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In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional
Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of
turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally
coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the
dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the
limit of long time and strong coupling strength. It is further revealed that the controlled component of the
velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly
coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary
method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study
can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.
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I. INTRODUCTION

The past decade has witnessed a blossoming in the inves-
tigation of chaos control and the synchronization of low-
dimensional nonlinear dynamic systems governed by maps
or ordinary differential equations(ODEs) [1–5]. Despite the
fact that chaos is sensitive to initial conditions, which causes
any two neighboring chaotic orbits to diverge exponentially
in the state space during time evolution, it is discovered,
contrary to our intuition that chaotic dynamics can be gener-
ally controlled to a desired periodic target by carefully se-
lected, small perturbations. The target dynamics could be one
of the unstable periodic orbits inherently embedded in a
strange attractor, or a stationary/periodic orbit, or even an-
other different chaotic orbit. The last situation is convention-
ally investigated in terms of chaos synchronization. So far, a
variety of control strategies, such as the one proposed by Ott,
Grebogi, and Yorke[6], time-delay feedback scheme, peri-
odic perturbation, and adaptive scheme, to name just a few,
have been successfully applied in achieving chaos control
[4]. On the other hand, different scenarios of chaos synchro-
nization, such as complete(identical or exact) synchroniza-
tion (CS), generalized synchronization(GS), partial synchro-
nization (PS), phase synchronization, and lag syn-
chronization, have been classified and investigated both
theoretically and experimentally[3,5]. The synchronization
can be regarded as a special means of chaos control. The
controllability of low-dimensional systems is well estab-
lished through the Lyapunov exponent spectrum analysis.

Recently, ideas and strategies originated from the control
and synchronization of low-dimensional chaotic systems
have been gradually extended to various high-dimensional
systems[7], such as the large ensemble of chaotic oscillators
described by coupled map lattices and array of chaotic oscil-
lators [8,9], as well as the spatially extended systems natu-
rally described bydiscretizedpartial differential equations
(PDEs) [10–26]. On the one hand, in these distributed sys-

tems, the dimension of the unstable manifold is usually as
large as the number of the positive Lyapunov exponents of
the system, which in many situations increase linearly with
the size of the system. In order to achieve successful control/
synchronization of such spatiotemporal chaos, generally the
number of controllers(or control signals) needed is of the
order of the Lyapunov dimension of the dynamic system. On
the other hand, from the practical point of view, it is always
desirable to achieve control of the spatiotemporal chaos by
using as few controllers as possible. Therefore, the study of
the controllability of high-dimensional dynamics is of funda-
mental importance.

At present, however, little is known about the controlla-
bility of infinite dimensional systems, i.e., systems described
by nonlinear PDEs. Although earlier numerical examples
[10–27] have indicatedthat infinite dimensional(PDE) sys-
tems are controllable, in fact, these computational demon-
strations are done with the truncation of the original PDE
systems because one can only directly deal with finite dimen-
sional systems on a computer. Therefore, the controllability
of infinite dimensional systems remains a challenge. A gen-
eral speculation is that, it is impossible tofully control a
system with infinite number of positive Lyapunov exponents
by using a finite number of controllers. Nevertheless, the
abovementioned impossibility does not discourage the effort
in exploring practical control of infinite dimensional sys-
tems, such as fluid dynamics, governed by the Navier-Stokes
equations. After all, all valuable simulations done in compu-
tational fluid dynamics are based on truncated systems. The
celebrated Lorenz model actually is derived from a model of
fluid convection rolls by a dramatical simplification which
only retains three modes[28]. The point is that, one should
be very careful when drawing a conclusion from computa-
tional results.

