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Controllability of flow turbulence
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In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional
Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of
turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally
coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the
dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the
limit of long time and strong coupling strength. It is further revealed that the controlled component of the
velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly
coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary
method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study
can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.
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I. INTRODUCTION tems, the dimension of the unstable manifold is usually as

The past decade has witnessed a blossoming in the inve%rge as the number of the positive Lyapunov exponents of
tigation of chaos control and the synchronization of low- (€ system, which in many situations increase linearly with

dimensional nonlinear dynamic systems governed by mapg‘e size of the system. In order to achieve successful control/
or ordinary differential equation®DES [1-5]. Despite the synchronization of such spatiotemporal chaos, generally the

fact that chaos is sensitive to initial conditions, which causeéwmber of controllergor control signals needed is of the

any two neighboring chaotic orbits to diverge exponentially©rder of the Lyapunov dimension of the dynamic system. On

in the state space during time evolution, it is discoveredt® Other hand, from the practical point of view, it is always

contrary to our intuition that chaotic dynamics can be generSjeslrable to achieve control of the spatiotemporal chaos by

ally controlled to a desired periodic target by carefully se.using as few controllers as possible. Therefore, the study of

lected, small perturbations. The target dynamics could be ontghgnﬁgﬁﬁgﬁﬂgﬂycgf high-dimensional dynamics is of funda-

of the unstable periodic orbits inherently embedded in a At present, however, little is known about the controlla-

strange attractor, or a stationary/periodic orbit, or even ang;jiry of infinite dimensional systems, i.e., systems described
othgr d|ffe_rent chgotlc orbit. The last situation |s.convent|on—by nonlinear PDEs. Although earlier numerical examples
ally investigated in terms of chaos synchronization. So far, 10-27 haveindicatedthat infinite dimensionalPDE) sys-
variety of control strategies, such as the one proposed by Otfems are controllable, in fact, these computational demon-
Grebogi, and Yorkg6], time-delay feedback scheme, peri- strations are done with the truncation of the original PDE
odic perturbation, and adaptive scheme, to name just a fewystems because one can only directly deal with finite dimen-
have been successfully applied in achieving chaos contraional systems on a computer. Therefore, the controllability
[4]. On the other hand, different scenarios of chaos synchrosf infinite dimensional systems remains a challenge. A gen-
nization, such as complet@entical or exagtsynchroniza- eral speculation is that, it is impossible tolly control a
tion (CS), generalized synchronizati@g®S), partial synchro-  system with infinite number of positive Lyapunov exponents
nization (PS, phase synchronization, and lag syn-by using a finite number of controllers. Nevertheless, the
chronization, have been classified and investigated bothbovementioned impossibility does not discourage the effort
theoretically and experimentall§8,5]. The synchronization in exploring practical control of infinite dimensional sys-
can be regarded as a special means of chaos control. Thems, such as fluid dynamics, governed by the Navier-Stokes
controllability of low-dimensional systems is well estab- equations. After all, all valuable simulations done in compu-
lished through the Lyapunov exponent spectrum analysis. tational fluid dynamics are based on truncated systems. The
Recently, ideas and strategies originated from the contratelebrated Lorenz model actually is derived from a model of
and synchronization of low-dimensional chaotic systemdluid convection rolls by a dramatical simplification which
have been gradually extended to various high-dimensionainly retains three modd28]. The point is that, one should
systemg7], such as the large ensemble of chaotic oscillatorde very careful when drawing a conclusion from computa-
described by coupled map lattices and array of chaotic osciltional results.
lators [8,9], as well as the spatially extended systems natu- Flow control is of great scientific significance and eco-
rally described bydiscretizedpartial differential equations nomic impact. In fact, what is really required is just a partial
(PDE9 [10-26. On the one hand, in these distributed sys-control of fluid motion by either passive or active means for
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the purpose of drag reduction or for the suppressionflesired targets in the sense that the control error is bounded
enhancement of turbulence. By using an angular momentuay a small constant, but not zero. This situation does not
injection scheme, it was shown that the vertical componenimprove with the increase of the coupling strength. Further
(v) of a wake turbulence velocity field could be effectively analysis reveals that the component, which is directly
controlled[29], while the horizontal componeiit)) was left  coupled to the control signals, actually can be completely
unchecked. Control of two-dimension@D) turbulent flow  controlled to the target, whereas, thheomponent fails to do
was achieved in our earlier woil6] by using the pinning  so, though it is coupled to via the Navier-Stokes equations.
control strategy developed for chaos confft2—14. How-  |n the framework of synchronization, it is shown that this
ever, in such a study, the control was imposed on bothuthe phenomenon further can be characterized in terms of gener-
andv components of the flow field and the number of con-4jizeq synchronization by using the response-auxiliary sys-
trollers is compatible with the degree of freedom of the trun-o . method. Therefore, our work shows that @S com-
cated system. In practice, it is both convenient and useful t%ared to complete synchronizatjooan also be observed

