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In this work, we study the variation of critical point in aging transition in a networked system

consisting of both active and inactive oscillators. By theoretical analysis and numerical simulations,

we show that the critical point of aging transition actually is determined by the (normalized) cross

links between active and inactive subpopulations of oscillators. This reveals how specific

configuration of active and inactive oscillators in the network can lead to the variation of transition

point. In particular, we investigate how different strategies of targeted inactivation influence the

transition point based on the theory. Our results theoretically explain why the low-degree nodes are

crucial regarding dynamical robustness in such systems. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4881215]

The robustness of a networked dynamical system, i.e., the

ability to maintain basic structure and function under

attacks or dysfunctions, is vital in practice. It has been

shown that the huge blackouts, which inevitably cause

tremendous economic loss, are related to the cascading

failure of power-grids.
1

Such structural robustness

involving network connectedness has been intensively

investigated in previous works.1–3 On the other hand, net-

worked systems typically carry dynamics, for example,

the circadian rhythms of mammals, the synchronization

of cardiac cells, etc. Of equal importance is the dynamical

robustness, i.e., the ability of a networked system to

maintain its normal dynamical activity when the topology

or the local dynamics are under perturbations.4–7 In this

aspect, the study on aging transition in networked oscilla-

tors is helpful for better understanding. Here, we report

the variation of critical point in aging transition and offer

explanation via theoretical analysis.

I. INTRODUCTION

Complex systems in nature and human society usually

comprise a large number of interacting individual elements,

such as synchronizing fireflies,8 neurons in human brain,9 car-

diac pacemaker cells,10 power grids,11,12 and Josephson junc-

tion arrays,13 just to name a few. These dynamical systems can

be naturally modeled by networked oscillators.14 One impor-

tant issue of interest is the collective behaviors in such systems,

e.g., synchronization and amplitude death, etc.,14 which are

closely related to the robustness of dynamical systems.1–4,6,15

In Ref. 4, Daido and Nakanishi investigated a networked

dynamical system which simultaneously consists of active

and inactive oscillators. It is found that with the increase of

the ratio of inactive oscillators, which we refer to as inactiva-

tion, the macroscopic dynamical activity of the system,

measured by a global order parameter of amplitude,

decreases until it totally vanishes at certain critical point.

This phenomenon is termed aging transition. It is shown that

in aging transition, the critical point can be used to character-

ize the dynamical robustness of the networked system.4,6,15

In this study, we find an interesting phenomenon, i.e.,

there always exists variation of the critical point. In fact, for

transition phenomena in networked systems, it turns out that

the critical point often changes within certain range. In most

cases, this is attributed to the small deviations caused by dif-

ferent numerical realizations, including initial conditions,

and/or network topologies, etc. However, we found that the

critical point of aging transition varies even when the net-

work is totally homogeneous like a regular one, and, in par-

ticular, the fluctuation could be large enough to significantly

change the robustness property of the system. Therefore,

there must be a dynamical mechanism, though ignored in

previous studies, which actually underlies this variation

of critical point. In this paper, we carried out theoretical

analysis and numerical experiments to understand this

phenomenon.

Specifically, by applying mean-field approximation and

linear stability analysis, we show that the normalized cross

links between the subpopulations of active and inactive

oscillators play a dominant role for the variation of critical

point. Specific inactivation processes lead to different nor-

malized cross links, which, in principle, change the critical

point more or less. Based on theoretical analysis, we can

explain why the variation in heterogeneous networks is more

obvious than that in homogeneous networks for usual ran-

dom inactivation. In particular, our theory enables us to ana-

lyze the dynamical robustness, characterized by the critical

point of aging transition, for typical strategies of targeted
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inactivation. We offer an explanation why the low-degree

nodes are crucial for dynamical robustness in this system as

reported in Ref. 6. These results shed light on how to main-

tain the stability of networked systems under dynamical

perturbations in practice.

The rest of this paper is organized as follows: Sec. II

introduces the dynamical model; theoretical analysis and

numerical verification are presented in Sec. III; finally, con-

clusions are given in Sec. IV.