Flow control is of great scientific significance and eco-
nomic impact. In fact, what is really required is just a partial
control of fluid motion by either passive or active means for
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the purpose of drag reduction or for the suppression/
enhancement of turbulence. By using an angular momentum
injection scheme, it was shown that the vertical component
svd of a wake turbulence velocity field could be effectively
controlled[29], while the horizontal componentsud was left
unchecked. Control of two-dimensional(2D) turbulent flow
was achieved in our earlier work[16] by using the pinning
control strategy developed for chaos control[12–14]. How-
ever, in such a study, the control was imposed on both theu
andv components of the flow field and the number of con-
trollers is compatible with the degree of freedom of the trun-
cated system. In practice, it is both convenient and useful to
control a single component of the flow field, such as experi-
mental settings in the lid driven cavity and buoyancy driven
cavity [30]. Sometimes, appropriate boundary control could
lead to intricate pattern formation in nonlinear PDEs[27].

Chaos control via a single component in a coupled multi-
component system is a common practice in the nonlinear
dynamics community. For example, in a linearly coupled
system of Lorenz oscillators, the controllability can be as-
sessed by eigenvalue analysis. It has been shown that the
synchronization of chaos can be achieved by controlling any
of the three components[31]. The same idea has been suc-
cessfully implemented in several cases of chaos control and
synchronization in coupled PDE systems
[10,11,17,19,21–25]. For example, it has been successfully
implemented to control spatiotemporal chaos in laser[10,11]
and semiconductor[17,19,21] systems. In both cases the
time-delayed feedback control only applies to a variable field
that is easily accessible in experiment. In Refs.[22–25], it
has also been shown that in certain reaction-diffusion sys-
tems, control or synchronization of spatiotemporal chaos can
be observed by coupling only one concentration field be-
tween the driving and response systems. Remarkably, as
demonstrated in Refs.[21,24,25], the whole spatiotemporal
dynamics can even be successfully controlled by adding per-
turbation of scalar time series to only one degree of freedom
of the spatially extended system.

Therefore, it is interesting to examine the controllability
of turbulent flow governed by Navier-Stokes equations via
the single component control and using the pinning control
strategy originated from chaos control. Our interest of con-
trolling real-world turbulence from the perspective of chaos
control is motivated by the following facts. It is well known
that real-world turbulence represents the most complicated
spatiotemporal dynamics. Till now, the control of flow turbu-
lence remains a challenging task in many scientific and en-
gineering fields[32]. It is believed that turbulence control
could benefit from the lessons in chaos control, which has
been intensively studied in the last decade. With so many
aforementioned successful examples in chaos control, one
might take it for granted that by applying the pinning control
only to eitheru or v component of the flow velocity field, the
whole velocity fieldsu,vd could be completely controlled to
the target, i.e., a spatially periodic and temporally varying
velocity field, or another turbulent orbit in our study. How-
ever, the findings in the present work indicate that this is not
the case for the dynamic system of flow turbulence. Unlike
the previous findings[17,22,23], it is found that the whole
velocity field su,vd can only be partially controlled to the

desired targets in the sense that the control error is bounded
by a small constant, but not zero. This situation does not
improve with the increase of the coupling strength. Further
analysis reveals that theu component, which is directly
coupled to the control signals, actually can be completely
controlled to the target, whereas, thev component fails to do
so, though it is coupled tou via the Navier-Stokes equations.
In the framework of synchronization, it is shown that this
phenomenon further can be characterized in terms of gener-
alized synchronization by using the response-auxiliary sys-
tem method. Therefore, our work shows that GS(as com-
pared to complete synchronization) can also be observed
between two identical coupled PDE systems when the cou-
pling between them is insufficient. It is believed that the
present findings not only enhance our understanding of
control/synchronization in distributed systems, but also shed
light on the real-world turbulence control.

This paper is organized as follows. In the following sec-
tion, the dynamic model and numerical method are briefly
described. In Sec. III, the control of flow turbulence to a
spatially periodic pattern, and the synchronization between
two different turbulent orbits by using unidirectional pinning
coupling, are considered. The results are presented there.
Moreover, the relation between the present case and partial
synchronization, as well as the generalized synchronization,
is discussed in Sec. IV. A conclusion ends the paper.