control a single _compo_nent.of the ﬂQW field, such as ex.peribetween two identical coupled PDE systems when the cou-
mental settings in the lid driven cavity and buoyancy Olrlvenpling between them is insufficient. It is believed that the

cavity [30]. Sometimes, appropriate boundary control couldpresent findings not only enhance our understanding of

lead to intricate pattern formation in nonlinear P . AT
Chaos controlpvia a single component in a co&ﬁegt]j multi_control/synchronlzatlon in distributed systems, but also shed
light on the real-world turbulence control.

component system is a common practice in the nonlineal X X ) )
dynamics community. For example, in a linearly coupled . This paper |s_organ|zed as follows_,. In the following sec-
system of Lorenz oscillators, the controllability can be as-tion. the dynamic model and numerical method are briefly
sessed by eigenvalue analysis. It has been shown that t€scribed. In Sec. Ill, the control of flow turbulence to a
synchronization of chaos can be achieved by controlling angPatially periodic pattern, and the synchronization between
of the three componen{81]. The same idea has been suc- o different turbulent orbits by using unidirectional pinning
cessfully implemented in several cases of chaos control angPupling, are considered. The results are presented there.
synchronization in coupled PDE systems Moreover, the relation between the present case and partial
[10,11,17,19,21-25 For example, it has been successfully §ynphron|zat|pn, as well as the ggnerallzed synchronization,
implemented to control spatiotemporal chaos in 144617  is discussed in Sec. IV. A conclusion ends the paper.
and semiconductof17,19,21 systems. In both cases the
time-delayed feedback control only applies to a variable field Il. THE MODEL AND NUMERICAL METHOD
that is easily accessible in experiment. In R¢2-25, it o . ]
has also been shown that in certain reaction-diffusion sys- For simplicity, in the present study we investigate the con-
tems, control or synchronization of spatiotemporal chaos caH©! of flow turbulence described by the two-dimensional
be observed by coupling only one concentration field beNavier-Stokes equations. The dynamics of two-dimensional
tween the driving and response systems. Remarkably, ddrbulence, which eX.thItS many interesting features, differs
demonstrated in Ref$21,24,25, the whole spatiotemporal fundamentally from its three-dimensional counterg@g].
dynamics can even be successfully controlled by adding pe#S research is of importance to the understanding of geo-
turbation of scalar time series to only one degree of freedonRhysics, meteorology as well as magnetohydrodynamics. In
of the spatially extended system. the framework of direct numerical simulation, we consider
Therefore, it is interesting to examine the controllability the two-dimensional Navier-Stocks equations,
of turbulent flow governed by Navier-Stokes equations via 1
the single component control and using the pinning control U+ Uy + ouy = — py+ R—(uxx+ Uyy), (1)
strategy originated from chaos control. Our interest of con- N
trolling real-world turbulence from the perspective of chaos
control is motivated by the following facts. It is well known
that real-world turbulence represents the most complicated
spatiotemporal dynamics. Till now, the control of flow turbu- , ) . .
lence remains a challenging task in many scientific and en\LYIth the incompressible condition acting on the whole flow
gineering fields[32]. It is believed that turbulence control field
could benefit from the lessons in chaos control, which has W+v.=0 (3)
been intensively studied in the last decade. With so many oy
aforementioned successful examples in chaos control, onghere(u,v) is the two-dimensional velocity vector fielg,
might take it for granted that by applying the pinning control the pressure, Re the Reynolds number, and the subscripts
only to eitheru or v component of the flow velocity field, the denote the derivatives. The flow is bounded in a square do-
whole velocity field(u,v) could be completely controlled to main[0, 2] X [0, 277] with doubly periodic boundary condi-
the target, i.e., a spatially periodic and temporally varyingtions. To solve the incompressible Navier-Stokes equations
velocity field, or another turbulent orbit in our study. How- within the turbulence regime, the choice of an appropriate
ever, the findings in the present work indicate that this is nottumerical scheme is particularly important due to the lack of
the case for the dynamic system of flow turbulence. Unlikea governing equation for the pressure field, while the veloc-
the previous finding$17,22,23, it is found that the whole ity fields are over determined. In the present work, the spatial
velocity field (u,v) can only be partially controlled to the and temporal discretization are carried out by applying Fou-