II. MODEL

In this work, we investigate a dynamical model of net-

worked oscillators. It has following features: (1) the dynami-

cal system is described by coupled oscillators; (2) there are

two types of oscillators in the system, namely, active and

inactive. When isolated, the active oscillators are oscillating

(limit cycles) while the inactive oscillators are non-

oscillating (fixed points). Note that the inactive oscillators

could become oscillating and the active oscillators could

become non-oscillating when they are coupled together; (3)

the coupling among oscillators forms a network. The general

form of this dynamical model can be written as

_xj ¼ FjðxjÞ þ r
XN

k¼1

cjkðxk � xjÞ: (1)

Here, j ¼ 1; � � � ;N is the index of oscillator (node). x is the

state vector describing the dynamics of oscillators. The first

term at the RHS of Eq. (1) describes the local dynamics of

an oscillator, and the second term is the interactions among

different oscillators via diffusive coupling. r is the coupling

strength. cjk is the element in the adjacent matrix of coupling

network, which equals to 1 if nodes j and k are connected,

and 0 otherwise. It should be pointed out that similar models

have been studied previously. For example, aging transition

in such models was investigated in fully coupled network in

Ref. 4, and later in regular ring in Refs. 16 and 17. Recently,

the study of this model has been extended to various com-

plex topologies.6,15

In the present work, we mainly choose the Stuart-Landau

(SL) oscillators as the local dynamics, following Refs. 4, 16,

and 17. Specifically, the networked SL oscillators can be

described by the following coupled ordinary differential

equations (ODEs):

_zj ¼ ðaj þ iXj � jzjj2Þzj þ r
XN

k¼1

cjkðzk � zjÞ; (2)

where zj and Xj are the complex amplitude and the inherent

frequency of the jth SL oscillator, respectively. aj is the con-

trol parameter denoting the distance from the Hopf bifurca-

tion point. When aj> 0, the oscillator is a limit cycle with an

amplitude
ffiffiffiffi
aj
p

. However, it settles down to a fixed point

when aj< 0. Thus, the (isolated) oscillator is active when

aj> 0 and inactive when aj< 0. In other words, the oscillator

will lose its activity as its a value changes from positive to

negative. This can be used to model the two distinct dynami-

cal states of oscillators. We define parameter q as the

proportion of inactive oscillators in the network. Reasonably,

the global activity of the networked system can be character-

ized by the normalized order parameter Q, defined as

Q ¼ hQðtÞi ¼ hjZðqÞj=jZð0Þji with Z ¼ N�1
PN

j¼1 zj. Here,

the bracket means the long time average after transient. As q
increases to a critical value qc, the networked system will

gradually lose its global activity. Q continually decreases

until finally Q¼ 0 at qc, i.e., an aging transition occurs as

shown in Fig. 1. Because the ratio qc is the largest ratio

with which the dynamical system can maintain global activ-

ity, it can be reasonably used as a quantitative measure to

characterize the dynamical robustness this networked

system.4,6,15–17 The larger the qc, the better the dynamical

robustness.

For simplicity, we set X1 ¼ X2 ¼ � � � ¼ XN ¼ X
throughout this paper. For parameter a, we set aj¼ a> 0 for

all active oscillators, and a¼�b< 0 for all inactive oscilla-

tors. This means they are identical within their own sub-

groups. Of course, aj can obey other kinds of distributions

rather than binary case. In fact, we have examined several

typical distributions of aj such as Gaussian and uniform. It is

found that the transition point is actually determined by

parameter q, i.e., the ratio of the inactive oscillators in the

system, regardless of the specific distributions of aj, as

shown in Fig. 1. Without loss of generality, in the following

we only consider the situation where a takes binary values.