II. THE MODEL AND NUMERICAL METHOD

For simplicity, in the present study we investigate the con-
trol of flow turbulence described by the two-dimensional
Navier-Stokes equations. The dynamics of two-dimensional
turbulence, which exhibits many interesting features, differs
fundamentally from its three-dimensional counterpart[33].
Its research is of importance to the understanding of geo-
physics, meteorology as well as magnetohydrodynamics. In
the framework of direct numerical simulation, we consider
the two-dimensional Navier-Stocks equations,

ut + uux + vuy = − px +
1

Re
suxx + uyyd, s1d

vt + uvx + vvy = − py +
1

Re
svxx + vyyd, s2d

with the incompressible condition acting on the whole flow
field

ux + vy = 0, s3d

where su,vd is the two-dimensional velocity vector field,p
the pressure, Re the Reynolds number, and the subscripts
denote the derivatives. The flow is bounded in a square do-
main f0,2pg3 f0,2pg with doubly periodic boundary condi-
tions. To solve the incompressible Navier-Stokes equations
within the turbulence regime, the choice of an appropriate
numerical scheme is particularly important due to the lack of
a governing equation for the pressure field, while the veloc-
ity fields are over determined. In the present work, the spatial
and temporal discretization are carried out by applying Fou-
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rier pseudospectral method and the Adams-Bashforth-Crank-
Nicolson scheme, respectively. The above numerical scheme
ensures divergence-free velocity fields and has the spectral
precision for spatial discretization and second order precision
for time integration. Its validity has been extensively tested
[16,34,35].

It is shown that the dynamics of freely decaying two-
dimensional turbulence depends on the initial conditions.
Usually the initial conditions are given in Fourier(wave
number) space such that the initial energy spectrum satisfies
certain desired form[36]. Two commonly used initial energy
spectral profiles are

Esk,0d , ke−sk/k0d2, s4d

Esk,0d , k4e−sk/k0d2. s5d

Here the constantk0 is an adjustable constant for the wave
number at which the energy spectrum peaks.

The parameter settings in the current simulation are as
follows. The dynamics of Eqs.(1)–(3) is set at the turbulent
regime by taking Re=5000. For the response system, i.e., the
fluid system to be controlled, the initial conditions are taken

to satisfy Eq.(4) with k0=5.0. The time incrementDt is
chosen to be 0.0025 and 2563256 grid points are used
sNx=Ny=256d. The total integration length is 50, which cov-
ers several hundreds of initial eddy turnover time. The typi-
cal dynamic characteristics of two-dimensional turbulence,
such as the formation, interaction, and evolution of coherent
vortices, are shown in Fig. 1. Here, following the conven-
tion, the turbulence field is visualized in terms of vorticity
contours. All the numerical results have been confirmed by
using different grids and time increments.

III. CONTROL OF TURBULENCE

The viability and effectiveness of controlling flow turbu-
lence by using chaos control strategies, such as global pin-
ning and local pinning, have been studied recently[16]. In
the present work, we further show that the turbulent dynam-
ics governed by the Navier-Stokes equations can be partially
controlled to certain spatially periodic target by only cou-
pling one velocity componentu, i.e., thex component of the
velocity field, to the counterpart of the target. This is moti-
vated by the fact that in experiments controlling one compo-

FIG. 1. The flow turbulence to be controlled(the response system). Contour plots showing the evolution of the vorticity fieldsv=vx

−uyd at (a) t=5, (b) t=10, (c) t=30, (d) t=50, respectively. The initial energy and the enstrophy are 0.10 and 2.50, respectively.
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nent of the velocity field could be easier than controlling the
whole velocity field. To this end, we apply the pinning con-
trol, which is a basic and commonly used strategy in the
control of spatiotemporal chaos,

fsu,uTd = − esu − uTd, s6d

to the right-hand side of Eq.(1), with uT being the corre-
spondingx component of the velocity field of the target, and
e.0 the coupling strength. It is notable that in this control
scheme, the perturbations or the control signals, are only
added to thex component of the velocity field. The
divergence-free condition Eq.(3) is effectively maintained
under the present perturbation. One may reasonably think
that the whole velocity field could be changed by this pertur-
bation, but to what extent it converges to the target is yet to
be ascertained.