_ 1
Uit Uvg+ovy=—Py+ R_e(Uxx+ Uyy)v )
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FIG. 1. The flow turbulence to be controll¢the response systgmContour plots showing the evolution of the vorticity figld=v,
—Uuy) at (a) t=5, (b) t=10, (c) t=30, (d) t=50, respectively. The initial energy and the enstrophy are 0.10 and 2.50, respectively.

rier pseudospectral method and the Adams-Bashforth-Cranlte satisfy Eq.(4) with ky=5.0. The time incremenAt is
Nicolson scheme, respectively. The above numerical schemghosen to be 0.0025 and 28&56 grid points are used
ensures divergence-free velocity fields and has the spectréN,=N,=256). The total integration length is 50, which cov-
precision for spatial discretization and second order precisioers several hundreds of initial eddy turnover time. The typi-
for time integration. Its validity has been extensively testedcal dynamic characteristics of two-dimensional turbulence,
[16,34,35. such as the formation, interaction, and evolution of coherent
It is shown that the dynamics of freely decaying two- vortices, are shown in Fig. 1. Here, following the conven-
dimensional turbulence depends on the initial conditionstion, the turbulence field is visualized in terms of vorticity
Usually the initial conditions are given in Fourigwave  contours. All the numerical results have been confirmed by
numbej space such that the initial energy spectrum satisfiesising different grids and time increments.
certain desired formi36]. Two commonly used initial energy
spectral profiles are
2 IIl. CONTROL OF TURBULENCE
E(k,0) ~ ke W, (4)
The viability and effectiveness of controlling flow turbu-
E(k,0) ~ e (Kkg?. (5) Ie_nce by using c_ha(_)s control strategies_, such as global pin-
ning and local pinning, have been studied recefil§]. In
Here the constark, is an adjustable constant for the wave the present work, we further show that the turbulent dynam-
number at which the energy spectrum peaks. ics governed by the Navier-Stokes equations can be partially
The parameter settings in the current simulation are asontrolled to certain spatially periodic target by only cou-
follows. The dynamics of Eqg1)—(3) is set at the turbulent pling one velocity component, i.e., thex component of the
regime by taking Re=5000. For the response system, i.e., theelocity field, to the counterpart of the target. This is moti-
fluid system to be controlled, the initial conditions are takenvated by the fact that in experiments controlling one compo-
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FIG. 2. The spatially periodic targgi) the vorticity mesh(b) the vorticity contour(c) the contour ofu, (d) the contour ofv.

nent of the velocity field could be easier than controlling the vr(Xy,t) =y Sin(kx)cos(ky)e—Zth/Re, 7)
whole velocity field. To this end, we apply the pinning con-

trol, which is a basic and commonly used strategy in the _ i _ _
control of spatiotemporal chaos, wherek is the wave number taking an integer vallee 1 in

the present study and y is a constant which is chosen as
f(u,ur) = —e(u—-uy), (6)  0.05in this study. In Fig. 2, the mesh and contour plot of the
target is shown. Fot<5, the response system E¢%)—(3)

to the right-hand side of Eql), with uy being the corre- freely evolves without any control. This ensures that the sys-
spondingx component of the velocity field of the target, and tem yasses the transien): stage ;'ind enters the turbulen)t/ re-
e€>0 the coupling strength. It is notable that in this control P 9

