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Controlling flow turbulence
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This paper investigates the viability and effectiveness of using a technique developed for
low-dimensional chaotic systems to control flow turbulence governed by the Navier–Stokes
equations. By using a global pinning coupling strategy, we show that turbulence can be controlled
to desirable time-varying target states, including a spatially extended periodic state and a turbulent
one. Exponential convergence to the target state is found and the exponential rate scales linearly to
the coupling strength. The linear scaling law breaks down when localized pinning control is applied.
A wavelet multiscale technique is utilized for the characterization of both the effectiveness of the
present control strategy and the inverse energy transfer in two-dimensional turbulence. ©2003
American Institute of Physics.@DOI: 10.1063/1.1539017#
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Since the pioneer work of Ott, Grebogi, and Yorke in
1990, controlling chaos has been extensively investigate
A variety of approaches, such as the OGY scheme, open
loop strategy, feedback technique and adaptive method
have been developed for the purpose of chaos contro
Most early work deals with low-dimensional chaotic sys-
tems such as the logistic map and the Lorenz system
Recently chaos control has been gradually carried out in
spatially extended dynamical systems, such as couple
map lattices and partial differential equations. These
works are motivated by potential applications in laser
and plasma physics, chemical reactions, electric circuits
neuronal networks as well as secure communication. One
of the most complicated spatiotemporal systems is the
real-world fluid turbulence. However, the possibility of
controlling flow turbulence by using the control strategies
developed in the low-dimensional chaotic system has no
been studied. In this paper, we show that the flow turbu-
lence governed by the Navier–Stokes equations can be
effectively controlled by global and local pinning
methods.

I. INTRODUCTION

Turbulence is abundant and omnipresent in nature.1 The
fascinating complexity of flow turbulence has attracted
attention of philosophers, poets and scientists alike for c
turies. Turbulence is advantageous in many circumstan
such as fuel mixing in engine and heat dispersion in atm
sphere, but is undesirable in many other cases, such as
craft safety. The control of turbulence is thus of great inter
and importance. Although the engineering perspective of
bulence control has been studied over decades in term
641054-1500/2003/13(1)/64/7/$20.00
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passive and active control,2 theoretical understanding from
the point of view of nonlinear dynamical systems and co
trolling chaos has been rarely addressed.

A variety of techniques have been proposed for contr
ling complex dynamical systems3 since the first work by Ott,
Grebogi, and Yorke~OGY!.4 The basic idea of OGY is to
take advantage of the sensitivity to small disturbances
chaotic systems to stabilize the system in a desirable unst
periodic orbit naturally embedded in the chaotic attract
While detailed system equations are not required for the c
trol, a learning process is necessary to obtain the esse
information required for the control, such as the location a
the eigenvalues of the desirable unstable periodic orbit in
phase space. Nevertheless, it is generally difficult to ap
the OGY idea to high-dimensional systems, such as the
bulence to be addressed in the present work, although
certain situations, for example, in turbulent boundary laye
a low-dimensional dynamical system model can be set up5 A
more practical method proposed by Pyragas6 utilizes a time-
delayed feedback to some dynamical variables of the sys
A periodic orbit embedded in the chaotic set can be sta
lized when its period matches the delay time. Moreover, c
trol of spatiotemporal chaos was reported for the o
dimensional complex Ginzburg–Landau equation~CGLE!.7

Suppression of spurious oscillations in spatiotemporal s
tems was studied and an angular momentum injection te
nique was proposed for taming the wake turbulence behin
bluff body.8 However, the viability and effectiveness of usin
the techniques developed for low-dimensional chaotic s
tems over the past 10 years for controlling true flow turb
lence described by the incompressible Navier–Stokes e
tions have not been exploited yet, though the control
chaos, especially spatiotemporal chaos, was partially m
vated by the goal of controlling fluid turbulence. The purpo
of this work is to investigate the control of flow turbulenc
© 2003 American Institute of Physics
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65Chaos, Vol. 13, No. 1, 2003 Controlling flow turbulence
by using chaos control strategies. It is emphasized that
flow turbulence governed by the incompressible Navie
Stokes equations differs fundamentally from the ‘‘amplitud
defeat turbulence’’ and the ‘‘phase turbulence’’ within th
spatiotemporal chaos regime governed by the comp
Ginzburg–Landau equation. First of all, the compl
Ginzburg–Landau equation is an amplitude equation, an
describes the dynamics near the Hopf bifurcation in spati
extended systems. In contrast, the incompressible Nav
Stokes equations have a vector equation and a coupled s
equation and they describe real hydrodynamic flows. Sec
the complex Ginzburg–Landau equation is a prototype
spatiotemporal chaos, which might be regarded as a pop
tion of chaotic oscillators locally coupled by diffusion. I
transition from stationary states to unsteady states has
studied in terms of Benjamin–Feir instability and the Ec
haus instability, with detailed phase diagram having be
identified. Nevertheless, for the Navier–Stokes equatio
the transition from laminar flow to turbulence remains
long-lasting open question for many real-world systems.
nally, solving the incompressible Navier–Stokes equation
a very technical issue due to the ill-posedness in their bou
ary conditions. Many available computational schemes h
their limitations. Completely different conclusions might b
obtained if an inappropriate solution method or cont
scheme is utilized. Therefore, the current investigation is
just a simple application of existing techniques.