A. Periodic target

The target we considered is a spatially periodic and tem-
porally varying analytical solution of the Navier-Stokes
equations[34]

uTsx,y,td = − g cosskxdsinskyde−2k2t/Re,

vTsx,y,td = g sinskxdcosskyde−2k2t/Re, s7d

wherek is the wave number taking an integer value(k=1 in
the present study), and g is a constant which is chosen as
0.05 in this study. In Fig. 2, the mesh and contour plot of the
target is shown. Fort,5, the response system Eqs.(1)–(3)
freely evolves without any control. This ensures that the sys-
tem passes the transient stage and enters the turbulent re-
gime. The coupling term Eq.(6) then is switched on at the
right-hand side of Eq.(1), denoting the control of the
x-component of the velocity filed.

The asymptotic behavior of the response system with con-
trol has been studied with respect to the coupling strengthe.
The parameter studied in the present work ranges frome
=0.01 toe=10. It is found that with small coupling strength,
roughly e,0.05, the weak control cannot convert the turbu-
lent dynamics to the periodic target. Nevertheless, this very
small perturbation acting as a driving force can direct the
dynamics to another turbulent orbit. For instance, Fig. 3(a)
shows a turbulent state under small control, which is totally
different from Fig. 1(d), the state without any control. When
eù0.05, it is observed that the dynamics of the response
system can be partially controlled to the target. Figure 3

FIG. 2. The spatially periodic target.(a) the vorticity mesh,(b) the vorticity contour,(c) the contour ofu, (d) the contour ofv.
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shows that the turbulence in the response system can par-
tially converge to the spatially periodic target when the cou-
pling strength is strong enough.

In order to characterize this partial control of the turbu-
lence, we define the control error between two vorticity
fields at a specific time as

svstd =H 1

NxNy
o

i=1,j=1

Nx,Ny

fDvsi, j ,tdg2J1/2

, s8d

whereDvsx,y,td=vsx,y,td−vTsx,y,td, and i, j are the grid
indices. In the case of complete control, we should have

lim
t→`

svstd → 0. s9d

Figure 4(a) characterizes the partial turbulence control in
terms of the control error defined above. If we compare Figs.
3 and 4(a) with the results of the pinning control of the
whole vector fieldsu,vd in Ref. [16], immediately we can
identify several differences. First of all, it is clearly shown
that in the present case the dynamics of the response system
cannot be completely controlled to the target. Instead, it

FIG. 3. The partial control of turbulence. The contour plots of the vorticity field of the response system with control att=50. (a) e
=0.01,(b) e=0.05,(c) e=0.1, (d) e=0.5.

FIG. 4. Characterizing the control of turbulence to a spatially
periodic target. The control error vs time for(a) the vorticity, (b) u,
and(c) v. (d) The time-averaged control error foru (the circle) and
v (the diamond), respectively.
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could only be partially controlled to the target if the coupling
strength is strong enough. By partial control, we mean that
the control error between the response and the target system
is bounded by a small but nonzero number. However, the
control error does not decrease monotonically with the in-
crease of the coupling strength. There exists a moderately
large coupling strength, approximately arounde=0.1, which
turns out to be the optimal value for the control. For instance,
although initially, the control error ate=0.1 decays slower
than that whene.0.1, in a later time, its value can be
smaller than that whene.0.1 as shown in Fig. 4(a). The
vorticity contours in Fig. 3 further confirms that ate=0.1 the
controlled vorticity Fig. 3(c) closely resembles the target Fig.
2(b), showing the best control effect among all the coupling
strengths. Second, by regression analysis, it is found that the
control error which characterizes the convergence between
two dynamic orbits no longer decays exponentially with re-
spect to time. Finally, in the limit ofe approaching the infin-
ity, the control error approaches a small nonzero constant,
instead of zero in the case of complete control[16], i.e.,