. . me. The coupling term Eq6) then is switched on at the
scheme, the perturbations or the control signals, are onl ) : .
added to thex component of the velocity field. The gght—hand side of Eq(1), denoting the control of the

divergence-free condition E@3) is effectively maintained x—c%r1n ponent ?ft.thi Vﬁ Ioc_:lty f;'ﬁ? ' ; ith
under the present perturbation. One may reasonably thin#roI h:sasél;nnps?ujgiei v?/li\:lho:eos eﬁtrti)sgr?en(s:?)usyﬁnen;tvrv; (t:r?n-
that the whole velocity field could be changed by this pertur—_l_h ter studied in th X i kp 9 fg
bation, but to what extent it converges to the target is yet to_ € pararI]e er studied In the present work ranges feom
be ascertained. =0.01 toe=10. It is found that with small coupling strength,
roughly e<0.05, the weak control cannot convert the turbu-
lent dynamics to the periodic target. Nevertheless, this very

A. Periodic target small perturbation acting as a driving force can direct the

The target we considered is a spatially periodic and temdynamics to another turbulent orbit. For instance, Fi@) 3
porally varying analytical solution of the Navier-Stokes Shows a turbulent state under small control, which is totally

equationg34] different from Fig. 1d), the state without any control. When
X €=0.05, it is observed that the dynamics of the response
ur(x,y,t) = — y cogkx)sin(ky)e 2 URe, system can be partially controlled to the target. Figure 3
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FIG. 3. The partial control of turbulence. The contour plots of the vorticity field of the response system with contréData) €
=0.01,(b) €=0.05,(c) €=0.1,(d) €=0.5.
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shows that the turbulence in the response system can par-
tially converge to the spatially periodic target when the cou-
pling strength is strong enough.

In order to characterize this partial control of the turbu-
lence, we define the control error between two vorticity ©
fields at a specific time as

NNy 1/2
o,(t) = > [Ao(,j 0P €)
NNy i=1j=1 (@)
whereAw(x,y,t)=w(X,y,t) - w(X,y,t), andi, j are the grid 0.4 {3\ lj\/ﬂﬁ
indices. In the case of complete control, we should have | e ‘ o ‘
o} 1 T 202 0 0.25 0.5

. 0.2 f 1 g0

limo,(t) — 0. 9

o ‘ K

Figure 4a) characterizes the partial turbulence control in 05 25 45 0 -

terms of the control error defined above. If we compare Figs. ., t @ 0 2 4 . 6 8 10
3 and 4a) with the results of the pinning control of the
whole vector field(u,v) in Ref. [16], immediately we can FIG. 4. Characterizing the control of turbulence to a spatially

identify several differences. First of all, it is clearly shown periodic target. The control error vs time f@ the vorticity, (b) u,
that in the present case the dynamics of the response systemd(c) v. (d) The time-averaged control error far(the circlg and
cannot be completely controlled to the target. Instead, it (the diamong, respectively.
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could only be partially controlled to the target if the coupling - ' = =
strength is strong enough. By partial control, we mean that
the control error between the response and the target system
is bounded by a small but nonzero number. However, the [ ©
control error does not decrease monotonically with the in- B
crease of the coupling strength. There exists a moderately L ;
large coupling strength, approximately aroul0.1, which
turns out to be the optimal value for the control. For instance, g ]
))&
vorticity contours in Fig. 3 further confirms that &t 0.1 the
controlled vorticity Fig. 8c) closely resembles the target Fig.
2(b), showing the best control effect among all the coupling
strengths. Second, by regression analysis, it is found that the 0 . . / .
2 3 4 5 6
ity, the control error approaches a small nonzero constant,
instead of zero in the case of complete confid], i.e., @
lim o,t) —c, (10 ] <<
t—o,e—00
with c=0.24 here. It should be pointed out that the existence
of an optimal control strength has already been found in 3 .
reaction-diffusion system employing time-delay feedback
[17,19,21, where generally the successful control only oc-
curs between a lower and an upper limit of the control i /
strength. Nevertheless, there are some differences between j <
these findings and the current result. In R¢1§,19,21, the ‘
0 1 2 3 4 5 6
complete convergence to the target state is impossible, only , , , .
partial control can be obtained. The optimal control here re- 6f ;
fers to the best convergence to the target. Furthermore, the
control scheme in the present study is different from that in _ .
Refs.[17,19,2]. ) C
The feature of the present control deserves further analy-
sis. Since in the present study only thkeomponent of the E ]
velocity field is directly under control, naturally we would