Besides SL oscillators, we also consider the following

networked R€ossler oscillators in this paper:4

_xj ¼ �yj � zj þ r
XN

k¼1

cjkðxk � xjÞ;

_yj ¼ xj þ gjyj þ r
XN

k¼1

cjkðyk � yjÞ;

_zj ¼ dj þ zjðxj � ejÞ þ r
XN

k¼1

cjkðzk � zjÞ;

(3)

FIG. 1. The aging transitions of three typical a distributions on a small-

world network. For binary distribution, a¼ 1, b¼ 1; for uniform distribution

and Gaussian distribution, the mean a varies from 3 to �3. The uniformly

distributed a varies in a range of length 6, and a of Gaussian distribution has

the standard variance 1. System size N¼ 500, the mean degree hKi ¼ 50,

r¼ 0.1, and X¼ 3. The results are averaged over 100 times, and the same

results have been obtained in scale-free networks and regular lattices.
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where x, y, z are the state variables of R€ossler oscillator,

and g, d, e are parameters. In this system, there are also

two types of oscillators by choosing different parameters,

i.e., g¼ d¼ 0.2, e¼ 1 for active oscillators (limit cycles)

and g¼ d¼�0.2, e¼ 2.5 for inactive oscillators (fixed

points). To quantify the global activity, the order parameter

can be defined as Q ¼ hQðtÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxc � hxciÞ2i

q
, where

xc ¼
PN

j¼1ðxj; yj; zjÞ=N is the centroid and the bracket means

a long time average after transient. Essentially, the defini-

tions of order parameter Q for SL oscillators and R€ossler

oscillators are the same, i.e., they represent the amplitude of

macroscopic oscillation of the networked system.

Throughout this work, numerical integrations are obtained

by the fourth order Runge-Kutta method with time step 0.01

with random initial conditions, i.e., uniformly distributed in

the range [0, 1]. The order parameter Q is calculated by aver-

aging on the time interval [100, 200].

III. ANALYSIS AND RESULTS

In our study, we find an interesting phenomenon, i.e.,

even for fixed network topology and coupling strength, the

critical point qc varies within certain range, depending on

specific inactivation process, i.e., the temporal sequence of

converting active oscillators into inactive ones, or more pre-

cisely, the configuration of active and inactive oscillators in

the network. Typical examples are shown in Fig. 2. We

observe variation of critical points qc in both heterogeneous

and homogeneous networks. To quantify this feature, in

Fig. 3, we plot the variance of qc when the network topology

continuously changes from heterogeneous to homogeneous.

It is found that for random inactivation this fluctuation is

more obvious in heterogeneous networks than in homogene-

ous networks (with Poisson degree distributions). In the fol-

lowing, we present both theoretical analysis and numerical

verification to understand this phenomenon.

A. Linear stability analysis

We start from Eq. (2). When q¼ 0, the system contains

only identical active oscillators. In this case, it will easily

achieve global synchronization as the coupling strength

increases. When we randomly choose some active nodes and

change them into inactive states, the proportion of inactive

nodes q becomes greater than 0, and the system contains

both active and inactive oscillators. Such a process is called

random inactivation. Throughout this paper, it is adopted by

default unless otherwise stated.

Usually, the non-trivial aging transition would only

occur when the coupling strength is large enough,4 so before

the transition all the active oscillators already well syn-

chronize into a cluster, and so do the inactive ones. We use

SA and SI to denote the active and inactive subpopulations,

respectively. Numerically, the synchronization is found to

be approximately complete, and one example has been illus-

trated in Fig. 4. Following Ref. 4, approximately we can

use one single complex variable A to represent the state of

all active oscillators, and I to represent the state of all

inactive oscillators, respectively. Then the original high-

dimensional dynamical system, i.e., Eq. (2), can be essen-

tially reduced as

FIG. 2. Fluctuations of the transition points qc in networked system of SL oscillators with random inactivation. To study the influence of network topology on

transition point, a simple but effective method is used to continuously change the homogeneity/heterogeneity of a network. The detail of the algorithm is explained

in the Appendix. Here, p is the parameter controlling the homogeneity/heterogeneity of the network. As p goes from 0 to 1, the network continuously changes

from a heterogeneous scale-free network to a homogeneous network with Poisson degree distribution. N¼ 500, hKi ¼ 50, r¼ 0.1, a¼ 2, b¼ 1, and X¼ 3.