lim
t→`,e→`

svstd → c, s10d

with c.0.24 here. It should be pointed out that the existence
of an optimal control strength has already been found in
reaction-diffusion system employing time-delay feedback
[17,19,21], where generally the successful control only oc-
curs between a lower and an upper limit of the control
strength. Nevertheless, there are some differences between
these findings and the current result. In Refs.[17,19,21], the
target states can be completely stablized. The optimal control
is achieved when the control signal vanishes and the largest
Lyapunov exponent reaches its minimum. In our case, the
complete convergence to the target state is impossible, only
partial control can be obtained. The optimal control here re-
fers to the best convergence to the target. Furthermore, the
control scheme in the present study is different from that in
Refs.[17,19,21].

The feature of the present control deserves further analy-
sis. Since in the present study only thex component of the
velocity field is directly under control, naturally we would
like to check the control efficiency of theu and v fields
separately. This can be done by analyzing the control error
between the corresponding components between the target
and the response system. Specifically, we compute the con-
trol error su and sv by replacingDv in Eq. (8) with Du
=usx,y,td−uTsx,y,td and Dv=vsx,y,td−vTsx,y,td, respec-
tively. The control errors versus time with different coupling
strength are shown in Figs. 4(b) and 4(c). We found that for
thex componentu, the control error decreases monotonically
with the increase of the coupling strength. In the limit of
strong coupling strength, the control error approaches zero.
Moreover, for a given coupling strength, the control error
reaches zero as long ast is large enough. Although the total
velocity fieldsu,vd cannot be completely control to the target
as shown in Fig. 3, Fig. 4(b) reveals that thex componentu,
which is directly coupled to the target, actually converges
completely to the target. This complete convergence can be
further confirmed in Fig. 5, where the evolution of the fieldu

has been plotted for certain typical coupling strength, indi-
cating the full convergence of thex componentu to the target
[shown in Fig. 2(c)] when the coupling strength is large
enough.

FIG. 5. Contour plots ofu at t=50 for different coupling
strength.(a) e=0.05.(b) e=0.1. (c) e=0.5. Compared with the tar-
get Fig. 2(c), the complete convergence ofu to the target can be
achieved when the coupling strength is large enough.
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On the other hand, however, as shown in Fig. 4(c), the
control of the y componentv turns out to be a different
scenario. The control error does not decrease monotonically
with the increase of the coupling strength. There is an opti-
mal coupling strength at which the componentv is most
efficiently controlled to the target. When the coupling
strength is further increased to a large enough value, the
control error finally approaches a nonzero small constant.
Therefore, for they componentv, it can only be partially
controlled to the target. Figure 6 shows the partial control of
the y componentv to the target shown in Fig. 2(d). The
above dynamic features of the partial control of turbulence
can be better demonstrated in Fig. 4(d), where the time-
averaged control errors versus the coupling strength for both
u and v are plotted. Clearly it is illustrated that the time-
averaged control error ofu decreases monotonically to zero
with the increase of the coupling strength. Notably, the time-
averaged control error ofv oscillates in the interval
f0.01,0.5g, reaches the minimum at aboute=0.1, and gradu-
ally approaches a constant whene.0.5. Based on the above
analysis, we conclude that in the present flow system, by
applying control to only one component of the vector field,
the dynamics of the response system cannot be fully con-
trolled to the target, even in the regime of strong coupling.
This finding is fundamentally different from previous ones
[10,11,17,19,21–25]. Moreover, it is also different from the
study in Ref.[16], where the pinning control is applied to the
whole velocity field. An example comparing these two con-
trol strategies is shown in Fig. 7.

B. Turbulent target

Next, we control the turbulent dynamics of the response
system into another turbulent orbit. In fact, the control of
chaos using unidirectional coupling is equivalent with the
synchronization between the dynamics of two systems[37].
When the target is chaotic, chaos control is more natural to
be understood in terms of synchronization. We follow this
convention to describe this second example in the framework
of synchronization. The turbulent target is also generated
from Eqs. (1)–(3), but the initial conditions satisfy Eq.(5)
with k0=3.0. Figure 8 shows the evolution of the vorticity of
this target. It is different from the turbulence of the response
system as shown in Fig. 2. Similarly, only thex componentu
of the velocity field in the response system is unidirectionally
driven by the target system through coupling term Eq.(6).