although initially, the control error a¢=0.1 decays slower

control error which characterizes the convergence between (@ o 1
target states can be completely stablized. The optimal control

like to check the control efficiency of the and v fields 3

than that whene>0.1, in a later time, its value can be

two dynamic orbits no longer decays exponentially with re-

is achieved when the control signal vanishes and the largest 0

separately. This can be done by analyzing the control error

between the corresponding components between the target

and the response system. Specifically, we compute the con-

trol error o, and o, by replacingAw in Eg. (8) with Au

=u(x,y,t)—ur(x,y,t) and Av=v(x,y,t)-vr(X,y,t), respec- i ]
0 1 2 3 4 5 6

%)

N

N

—_

smaller than that whee>0.1 as shown in Fig. (4). The

spect to time. Finally, in the limit o& approaching the infin-

Lyapunov exponent reaches its minimum. In our case, the (b)
tively. The control errors versus time with different coupling

strength are shown in Figs(l¥) and 4c). We found that for 0
thex component, the control error decreases monotonically ©
with the increase of the coupling strength. In the limit of FIG. 5. Contour plots ofu at t=50 for different coupling
strong coupling strength, the control error approaches zeratrength.(a) e=0.05.(b) €=0.1.(c) e=0.5. Compared with the tar-
Moreover, for a given coupling strength, the control errorget Fig. 2c), the complete convergence ofto the target can be
reaches zero as long &ss large enough. Although the total achieved when the coupling strength is large enough.

velocity field (u,v) cannot be completely control to the target

as shown in Fig. 3, Fig.(®) reveals that th& componenu,  has been plotted for certain typical coupling strength, indi-
which is directly coupled to the target, actually convergescating the full convergence of thecomponent to the target
completely to the target. This complete convergence can bghown in Fig. 2c)] when the coupling strength is large
further confirmed in Fig. 5, where the evolution of the fiald enough.
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On the other hand, however, as shown in Figc)Athe

control of they componentyv turns out to be a different 6 @ @ (
scenario. The control error does not decrease monotonically

with the increase of the coupling strength. There is an opti- Sr

mal coupling strength at which the componentis most

efficiently controlled to the target. When the coupling 4t -
strength is further increased to a large enough value, the

control error finally approaches a nonzero small constant. 5l O @
Therefore, for they componenty, it can only be partially 1
controlled to the target. Figure 6 shows the partial control of

the y componentv to the target shown in Fig.(8). The 2

above dynamic features of the partial control of turbulence

can be better demonstrated in Figdy where the time- 1t

averaged control errors versus the coupling strength for both

u andv are plotted. Clearly it is illustrated that the time- ﬂ

averaged control error af decreases monotonically to zero (@) 00
with the increase of the coupling strength. Notably, the time-
averaged control error ofy oscillates in the interval

[0.01,0.5, reaches the minimum at abo&t 0.1, and gradu- K/_j U
ally approaches a constant wher 0.5. Based on the above
analysis, we conclude that in the present flow system, by
applying control to only one component of the vector field,
the dynamics of the response system cannot be fully con-
trolled to the target, even in the regime of strong coupling.
This finding is fundamentally different from previous ones
[10,11,17,19,21-25 Moreover, it is also different from the
study in Ref[16], where the pinning control is applied to the
whole velocity field. An example comparing these two con-
trol strategies is shown in Fig. 7.

03

B. Turbulent target

Next, we control the turbulent dynamics of the response
system into another turbulent orbit. In fact, the control of

chaos using unidirectional coupling is equivalent with the - w w A
synchronization between the dynamics of two Syst§aTs.
When the target is chaotic, chaos control is more natural to ! |

be understood in terms of synchronization. We follow this
convention to describe this second example in the framework

(2]