In the following section, the dynamical model and t
numerical method are described. In Sec. III, we show that
flow turbulence can be controlled to different targets, such
a periodic pattern or another turbulent state by using ei
global pinning coupling or local pinning coupling. A wavel
method is used to characterize the effectiveness of the
trol strategy and the energy transfer in two-dimensional
bulence in Sec. IV. This paper ends with conclusional
marks.

II. THE MODEL AND NUMERICAL SOLUTION

Flow turbulence is characterized by both the c
existence of a variety of scales and the energy tran
among the scales due to the nonlinear interactions. In th
dimensional turbulence, the energy transfer among diffe
scales of motion is mainly through the vortex stretching p
cess, which essentially is a three-dimensional mechan
and can never occur in two-dimensional flow.9 However, in
the past several decades there is an increasing intere
investigate the behavior of two-dimensional incompress
Navier–Stokes equations in terms of two-dimensional tur
lence. Nowadays, it is believed that the theoretical study
two-dimensional turbulence is one of the key approaches
the understanding of flow turbulence and is of fundamen
importance in geophysics, meteorology, and magnetohy
dynamics.10 Furthermore, two-dimensional turbulence
shown to exhibit characteristics that differs fundamenta
from its three-dimensional counterpart.11 In the framework
of direct numerical simulation~DNS!, we consider the two-
dimensional incompressible Navier–Stokes equations
Downloaded 04 Mar 2003 to 137.132.3.7. Redistribution subject to AIP 
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1u•¹u52¹p1

1

Re
¹2u, ~1!

¹•u50,

wherep is the pressure, Re is the Reynolds number anu
5(u,v) is the velocity field vector which has itsx and y
componentu(x,y,t) andv(x,y,t), respectively. The flow is
bounded in a square domain@0,2p#3@0,2p# with the peri-
odic boundary condition in each direction. To solve the
compressible Navier–Stokes equations within the turbule
regime, the choice of an appropriate numerical scheme i
particular importance due to the lack of a governing equat
for the pressure field, while the velocity fields are over d
termined. In the present work, the Fourier pseudospec
method is implemented for the space discretization, and
Adams–Bashforth–Crank–Nicolson~ABCN! scheme is
used for the time discretization. The above numerical sche
ensures divergence-free velocity fields and has the spe
precision for the space discretization and the second o
precision for time integration. Its validity has been exte
sively tested.12 In the numerical integration, the time incre
mentDt is chosen to be 0.0025 and 256 grid points are u
in each direction (Nx5Ny5256). All the numerical results
have been confirmed by setting different grids and time s

For DNS of freely decaying two-dimensional turbulenc
initial conditions affect the time evolution of the turbule
field. Usually they are given in Fourier~wave number! space
by a zero-mean Gaussian random field with random pha
The variance of the initial spectrum can be chosen to
proximately satisfy the energy spectrum of the desi
form13

E~k,0!;ke2~k/k0!2
, ~2!

or

E~k,0!;k4e2~k/k0!2
. ~3!

Here k0 is a constant and it can be adjusted to make
energy peak at a desired wave number. For Eq.~2!, the en-
ergy peak is at wave numberk0 /A2, while for Eq.~3! it is
A2k0 . Therefore, the second form distributes more energ
large wave numbers. In our study, for the fluid system to
controlled~response system!, the initial conditions are taken
to satisfy Eq.~2! with k055.0. The dynamics of Eq.~1! is set
to a turbulent regime by taking Re55000.