Once again, it is found that the turbulent dynamics of the
response system can only be partially synchronized with the
target. Figure 9 characterizes this partial synchronization in
terms of the synchronization error defined in Eq.(8). In Fig.
9(a), it is shown that when the coupling strength is large
enough, the synchronization error of the vorticity between
two systems becomes bounded and decreases with time.
However, even in the strong limit of the coupling strength,
this synchronization error cannot approache zero; instead it
approaches a small nonzero constant. Similar to the first ex-
ample, Figs. 9(b) and 9(c) reveal that thex componentu does
fully synchronize with the target, while the componentv
fails to do so. This accounts for the partial synchronization of

the whole velocity vectors between the response and target
systems. In addition, comparing Fig. 9 with Fig. 4, we found
that generally a stronger coupling strength is needed to syn-
chronize the dynamics of the response system with the tur-
bulent target than the spatially periodic one. We have care-

FIG. 6. Contour plots ofv at t=50 for different coupling
strength.(a) e=0.05.(b) e=0.1. (c) e=0.5. Compared with the tar-
get Fig. 2(d), v only partially converges to the target.
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fully examined the evolution of theu field and found that in
this case only whene.0.5 can the componentu be regarded
as synchronized with the target in a practical sense. This is
confirmed in Figs. 9(b) and 9(c), where the synchronization
error of u decreases to nearly zero and the synchronization
error of v becomes bounded, approaching a small constant
whene.0.5. Thus the critical coupling strength in the case
of turbulent target is roughly one order larger than that in the
case of a spatially periodic target. In this sense, it is more
difficult to control the system into a turbulent target than into
a spatially periodic one. Another important point illustrated
by Fig. 9(c), compared with Fig. 4(c), is that the synchroni-
zation error approaches a smaller constant, roughly 0.065 in
the second example. This implies that in the limit of long
time and strong coupling strength, the dynamics of twov
fields can be more “correlated” than in the case of spatially
periodic target. In other words, the two turbulent orbits can
move “closer” than between a turbulent orbit and a spatially
periodic target as in our first example. This feature is further
manifested in Fig. 9(d), where the time-averaged control/
synchronization errors versus the coupling strength for the
two different targets are plotted for a comparison. Clearly, in
both cases, the control/synchronization errors of theu field
approach zero with the increase of the coupling strength,
showing the full convergence of theu fields between the
target and the response system. But for thev field, the
control/synchronization errors approach small nonzero con-
stants in the strong coupling limit, showing thev field can

only be partially converged to the target. Note that in our
control configuration, thev field does not directly couple to
the target. Our results thus imply that there exist certain dy-
namic systems(such as fluid systems) in which complete
control of the dynamics cannot be achieved by controlling
only part of its state variables. It is reported recently that a
pair of fully resolved quasi-2D fluid models will synchronize
only when the small-scale/high-frequency components of the
flow are coupled[38]. In other words, only when all the
active degrees of freedom in such a fluid system are coupled,
can the fluid dynamics be completely synchronized. This re-
sult is consistent with our findings in the present study.

IV. DISCUSSION OF THE RESULTS

In the framework of chaos synchronization, it is interest-
ing to compare the present findings with the existing syn-
chronization scenarios, especially the PS and the GS, in cha-
otic systems. The PS refers to the situation between two
dynamic systems where some state variables are completely
(or in practical sense) synchronized, but others( at least one)
are not[39,40]. According to this definition, the phenomenon
found in this study apparently belongs to this category. It
should be pointed out that in the literature, the terminology
PS sometimes also refers to the clustering phenomenon oc-
curring in large ensembles of coupled chaotic oscillators
[41–43]. The present results are not relevant to this situation.

