (N − 1) points, i.e. αk = ελk, k = 2, . . . , N , are

all negative, the synchronization manifold of system (1) is stable.
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Fig. 2. The second type of master stability functions. (a) The local dynamics is the same as in
Fig. 1(a), but the coupling is in the equation of y via variable y. (b) The local dynamics is the
same as in Fig. 1(b), but the coupling is in the equation of x via variable x.

Fig. 3. The third type of master stability functions. (a) The local dynamics is the Rossler system:
ẋ = y − z, ẏ = x + 0.2y, ż = 0.2 + z(x − 2.5), the coupling is in the equation of x via variable x.
(b) The local dynamics is Duffing system: ẋ = y, ẏ = −x3 − 0.1y + 7 sin(t), the coupling is in the
equation of y via variable x.

According to Eq. (3), MSF is determined by both the local dynamics and the

coupling function. In Figs. 1–3, three types of typical MSFs are illustrated, cor-

responding to different local dynamics and different coupling functions. Without

losing generality, in this paper we limit α to be real. Figure 1 is the most typical

well-shaped MSF. It has a negative interval between α1 and α2, which physically

corresponds to the long wave bifurcation point and the short wave bifurcation point,

respectively. In previous studies,1–12 authors explicitly or implicitly assumed that

the local dynamics corresponds to this type of MSF. Usually, the coupling matrix G

is a symmetric Laplacian. In this case, all eigenvalues of G are real and nonnegative.

From small to large, they can be ordered as λ1 = 0 ≤ λ2 ≤ · · · ≤ λN . The smallest

eigenvalue is always zero because all the row sums of L are zero. According to MSF

theory, the synchronization manifold is stable if

α1 < ελ2 ≤ · · · ≤ ελN < α2 . (4)
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From Eq. (4), a network is synchronizable if

r = λN/λ2 < α2/α1 = β . (5)

In the first paper where the eigen ratio r is defined,14 it is only pointed out that

the eigen ratio condition is related to the synchronization of a network. Later,

however, in subsequent studies,1–12 the eigen ratio r is used as the only measure

characterizing the synchronizability of a network. It is believed that the smaller

the r, the better the synchronizability of a network, and vice versa. Nevertheless,

what is the exact implication of synchronizability related to the eigen ratio? This

point is ambiguous from the very beginning. In many works, it is regarded that the

compact distribution of eigenvalues, i.e. the small eigen ratio r, implies that the

coupled system can be synchronized in a larger possible range of coupling strength.

However, careful examination reveals this statement to be incorrect. From Eq. (4),

we can obtain the result that the coupling strength for achieving synchronization

must satisfy α1/λ2 < ε < α2/λN . Then the possible range of coupling strength for

successful synchronization is

∆ε =
α2

λN

−
α1

λ2

=
α2 − rα1

λN

, or
α2/r − α1

λ2

. (6)

From this formula, it is clear that although ∆ε is negatively correlated to the eigen

ratio r, the eigen ratio itself cannot fully determine ∆ε. ∆ε requires both the eigen

ratio r and the magnitude of one eigenvalue, either λ1 or λN , to determine. For

example, we have two networks G1 and G2. In this paper, we use superscripts to

distinguish networks. If r1 < r2, this does not necessarily mean ∆ε1 > ∆ε2. As long

as λ1

N > (α2 − r1α1)λ
2

N/(α2 − r2α1), we can have ∆ε1 < ∆ε2 according to Eq. (6).

In Ref. 8, it is claimed that a network with 0 = λ1 < λ2 = · · · = λN has the widest

possible range of coupling strength to achieve synchronization. However, according

to the above analysis, this statement is not accurate in strict sense. If two networks

G1 and G2 have the same eigen ratios, i.e. r1 = r2, the network with smaller λ2 or

λN will have a larger range of coupling strength for achieving synchronization.

In the above, we have shown that the eigen ratio, which characterizes the net-

work topology, is relevant to, but cannot fully determine the possible range of

coupling strength for achieving synchronization, let alone represent the full

synchronizability of a network. Actually, the possible range of coupling strength

for achieving synchronization is not the only implication of synchronizability of a

network. Synchronizability of a network has many faces. For example, suppose we

have two networks G1 and G2, and the local dynamics have MSF like the type in

Fig. 1. Let us further assume: λ1

2
≤ · · · ≤ λ1

N < α1, and α2 < λ2

2
≤ · · · ≤ λ2

N . To

achieve synchronization, for network G1, we need a coupling strength ε1 > 1; and

for network G2, we need a coupling strength ε2 < 1. Since ε2 < ε1, network G2

is easier to synchronize than network G1. From the viewpoint of the minimal cou-

pling strength to achieve synchronization, synchronizability of G2 is better than G1.
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However, if eigen ratio r1 < r2, according to Eq. (6), we have ∆ε1 > ∆ε2. There-

fore, from the viewpoint of the possible range of coupling strength for achieving

synchronization, synchronizability of G1 is better than G2.

We emphasize that, in principle, synchronizability of a network should be dis-

cussed together with the local dynamics. It is the local dynamics that determines

the type of MSF which is relevant to the synchronizability of the network. Our

previous discussions about synchronizability of a network is only valid when the

local dynamics has MSF as shown in Fig. 1. In fact, almost all the existing works

studying synchronizability of a network have implicitly assumed this condition.

However, MSF shown in Fig. 1 is only one common type of local dynamics. Very

often, we have local dynamics whose MSFs are shown in Figs. 2 and 3. For local

dynamics of the type in Fig. 2, the coupling strength for achieving synchronization

has no upper bound. Thus it does not make sense to relate synchronizability of a

network with the possible range of coupling strength for achieving synchronization.

Instead, the synchronizability of the network can be naturally characterized by the

minimal coupling strength to achieve synchronization which is only determined by

λ2 i.e. εm = α1/λ2. If the local dynamics is in the limit cycle regime, usually we

have MSFs as shown in Fig. 3. For Fig. 3(a), the minimal coupling strength does

not make sense because an arbitrarily small coupling strength can synchronize the

whole network. In this case, the possible range of coupling strength for achieving

synchronization is only determined by λN (since α1 = 0), i.e. ∆ε = α2/λN , which

can be used to characterize the synchronizability of the network. For Fig. 3(b), the

situation is very complicated due to the multiple synchronous regions of the MSF.

In this case, it is almost impossible to define synchronizability of the network in

terms of eigenvalues and eigen ratio.

In summary, we have pointed out that the eigen ratio of a network is not a

synonym of synchronizability of a network, though it has a close relation to it. The

synchronizability of a network has many faces and should be studied together with

specific local dynamics. Depending on different local dynamics, the synchronizabil-

ity of a network has different implications and should be characterized by different

criteria.
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