III. THE CONTROL OF TURBULENCE

In the rest of this paper, we consider two important e
amples of controlling two-dimensional turbulence. In t
first example, we study the viability and effectiveness of co
trolling a turbulent state into the time-varying analytical s
lution of the Navier–Stokes equation12

ut~x,y,t !52g cos~kx!sin~ky!e22k2t/Re,
~4!

v t~x,y,t !5g sin~kx!cos~ky!e22k2t/Re,

wherek is the wave number taking an integer value, andg is
a constant which is chosen as 0.05 in this study. In the s
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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66 Chaos, Vol. 13, No. 1, 2003 Guan et al.
ond example, we explore the viability of controlling a turb
lent state into another one. In both cases, we apply the gl
pinning control

f~u,ut!5e~u2ut! ~5!

to the right-hand side of Eq.~1!, with ut5(ut ,v t) being the
time-varying velocity fields of the target, e.g., Eq.~4!, and
e,0 being the coupling strength. The control is not add
until Eq. ~1! has been integrated tot5100, ensuring that the
system has passed the transient stage and is in the turb
regime. Figures 1~a! and 1~b! depict two turbulent vorticity
fields v(x,y,t)5vx2uy at t5100 andt5250, respectively.
It is observed that the turbulent state gradually converge
the target after the control mechanism is switched on. T
vorticity contour plots of the controlled flow are shown

FIG. 1. ~Color! Contour plots of the vorticity field of the flow system to b
controlled at~a! t5100, ~b! t5250, respectively.
Downloaded 04 Mar 2003 to 137.132.3.7. Redistribution subject to AIP 
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Fig. 2. Obviously, the turbulent state has been successf
controlled into the spatially periodic target state~4!. The con-
vergence to the target under different coupling strength
shown in Fig. 4~a!. Similar control results have been ob
served when the pinning coupling is turned on at both
earlier time (t560) and a later time (t5200). Moreover, we
also use the stationary pattern

ut~x,y,t !52 g cos~kx!sin~ky!,
~6!v t~x,y,t !5g sin~kx!cos~ky!,

as the target. Once again the control of the turbulent stat
the target is successful.

We next consider the control of an arbitrary turbule
state shown in Fig. 1~b!, to a target turbulent dynamic

FIG. 2. ~Color! Contour plots of the vorticity field of the response syste
under the pinning control (e520.1) at~a! t5120, ~b! t5200, showing the
gradual convergence to the spatially periodic target.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 3. ~Color! ~a!,~b! Contour plots of the vorticity field of turbulent target at~a! t5100,~b! t5250, respectively;~c!,~d! the difference of the vorticity fields
between the target and the response system at~c! t5120,~d! t5200, respectively; showing the gradual convergence of the controlled system to the tur
target.
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shown in Fig. 3~b!. The turbulent target is generated by usi
Eq. ~3! with k053.0 as initial energy spectrum. The tim
evolution of both the target system and the response sys
is governed by the Navier–Stokes equations, Eq.~1!, while
the response system is unidirectionally coupled to the ta
system by the coupling~5!. We observe that the state of th
response system gradually converges to the turbulent sta
the target as shown in Figs. 3~c! and 3~d!. The convergence
under different coupling strength is shown in Fig. 4~b!. It is
noted that the control of chaos using unidirectional coupl
is equivalent with the synchronization of two system
Therefore, this control of turbulence can also be underst
in terms of synchronization of two turbulent dynamics.

The effectiveness of the present control process rem
Downloaded 04 Mar 2003 to 137.132.3.7. Redistribution subject to AIP 
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to be studied. Mathematically, the control of a spatiotempo
dynamics to a target one implies

lim
t→`

iDv~x,y,t !i→0, ~7!

where Dv(x,y,t)5v(x,y,t)2v t(x,y,t). The effectiveness
of the control can be measured by defining the variance

s~ t !5H 1

NxNy
(

i 51,j 51

Nx ,Ny

@Dv~ i , j ,t !#2J 1/2

. ~8!

Figures 4~a! and 4~b! plot the variance versus time for var
ous coupling strengths for the two control cases discus
above. We studied the convergence of the variance with
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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68 Chaos, Vol. 13, No. 1, 2003 Guan et al.
spect to the coupling strength in a large range frome
520.01 to210, and found that approximately the varian
decays exponentially

s~ t !}e2k~e!t, ~9!

even for a very small coupling strength, see Figs. 4~a! and
4~b!.