The GS is another well known synchronization phenom-
enon in chaotic systems, in which the dynamics of the drive
and the response system does not coincide; instead they are
asymptotically related[44]. The question naturally arises is:
what is the relation between PS and GS? Since so far there
are no strict mathematical definitions for these concepts, we
can only understand the relation between them qualitatively.
Conceptually, these two concepts overlap somewhat. In cer-
tain cases of PS, if the unsynchronized state variables are
totally uncorrelated(generally this is hard to detect, but
sometimes it can be characterized by Lyapunov exponents as
in Ref. [39]), the two systems would be regarded as pure PS,
but not GS. In other cases of PS, if there exists certain func-
tional relation between the unsynchronized state variables of
two systems, this PS could also belong to the case of GS.
One effective way to detect GS in low-dimensional chaos
synchronization is the auxiliary system method[45], in
which a replica of the response system, but with different
initial condition, is simultaneously driven by the same driv-
ing system. Therefore, the usual complicated functional rela-
tion between the dynamics in the driving and response sys-
tems, i.e., the GS, can be effectively detected in the state
space of response and auxiliary systems as complete syn-
chronization. In the present study, we extend this method to
detect the GS between spatially extended systems. Due to the
nature of extremely high dimensions in the present study, it
is impossible to check the dynamics in all the spatial sites
between the response and auxiliary systems as in Ref.[46].
However, certain space-averaged global quantities, such as
the global synchronization error defined in Eq.(8) can be
conveniently used to detect GS. If the spatiotemporal dynam-
ics between the driving and response systems achieves GS,

FIG. 7. Comparison the effectiveness of two different control
strategies. One is to control bothu and v (I), the other is only
control u (II ). e=0.5 in both cases.(a) The control errors of vortic-
ity. (b) The control errors ofu andv. The solid line and the dashed
line coincide.
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FIG. 8. The flow turbulence in the drive system. Contour plots showing the evolution of the vorticity field at(a) t=5, (b) t=10, (c) t
=30, (d) t=50, respectively. The initial energy and the enstrophy are 0.10 and 2.31, respectively.

FIG. 9. Characterizing the syn-
chronization of two turbulent or-
bits. The synchronization error vs
time for (a) the vorticity, (b) u,
and (c) v. (d) The time-averaged
synchronization error foru (the
circle), and v (the diamond), re-
spectively. The time-averaged
control errors in the first case are
also plotted in dotted lines for
comparison.
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asymptotically the global synchronization errors between the
driver and the response, which is a time series, will gradually
converge to that between the driving and auxiliary systems.
Therefore, the global synchronization error between the re-
sponse and auxiliary systems will approach zero after long
time evolution. We used this method to check whether the
partial synchronization in this study is GS or not. The results
are shown in Fig. 10, where the global synchronization errors
between the response and auxiliary systems clearly show the
trend towards zero when time approaches infinity. Therefore,
the present synchronization phenomenon can also be under-
stood in terms of GS.

It is well known that for the coupled nonidentical dy-
namic systems, either parametrically different or physically
different, GS is generally expected to be observed, but CS is
forbidden. On the other hand, for the coupled identical dy-
namic systems, CS is the usual outcome. Recently in Refs.
[47,48], it is shown that GS can also take place in two
coupled identical ODE systems before the coupling becomes
strong enough to achieve CS. Our findings in the present
work further demonstrate that the GS could also occur be-
tween two unidirectionally coupled identical PDE systems. It
should be pointed out that the GS in Refs.[47,48] happens
when the coupling is weak. However, in the current case, the
GS can take place even in strong coupling strength, but the
coupling itself is not sufficient in the sense that only one
component of the vector field is directly linked to the target.
As a result, even the strong coupling strength fails to achieve

the full synchronization between two flow systems. It turns
out that flow systems are more difficult to control in the
above sense.