[é)]

of synchronization. The turbulent target is also generated 4r
from Egs.(1)—3), but the initial conditions satisfy Eq5)

with ky=3.0. Figure 8 shows the evolution of the vorticity of 3r
this target. It is different from the turbulence of the response

system as shown in Fig. 2. Similarly, only tkReomponenti 5

—_

o

of the velocity field in the response system is unidirectionally |
driven by the target system through coupling term ).
Once again, it is found that the turbulent dynamics of the i
response system can only be partially synchronized with the m m
target. Figure 9 characterizes this partial synchronization in m ' m

terms of the synchronization error defined in E8). In Fig. @©@o 1 2 3 4 5 6

9(a), it is shown that when the coupling strength is large FIG. 6. Contour plots ofy at t=50 for different coupling

enough, the synchronization error of the vorticity betweenstrength (@) €=0.05.(b) e=0.1.(c) e=0.5. Compared with the tar-
two systems becomes bounded and decreases with t|m&et Fig. 2d), v only partially converges to the target.

However, even in the strong limit of the coupling strength,

this synchronization error cannot approache zero; instead ihe whole velocity vectors between the response and target
approaches a small nonzero constant. Similar to the first exsystems. In addition, comparing Fig. 9 with Fig. 4, we found
ample, Figs. @) and 9c) reveal that thex componenti does  that generally a stronger coupling strength is needed to syn-
fully synchronize with the target, while the component chronize the dynamics of the response system with the tur-
fails to do so. This accounts for the partial synchronization ofulent target than the spatially periodic one. We have care-
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2 ' ' only be partially converged to the target. Note that in our
control configuration, the field does not directly couple to
the target. Our results thus imply that there exist certain dy-
namic systemgsuch as fluid systempsn which complete
control of the dynamics cannot be achieved by controlling
only part of its state variables. It is reported recently that a
pair of fully resolved quasi-2D fluid models will synchronize
only when the small-scale/high-frequency components of the
flow are coupled[38]. In other words, only when all the
active degrees of freedom in such a fluid system are coupled,
can the fluid dynamics be completely synchronized. This re-
sult is consistent with our findings in the present study.

(@)

IV. DISCUSSION OF THE RESULTS

In the framework of chaos synchronization, it is interest-
ing to compare the present findings with the existing syn-
chronization scenarios, especially the PS and the GS, in cha-
otic systems. The PS refers to the situation between two
dynamic systems where some state variables are completely
(or in practical sengesynchronized, but othersat least ong
are not[39,4(0. According to this definition, the phenomenon
found in this study apparently belongs to this category. It
should be pointed out that in the literature, the terminology
PS sometimes also refers to the clustering phenomenon oc-

FIG. 7. Comparison the effectiveness of two different controlcurring in large ensembles of coupled chaotic oscillators
strategies. One is to control bothand v (1), the other is only  [41-43. The present results are not relevant to this situation.

u

O &C

(b)

controlu (Il). e=0.5 in both casega) The control errors of vortic- The GS is another well known synchronization phenom-
iFy. (b Thg control errors ofi andv. The solid line and the dashed engn in chaotic systems, in which the dynamics of the drive
line coincide. and the response system does not coincide; instead they are