FIG. 3. Variance of qc versus parameter p in networked system of SL

oscillators. Inset is the mean value of qc for 500 random inactivation proc-

esses, while the network topology is fixed. N¼ 500, r¼ 0.1, a¼ 2, b¼ 1,

and X¼ 3.
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_A ¼ ðaþ iX� jAj2ÞAþ rljKjðI � AÞ; (4)

_I ¼ ð�bþ iX� jIj2ÞI þ rð1� ljÞKjðA� IÞ: (5)

Here, Kj means the degree of oscillator j, and lj is the pro-

portion of inactive oscillator among the neighbors of oscilla-

tor j. Summing the equations of all active and inactive

oscillators, we obtain

_A ¼ ðaþ iX� jAj2ÞAþ rðI � AÞ
ð1� qÞN

X
j2SA

ljKj; (6)

_I ¼ ð�bþ iX� jIj2ÞI þ rðA� IÞ
qN

X
j2SI

ð1� ljÞKj: (7)

In the above equations, the summing terms at the RHS, i.e.,P
j2SA

ljKj and
P

j2SI
ð1� ljÞKj, both represent the total

number of cross links, denoted by L, i.e., the links between

subpopulations of active oscillators and inactive ones.

Actually they are the same in different expressions. To avoid

the influence of network size, we define the normalized cross

links as k ¼ L=N ¼
P

j2SA
ljKj=N ¼

P
j2SI
ð1� ljÞKj=N.

Then Eqs. (6) and (7) become

_A ¼ ðaþ iX� jAj2ÞAþ rkðI � AÞ
ð1� qÞ ; (8)

_I ¼ ð�bþ iX� jIj2ÞI þ rkðA� IÞ
q

: (9)

From these equations, we find that the network topology

actually affects the global dynamics through parameter k.

Now, we analytically study how parameter k can lead to var-

iation of the critical point in aging transition, thus affecting

the dynamical robustness of such system. With the increase

of control parameter q, the dynamics of the networked sys-

tem will gradually lose global activity, i.e., Q ! 0 when q
! qc. At the transition point, the networked system loses

its stability and in the mean time the trivial fixed point

z0¼ (A, I)¼ (0, 0) becomes stable. By a linear stability anal-

ysis, we obtain the critical point qc as

qc ¼
ab� rðaþ bÞkþ ½abþ rðaþ bÞk�

ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

2ab
; (10)

with b ¼ 4rab2k=½abþ rðaþ bÞk�2. For typical dense com-

plex network, k � 1. Therefore, b is a small quantity. We

apply Taylor expansion to
ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

in Eq. (10) and keep the

linear term. It finally becomes

qc ¼ 1� rb

ab=kþ rðaþ bÞ : (11)

B. Analysis to the variation of critical point

Equation (11) shows how qc, i.e., the transition point,

depends on k, i.e., the number of normalized cross links,

given that the parameters of the local dynamics and the cou-

pling strength are fixed. Apparently, there is a maximal value

qmax
c ¼ 1 when k! 0. With the increase of k, qc will monot-

onically decrease. When k ! 1, qc approaches the minima

qmin
c ¼ a

aþb, as shown in Fig. 5. Physically, this can be under-

stood. Since there are both active and inactive local states in

the network, the interaction or influence between the two

subpopulations are crucial for the global activity. The nor-

malized cross links k just characterize this interaction. For

example, when it is large, there exists strong interaction

between the two subpopulations of active and inactive oscil-

lators. As a result, a small critical value qc can be expected

in aging transition.

Now we explain why the critical point qc varies even

when the network topology is fixed. Let us analyze the phase

diagram on the parameter panel of q-k. As shown in

Fig. 5(a), Eq. (10) defines the curve of bifurcation, i.e., the

boundary of two areas corresponding to distinct dynamical

states of the system. In the upper right area, the networked

system is in the quenching state losing global activity; while

in the bottom left area, it is in active state oscillating to some

extent. The active state loses its stability when the system

passes through the curve Eq. (10). For a specific inactivation

process, k is a function of q. Actually, k(q) is a unimodal

FIG. 4. (a) The evolution of amplitude jziðtÞj in a homogeneous network (p¼ 1) with N¼ 50. q¼ 0.5<qc, hKi ¼ 10, r¼ 0.1, a¼ 2, b¼ 1, and X¼ 3. The col-