For infinite dimensional dynamic systems, it is desirable
to use as less as possible controllers to achieve the complete
control. This is of great importance from the point of view of
control efficiency in practice. To this end, one method is to
reduce the number of local controllers, as demonstrated in
Refs.[12–14,16]. Another method is to control a single com-
ponent in the multiple-component dynamic systems, which is
commonly used in controlling low-dimensional systems as
well as high-dimensional systems[10,11,17,19,21–25]. In
the present paper, using pinning feedback strategy, we show
that full control of flow turbulence cannot be achieved by the
second method, while it is successful in the first method[16].
This finding implies that although the above two methods are
both designed to reduce the dimensionality of the control
signals, the results might be essentially different.

In the present work, we only focus on the pinning feed-
back control strategy for the controlling of flow turbulence.
It should be pointed out that there are other prevalent tech-
niques which have been successfully developed in taming
spatiotemporal chaos, for example, the time-delay feedback
[10,11,17–21,24,25] and the forcing or entrainment
[9,24,26]. These methods have some advantages, such as no
predesigned target needed and easily implemented in experi-
ment. For the time-delay feedback strategy, it usually works
well in the dynamic systems which have an inherent charac-
teristic time scale so that the delay time can be appropriately
determined. For example, in many reaction-diffusion sys-
tems, there exist unstable traveling wave solutions in the
regime of spatiotemporal chaos. However, the coupling of
hydrodynamic modes in turbulence is quite complicated
(usually studied in Fourier space) and is fundamentally dif-
ferent from the reaction-diffusion systems. Generally there is
no such a characteristic time scale for flow turbulence.
Therefore, it is difficult to apply the time-delay feedback
control method to flow systems. In our numerical experi-
ments, we have also tried the forcing strategy in order to
suppress turbulence. We considered two situations. In one
case, a temporally sinusoidal perturbation is globally added
to the flow field; in the other case, the feedback perturbation
is chosen as proportional to the square of the velocity field.
In the first case, we observe that generally the perturbation
drives the flow system to be unstable. This is understandable
since such homogeneous perturbation has every Fourier
mode, thus drives the flow at each scale. In the second case,
the forcing does change the turbulent field, but seems diffi-
cult to tame the turbulence, sometimes even enhances it. In
fact, turbulence usually can be enhanced and sustained by
suitable local forcing in Fourier space[49]. How to choose
appropriate forcing form so that flow turbulence can be sup-
pressed or tamed deserves further systematic investigation
and will be addressed elsewhere.

V. CONCLUSION AND DISCUSSION

In the present work, the controllability of real-world flow
turbulence has been theoretically investigated by employing

FIG. 10. Detecting the GS between two turbulent orbits. The
synchronization errors of(a) u and (b) v. The solid lines, the syn-
chronization error between the drive and the response system; the
dashed lines, the synchronization error between the drive and the
auxiliary system.
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the strategies developed in the domain of chaos control. The
purpose of the work is to reexamine the validity of some
chaos control techniques that have been shown to be success-
ful in low and moderately high-dimensional systems for tur-
bulence control. One of these techniques is to control flow
turbulence by coupling only one component of the velocity
field in the Navier-Stokes equations to a target dynamics,
which can be a spatially periodic and temporally varying
analytical solution of the Navier-Stokes equations, or a tur-
bulent orbit that is different from the response system. It is
hoped that this technique might lead to practical application
to flow control since in reality it is often more convenient to
control fluid flows by a selected velocity component. Con-
trary to previous findings[10,11,17,19,21–25], it is found
that the whole velocity fieldsu,vd cannot be completely
controlled/synchronized to the target through the pinning
control of one component of the vector field, even in the
limit of long control time and strong coupling strength. The
control was characterized in terms of control error versus

time and the time-averaged control error versus the coupling
strength. Since the control error approaches a small nonzero
constant, the present phenomenon can be regarded as a par-
tial control/synchronization. Further analysis reveals that the
controlled component of the velocity, i.e., theu field, actu-
ally can be fully controlled/synchronized to the target, but
the componentv, which does not directly couple to the tar-
get, can only be partially controlled/synchronized. Therefore,
the present finding provides an example of controllability of
flow turbulence which demonstrates different characteristics
from many other distributed dynamic systems and extends
our knowledge in this research direction.
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