asymptotically related44]. The question naturally arises is:
fully examined the evolution of the field and found that in  what is the relation between PS and GS? Since so far there
this case only wheia> 0.5 can the componentbe regarded are no strict mathematical definitions for these concepts, we
as synchronized with the target in a practical sense. This isan only understand the relation between them qualitatively.
confirmed in Figs. &) and 9c), where the synchronization Conceptually, these two concepts overlap somewhat. In cer-
error of u decreases to nearly zero and the synchronizatiotain cases of PS, if the unsynchronized state variables are
error of v becomes bounded, approaching a small constarbtally uncorrelated(generally this is hard to detect, but
when e>0.5. Thus the critical coupling strength in the casesometimes it can be characterized by Lyapunov exponents as
of turbulent target is roughly one order larger than that in then Ref.[39]), the two systems would be regarded as pure PS,
case of a spatially periodic target. In this sense, it is mordut not GS. In other cases of PS, if there exists certain func-
difficult to control the system into a turbulent target than intotional relation between the unsynchronized state variables of
a spatially periodic one. Another important point illustratedtwo systems, this PS could also belong to the case of GS.
by Fig. 9¢), compared with Fig. &), is that the synchroni- One effective way to detect GS in low-dimensional chaos
zation error approaches a smaller constant, roughly 0.065 igynchronization is the auxiliary system meth@db5], in
the second example. This implies that in the limit of longwhich a replica of the response system, but with different
time and strong coupling strength, the dynamics of wvo initial condition, is simultaneously driven by the same driv-
fields can be more “correlated” than in the case of spatiallying system. Therefore, the usual complicated functional rela-
periodic target. In other words, the two turbulent orbits cantion between the dynamics in the driving and response sys-
move “closer” than between a turbulent orbit and a spatialltems, i.e., the GS, can be effectively detected in the state
periodic target as in our first example. This feature is furtheispace of response and auxiliary systems as complete syn-
manifested in Fig. @), where the time-averaged control/ chronization. In the present study, we extend this method to
synchronization errors versus the coupling strength for theletect the GS between spatially extended systems. Due to the
two different targets are plotted for a comparison. Clearly, innature of extremely high dimensions in the present study, it
both cases, the control/synchronization errors ofufeeld  is impossible to check the dynamics in all the spatial sites
approach zero with the increase of the coupling strengthbetween the response and auxiliary systems as in[Réf.
showing the full convergence of the fields between the However, certain space-averaged global quantities, such as
target and the response system. But for thdield, the the global synchronization error defined in E&) can be
control/synchronization errors approach small nonzero coneonveniently used to detect GS. If the spatiotemporal dynam-
stants in the strong coupling limit, showing tbefield can  ics between the driving and response systems achieves GS,

066214-8



CONTROLLABILITY OF FLOW TURBULENCE PHYSICAL REVIEW E69, 066214(2004

B %] (2]

w

() °

=

0 \ ; ; i 0 i ; ; { , ¢
(c) O 1 2 3 4 5 6 (d O 1 2 3 4 5 6

FIG. 8. The flow turbulence in the drive system. Contour plots showing the evolution of the vorticity figygtats, (b) t=10, (c) t
=30, (d) t=50, respectively. The initial energy and the enstrophy are 0.10 and 2.31, respectively.

FIG. 9. Characterizing the syn-
chronization of two turbulent or-
bits. The synchronization error vs
time for (a) the vorticity, (b) u,
and (c) v. (d) The time-averaged
synchronization error fou (the
0.4 T T circle), andv (the diamongl re-
spectively. The time-averaged
control errors in the first case are
also plotted in dotted lines for
o 02 T em e o3 comparison.
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0.15 - . . . the full synchronization between two flow systems. It turns
out that flow systems are more difficult to control in the
| above sense.
0.1 I. 1 For infinite dimensional dynamic systems, it is desirable
3 '.| to use as less as possible controllers to achieve the complete

© control. This is of great importance from the point of view of
0.05 control efficiency in practice. To this end, one method is to
reduce the number of local controllers, as demonstrated in
0 Refs.[12—-14,16. Another method is to control a single com-

ponent in the multiple-component dynamic systems, which is
commonly used in controlling low-dimensional systems as
(a) t well as high-dimensional systeni40,11,17,19,21-235 In
the present paper, using pinning feedback strategy, we show
that full control of flow turbulence cannot be achieved by the
second method, while it is successful in the first metfidg.
This finding implies that although the above two methods are
both designed to reduce the dimensionality of the control
signals, the results might be essentially different.

In the present work, we only focus on the pinning feed-
back control strategy for the controlling of flow turbulence.
It should be pointed out that there are other prevalent tech-
niques which have been successfully developed in taming

5 15 o5 35 45 spatiotemporal chaos, for example, _the time—delay.feedback
[10,11,17-21,24,25 and the forcing or entrainment

(b) t [9,24,28. These methods have some advantages, such as no
) _ predesigned target needed and easily implemented in experi-