our bar denotes the magnitude of amplitude. (b) The global order parameter (Q(t)), and the order parameters of active (RA(t)) and inactive (RI(t)) subpopula-

tions in a heterogeneous network (p¼ 0). For RA(t) and RI(t), the definitions are the same as Q(t) (see the text for the definition of Q(t)), but the summation is

taken over the subpopulations of active and inactive oscillators, respectively. It is shown that the oscillators inside either subpopulation achieve synchroniza-

tion (RA¼RI¼ 1), but the whole system does not achieve global synchronization (Q< 1). Here, N¼ 500, hKi ¼ 50, r¼ 0.1, a¼ 2, b¼ 1, and X¼ 3. For both

(a) and (b), SL oscillators are used.
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function satisfying k(0)¼ k(1)¼ 0, as shown in Fig. 5(a).

The curve k(q) intersects the bifurcation curve Eq. (10), and

the crosspoint determines the critical point qc. The key point

here is that k(q) is actually a multi-valued function of q.

Given q, even when the network topology is fixed, k could

be different depending on the specific configuration of active

and inactive oscillators in the network. Therefore, for differ-

ent inactivation processes with the same q, we will get dif-

ferent curves k(q), which intersect with the bifurcation curve

defined by Eq. (10) at different points. This is the reason

why we always observe the variation of critical point in nu-

merical simulations.

Naturally, one may want to know which inactivation

process will give the maximal qc or the minimal qc, i.e., the

variation scope of qc, given the network topology.

Interestingly, this problem can be mapped into the ground

state problem of anti-ferromagnetic Ising model or the

MAX-CUT problem in combinatorial optimization.18–20 It

has been proven that the solution of these problems in gen-

eral networks is a NP-Complete problem, i.e., we cannot find

an effective algorithm to determinate it in polynomial

time.18 Since analytical method is not available to get the

variation scope of qc, we turn to numerical study. To this

end, we numerically plot the possible curves k(q) on the pa-

rameter panel of q-k. The two crosspoints that define the

largest range on the axis of q roughly gives the fluctuation

range of qc. As shown in Fig. 5(b), it is found that k(q) for a

heterogeneous network has a much larger variation area

compared to a homogeneous network. Therefore, more

obvious variation of qc is observed in the former case.

Physically, this result can be heuristically understood. We

know that the variation of qc is caused by the multi-valued

k(q), which depends on specific inactivation processes.

Compared with homogeneous networks, there are huge dif-

ferences among the node degrees in the heterogeneous net-

work, so it is not difficult to imagine that k would vary more

in the latter case when random inactivation process is

applied.

One may think that the variation is induced by the non-

uniform degree distributions of networks. It may vanish

when the network is exactly homogeneous, i.e., every node

has the same degree. To verify whether it is correct or not,

let us examine an example in the following. Consider a regu-

lar ring network where all oscillators have the same degree

K, as schematically shown in Fig. 6(a). Then let us do the

inactivation in two different ways. Due to the simplicity of

the topology, the normalized cross links k(q) in these cases

can be easily estimated. (1) Indexed inactivation: Flip the

oscillator from active to inactive in sequence, i.e., 1! 2

! 3! � � � as in the schematic example. Apart from the

short periods of starting and ending stages, k1¼K(Kþ 2)/

4N. (2) Random inactivation as we have discussed above:

k2� q(1 � q)K. The above analysis is illustrated in Fig.

6(b). It is seen that these two k(q) curves in Fig. 6(b) inter-

sect with the bifurcation line at different points, giving dif-

ferent qc for each case. The transition points at the same q
but with different inactivation processes vary even on regular

ring network. Based on our theory, we understand that this is

due to the difference of normalized cross links induced by

different configurations of oscillators in the network. The

above analysis has been verified by our numerical simula-

tions as shown in Fig. 6(a). Here, we point out that our theo-

retical predictions are only qualitatively consistent with the

numerical results because synchronization in case 1 is

approximate.