Qualitatively,k(e) can be understood as the convergen
speed and thus can be used to characterize the effective
of control. By extensive numerical experiments, we furth
find thatk(e) has a simple linear relation with respect to t
coupling strength, i.e.,

k~e!52ae ~e,0! ~10!

over a wide range of parameters studied. It is interesting
note thata is almost the same in two different examples
shown in Fig. 4~c!, where the two straight lines approx
mately have the slopesa51.01 and 0.963, respectively. Th
exponential form in Eq.~9! indicates that the convergence

FIG. 4. Characterization of turbulence control.~a!, ~b! The variance versus
time for approaching the time-varying periodic target~a!, and the turbulent
target ~b!, respectively; from top to bottom:e520.01,20.05,20.1,20.2,
20.5,21.0; ~c! the linear scale betweenk(e) ande; ~d! the transient time
~the variance is truncated at 1024) versus the coupling strength.
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the target state is entirely driven by the coupling scheme
other words, the dynamics of the response system, after
initial period, is dominated by the coupling term, which a
mits an exponential decay solution. Since the coupling te
scales linear to the coupling strengthe, the linear scaling law
is found.

We define the transient timet as the time for the re-
sponse system to converge to the target and it is proporti
to (aueu)21. Obviously, the transient time will be relativel
long for the case of a weak coupling. The transient time a
function of the coupling strength is plotted in Fig. 4~d!. For a
typical value ofe520.5, the transient time is of the order o
10. It decays rapidly with respect to the increase of the c
pling strength.

The feature of the above global pinning control strate
is that it needs to couple all the corresponding sites betw
the target and the response system. In other words, the n
ber of the controllers involved equals to the dimension of
system. For some low-dimensional dynamical systems, s
as maps or ordinary partial differential equations, it can
experimentally realized. However, physically it is difficult t
apply the pinning control to the continuous systems, e
systems described by the partial differential equations.
overcome this difficulty, the local pinning coupling as a
important step towards realistic control of spatiotempo
chaos has been proposed.7 For the current study of control o
flow turbulence, it remains to verify whether the same can
achieved by using a local pinning control. To this end,
test two local pinning schemes, in which a fourth~25%! and
a sixteenth~6.25%! of the original pinning sites are kept an
evenly distributed. The turbulent target is considered and
result of control is given in Fig. 5. Obviously, the local pin
ning control is also very successful for the controlling
flow turbulence governed by two-dimensional Navie

FIG. 5. Turbulent control by using the local pinning strategy.~a! The same
as Fig. 4~b! (e521.0); ~b! the linear scale betweenk(e) and e breaks
down.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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69Chaos, Vol. 13, No. 1, 2003 Controlling flow turbulence
Stokes equations. It is found that even using local coupl
as long as the coupling strength is sufficiently large, the
ponential convergence between the turbulence under co
and the target still approximately holds. However, the lin
scaling law between the exponential ratek(e) and coupling
strengthe found in the previous cases breaks down. Suc
break down is due to the local pinning control strategy. N
that new curve is always below the line of the linear scal
law, which indicates that the local pinning scheme is not
efficient as the global one. Since only partial sites of
response system are coupled to the driven system, the i
ence of the driven state cannot be ‘‘felt’’ immediately by a
sites of the response system. Such a time delay leads to
reduction of the original linear scaling law to the cur
which is underneath the linear scaling line.

IV. WAVELET CHARACTERIZATION

Turbulence inherently involves a wide range of spa
scales. The various spatial modes interact through the n
linear convective term in Navier–Stokes equations, lead
to energy transfer among different scales. Due to this mu
scale nature of turbulence, wavelets and wavelet packets
vide a powerful mathematical tool for modeling, analyzin
and computing turbulence.14 In the present work, a recentl
proposed wavelet method is utilized to characterize the
bulence field. Compared with the traditional method, i.e.,
Fourier transform, the present wavelet method has the ad
tage of providing multiscale information. Unlike the usu
application of wavelet analysis to turbulence, the pres
wavelet approach provides ‘‘time evolution histories’’ fo
different scale components. The detailed description of
approach is given in Ref. 15. A schematic plot of the thr
scale wavelet sub-band decomposition is given in Fig. 6~a!.
Here H denotes the high frequency~small scale! while L
denotes the low frequency~large scale!. The subscript num-
ber denotes the scale of the wavelet decomposit
Daubechies-8 wavelets are employed.

Figure 6~b! characterizes the temporal evolution a
convergence of two turbulent dynamics in terms of wave
sub-band energiesrm

HH(t) (m51,2,3), corresponding to th
three high-frequency sub-bandsHHm (m51,2,3) shown in
Fig. 6~a!, respectively. It is found that during the first evol
tion stage (t,70), there is a significant increase of the tu
bulent energy at three small scales. This may correspon
the generation of small-scale structures, e.g., vortic
gradient sheets, from the relatively smooth initial veloc
fields. After this stage, the turbulence becomes fully dev
oped as indicated by vanishing of the vorticity-gradie
sheets and the self-organization, advection and merger o
coherent vortices~see Figs. 1 and 3!. Accordingly, the ener-
gies at all three high-frequency sub-bands decrease. A
turning on the control att5100, the turbulence sub-ban
energies of the response system gradually converge to t
of the target as shown in Fig. 6~b!, symbolizing the succes
of the pinning control strategy.