FIG. 10. Detecting the GS between two turbulent orbits. The,on: For the time-delay feedback strategy, it usually works
synchronization errors ai) u and(b) v. The solid lines, the syn- - \q|'in the dynamic systems which have an inherent charac-
chronization error between the drive and the response system; g, o time seale so that the delay time can be appropriately
das_h_ed lines, the synchronization error between the drive and th&etermined. For example, in many reaction-diffusion sys-
auxiliary system. tems, there exist unstable traveling wave solutions in the

asymptotically the global synchronization errors between thé€9ime of spatiotemporal chaos. However, the coupling of
driver and the response, which is a time series, will gradually?ydrodynamic modes in turbulence is quite complicated
converge to that between the driving and auxiliary systemgusually studied in Fourier spacand is fundamentally dif-
Therefore, the global synchronization error between the ref€rent from the reaction-diffusion systems. Generally there is
sponse and auxiliary systems will approach zero after lond}® such a c_hara@c?erlstlc time scale _for flow turbulence.
time evolution. We used this method to check whether thel herefore, it is difficult to apply the time-delay feedback
partial synchronization in this study is GS or not. The resultcontrol method to flow systems. In our numerical experi-
are shown in Fig. 10, where the global synchronization error§1€Nts, we have also tried the forcing strategy in order to
between the response and auxiliary systems clearly show tfyPPress turbulence. We considered two situations. In one
trend towards zero when time approaches infinity. Thereforecase, a temporally sinusoidal perturbation is globally added
the present synchronization phenomenon can also be undéf. the flow field; in th_e other case, the feedback pertL_era_\tlon
stood in terms of GS. is chosen as proportional to the square of the velocity field.
It is well known that for the coupled nonidentical dy- In_the first case, we observe that generglly the perturbation
namic systems, either parametrically different or physicallydf'ves the flow system to be unstable._Th|s is understandaple
different, GS is generally expected to be observed, but CS i€nNce such homogeneous perturbation has every Fourier
forbidden. On the other hand, for the coupled identical dy-mode, thus drives the flow at each scale. In the second case,
namic systems, CS is the usual outcome. Recently in Refdn€ forcing does change the turbulent field, but seems diffi-
[47,49, it is shown that GS can also take place in two Cult to tame the turbulence, sometimes even enhanc&_as it. In
coupled identical ODE systems before the coupling becomel&@ct, turbulence usually can be enhanced and sustained by
strong enough to achieve CS. Our findings in the prese,ﬁwtable_local forcmg in Fourier spa¢é9]. How to choose
work further demonstrate that the GS could also occur be@PPropriate forcing form so that flow turbulence can be sup-
tween two unidirectionally coupled identical PDE systems. |tPressed or tamed deserves further systematic investigation
should be pointed out that the GS in Refé7,49 happens and will be addressed elsewhere.
when the coupling is weak. However, in the current case, the
GS can take place even in strong coupling strength, but the
coupling itself is not sufficient in the sense that only one
component of the vector field is directly linked to the target. In the present work, the controllability of real-world flow
As a result, even the strong coupling strength fails to achievéurbulence has been theoretically investigated by employing

0.4

V. CONCLUSION AND DISCUSSION
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the strategies developed in the domain of chaos control. Thiégme and the time-averaged control error versus the coupling
purpose of the work is to reexamine the validity of somestrength. Since the control error approaches a small nonzero
chaos control techniques that have been shown to be succes#nstant, the present phenomenon can be regarded as a par-
ful in low and moderately high-dimensional systems for tur-tial control/synchronization. Further analysis reveals that the
bulence control. One of these techniques is to control floweontrolled component of the velocity, i.e., thefield, actu-
turbulence by coupling only one component of the velocitya|ly can be fully controlled/synchronized to the target, but
field in the Navier-Stokes equations to a target dynamicsihe component, which does not directly couple to the tar-
which can be a spatially periodic and temporally varyingget can only be partially controlled/synchronized. Therefore,
analytical solution of the Navier-Stokes equations, Or a Wrhe hresent finding provides an example of controllability of
bulent orbit that is different from the response system. It o trhylence which demonstrates different characteristics

hoped that this FeCh’?iq“e r_nig_ht_ lead to practical app_licatior}rom many other distributed dynamic systems and extends
to flow control since in reality it is often more convenient to our knowledge in this research direction.

control fluid flows by a selected velocity component. Con-
trary to previous finding§10,11,17,19,21-25 it is found
that the whole velc_Jcity fieldlu,v) cannot be comple?el){ ACKNOWLEDGMENTS
controlled/synchronized to the target through the pinning

control of one component of the vector field, even in the This work was supported by the National University of
limit of long control time and strong coupling strength. The Singapore, the Temasek Laboratories at National University
control was characterized in terms of control error versuf Singapore, and Michigan State University.
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