The above example emphasizes the importance of the

configuration of oscillators in networks. As one application

of the theory, we now consider the case of targeted inactiva-

tion rather than random activation in network. This situation

is closely related to the dynamical robustness of networked

systems. In Ref. 6, it has been reported that under targeted

inactivation the dynamical robustness of the system,

FIG. 5. The q-k parameter panel for networked SL oscillators. (a) The solid black line is the bifurcation curve defined by Eq. (10); the red dashed line is the

curve k(q) for a specific inactivation process (p¼ 1); and the blue dotted dashed line corresponds to the order parameter. Inset compares the theoretical result

of qc with that of numerical experiments. (b) The solid black line is the same as in (a); the blue area shows the variation area of k(q) curve in heterogeneous

network (p¼ 0), while the red area corresponds to that in homogeneous network (p¼ 1). Other parameters are the same in both (a) and (b): N¼ 500, hKi ¼ 50,

r¼ 0.1, a¼ 2, b¼ 1, and X¼ 3.
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characterized by the critical point in aging transition,

depends more on the low-degree nodes rather than the hubs.

This important finding reveals the crucial role of the low-

degree nodes in the context of dynamical robustness. Based

on our analytical treatment, we can provide an explanation

here. In our study, we apply three typical strategies of inacti-

vation: (1) Inactivation goes from the node with the maximal

degree to the one with the minimal degree; (2) Inactivation

takes the inverse order of (1); (3) Random inactivation. For

all inactivation strategies, we increase q from 0 to 1.

Physically, this means that all the active oscillators in the

network will be gradually changed into inactive ones.

Numerical results for both networked SL oscillators and net-

worked R€ossler oscillators are shown in Fig. 7. In both situa-

tions, qc under strategy 1 is always greater than that under

strategy 2, regardless of the heterogeneity/homogeneity of

the network topology. Because larger qc implies good dy-

namical robustness, this result, counterintuitive somehow,

shows that the networked system is more robust when the

targeted inactivation starts from the hubs rather than the

low-degree nodes.

To understand the result, we plot the curves k(q) on

the k-q parameter plane. As shown in Fig. 8, for q¼ 0 all

oscillators are active, while for q¼ 1 all oscillators are

inactive. In both cases, k¼ 0. Apart from these two points,

all other k should be greater than 0. For random

inactivation, i.e., strategy 3, it can be expected that k has

the maxima approximately at q¼ 0.5. Thus, in this case

the curve k(q) is unimodal and approximately symmetric

with respect to 0.5. For strategies 1 and 2, the correspond-

ing k(q) curves are still unimodal, but not symmetric with

respect to 0.5. Interestingly, inactivating all initially active

oscillators (q goes from 0 to 1) with strategy 1 is just the

inverse process of activating all initially inactive oscilla-

tors with inverse strategy 2 (q goes from 1 to 0), so

actually the two k(q) curves with strategies 1 and 2 are ba-

sically the same if q goes from 0 to 1 for the former and

from 1 to 0 for the latter. Considering these three inactiva-

tion strategies, it is not difficult to figure out that with the

increase of q, curve 1 increases much faster than curve 2

(and curve 3 is in between) because in strategy 1 the inac-

tivation starts from the hubs, and it rapidly leads to large

k. Similarly, the curves decrease oppositely when q
approaches 1. Since the bifurcation curve defined by Eq.

(10) intersects with the k(q) curves at the decreasing stage

when q is close to 1, we have q1
c > q3

c > q2
c , as shown in

Fig. 8. The above analysis successfully explains why the

global dynamics is the most vulnerable when inactivation

starts from the low-degree nodes. It should be pointed out

that this situation is quite different from the case of struc-

tural robustness, where usually the hubs play an important

role.

FIG. 6. (a) Fluctuation of transition points in strictly regular ring network under two different inactivation strategies. (b) k(q) curves corresponding to (a) inter-

sect with the bifurcation line (solid black line). The legend in (b) is the same as in (a). Networked SL oscillators are used with parameters r¼ 1.0, K¼ 20,

N¼ 100, a¼ 2, b¼ 1, and X¼ 3.