It is well known that the long-term evolution of freel
decaying two-dimensional turbulence is characterized by
advection and coalesce of the coherent vortices as well a
Downloaded 04 Mar 2003 to 137.132.3.7. Redistribution subject to AIP 
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formation of large scale vortices such as stable dipoles. F
ures 6~c! and 6~d! show the energy evolution and transf
among different spatial scales during this dynamical proce
An inverse energy transfer~from small towards large
scales!10 can be effectively characterized by the curre
wavelet method. It is seen that during the initial transie
period, the energies at all three small scales increase, w

FIG. 6. Wavelet multiscale characterization of turbulence controle
521.0). ~a! A schematic plot of wavelet sub-band decomposition;~b!–~d!
the evolution of wavelet sub-band energies.~b! the early evolution of the
target system~solid lines! and the response system~dashed lines!; ~c!,~d! the
evolution of the target system in small scale sub-bands~c! and the large
scale one~d!.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the energy at the large scale decrease. When the turbul
becomes fully developed, the energies at all three sm
scales decay with time. Although this decay is not mon
tonic, its trend is obvious. The reason of the non-monoto
decay is that the vorticity filaments generated during
merger of vortices are highly oscillatory. On the contrary,
wavelet sub-band energyr1

LL(t), which corresponds to the
large scaleLL1 shown in Fig. 6~a!, increases during the tim
evolution, as shown in Fig. 6~d!. Physically, the energy trans
fer towards large scales corresponds to the organization
merger of coherent vortices in freely decaying tw
dimensional turbulence. Therefore, the dynamics of tw
dimensional turbulence is dominated by the coherent vo
ces, which is essentially different form the traditional pictu
of three-dimensional turbulence as a chaotic velocity fiel

V. CONCLUDING REMARKS

In summary, we have studied the utility and effectiv
ness of techniques developed for low-dimensional cha
systems for controlling flow turbulence governed by t
Navier–Stokes equations. By using both global pinning a
local pinning strategies, we show that the turbulent flow c
be controlled to desired target states, including the tim
varying analytical solution of the Navier–Stokes equatio
and an evolving turbulent state. In both cases, the dynam
of the response system converges to the time-varying ta
exponentially. A linear scaling between the exponential r
and the coupling strength is observed for the global pinn
control within the parameter range of small and moder
coupling strength. However, such a linear scaling law bre
down when the local pinning control is employed. The effe
tiveness of the control scheme is also confirmed by exam
ing the transient time required for the response system
convert to the target state. A newly developed wavelet m
tiscale technique is utilized to characterize the present c
trol of turbulence.

Undoubtedly, turbulence control has been one of the c
tral issues in modern science and engineering. As pointed
by Gad-el-Hak~in Ref. 2, p. 117!, ‘‘future systems for con-
trol of turbulent flows in general and turbulent boundary la
ers in particular could greatly benefit from the emerging
the science of chaos control, . . . .’’ Indeed, the concepts an
the diverse strategies arising from the extensive study
chaos control in the last decade has shed light on the co
of flow turbulence. The findings in the present work ver
the feasibility of such a control.

However, the practical realization of flow control turn
out to be a difficult and complicated task from engineer
perspective. In the past several decades, there is much
pirical exploration on passive control methods using po
mers and riblets.2 The control schemes used in the pres
study is an active control strategy and it requires that
controlled variable be measured, fed back and compa
Downloaded 04 Mar 2003 to 137.132.3.7. Redistribution subject to AIP 
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with a reference target. Practically, the successful implem
tation of this control strategy lies in how to interact with th
flow. For example, one must have a series of properly d
posed sensors to detect the status of the turbulence, an
tuators to produce the desired flow perturbations. In the p
direct flow manipulation was very difficult, but is now ex
pected to become possible with microsensors and micro
tuators of micron size fabricated by micro-electr
mechanical-systems~MEMS! technology. Moreover, thes
miniature transducers can be integrated to complete the f
back control loop of sensing, information processing and
tuation. Although the control strategy proposed in this pa
can be implemented with modern technology, there is a lo
way toward the mature stage of controlling flow turbulenc
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