FIG. 7. Dynamical robustness charac-

terized by qc under three typical strat-

egies of inactivation. (a) Networked

system of SL oscillators. r¼ 0.1,

a¼ 2, b¼ 1, and X¼ 3. (b) Networked

system of R€ossler oscillators.

g¼ d¼ 0.2, e¼ 1 for active oscillators

and g¼ d¼�0.2, e¼ 2.5 for inactive

ones. r¼ 0.002. Other parameters are

the same for (a) and (b): N¼ 500,

hKi ¼ 50.
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C. Random inactivation

In the above analysis, the only limitation for the network

topology is that it should be dense enough so that the nor-

malized cross links k � 1, and there is no requirement for

the strategy of inactivation. Thus, the above result holds for

general inactivation processes. In fact, in our study, we find

for random inactivation, Eqs. (8) and (9) can take another

forms, and the theoretical treatment can be simplified.

We notice that in principle for different oscillator j, Kj,

and lj are not necessarily the same. However, they must sat-

isfy the constraint
P

j Kj=N ¼ hKi and
P

j lj=N ¼ q over all

the nodes when the network is fixed. Let lj¼ qþ nj, where

nj is the deviation of lj from its mean value. Normally, a

node with larger degree Kj would have smaller deviation.

For random inactivation in a dense network, the active and

inactive oscillators are mixed evenly, it is reasonable to

expect that jnjj / 1=Kj and lj distributes symmetrically

around its mean value. And the distributions of lj in active

and inactive subpopulations will be approximately the same

as in the whole system. Thus, we have
P

j2SA
njKj ¼

P
j2SI

njKj ¼ 0. Substitute it and lj¼qþ nj into the expression

of k, we get k ¼ L=N ¼
P

j2SA
ðqþ njÞKj=N ¼ q

N

P
j2SA

Kj,

and k ¼ L=N ¼
P

j2SI
½1� ðqþ njÞ�Kj=N ¼ ð1�qÞ

N

P
j2SI

Kj.

Substitute these relations into Eqs. (8) and (9), we get

_A ¼ ðaþ iX� jAj2ÞAþ rqKAðI � AÞ; (12)

_I ¼ ð�bþ iX� jIj2ÞI þ rð1� qÞKIðA� IÞ; (13)

where KA ¼ 1
ð1�qÞN

P
j2SA

Kj and KI ¼ 1
qN

P
j2SI

Kj are the

mean degrees of active and inactive subpopulations, respec-

tively. Similarly, by applying linear stability analysis, we

can analytically obtain the critical point qc as

qc ¼
abþ raKI

rðaKI þ bKAÞ
: (14)

From this equation, we can immediately find that the critical

point qc are determined by the mean degrees of active and

inactive subpopulations in the case of random inactivation.

The point is, even though the mean degree of the whole

network is fixed, there is still some degree of freedom for KA

and KI as long as they satisfy the following constraint:

qKI þ ð1� qÞKA ¼ hKi: (15)

On the parameter panel of KA-KI, only part area can satisfy

this condition, as shown in Fig. 9. In particular, parameters KA

and KI not only are related to the network topology but also to

the specific strategy of inactivation. Usually, each different

realization results in different KA and KI, causing the variation

of qc observed above. We can see in Fig. 9 that our theoretical

result is qualitatively consistent with the numerical verifica-

tions in both networked SL system and R€ossler system.

Extensive numerical results have shown that Eq. (14) is valid

as long as the mean degree is large enough, e.g., hKi � 40.

Furthermore, a trivial solution always exists for Eq.

(15), i.e., KA ¼ KI ¼ hKi. In this circumstance, Eq. (15)

degenerates as

qc ¼
aðbþ rhKiÞ
ðaþ bÞrhKi : (16)

In a strict sense, this result only holds for very homogene-

ous network. In this case, the critical point qc only involves

the mean degree hKi, which means that for random

FIG. 8. Identifying the critical points under three typical strategies of inacti-

vation in networked system of SL oscillators. The meanings of curves are

the same as in Fig. 5. p¼ 1, and other parameters are the same as in Fig. 7.

FIG. 9. qc as a function on the panel of KA-KI. The white area means that KA and KI cannot satisfy the constraint Eq. (15). (a) Theoretical result (SL oscillators)

with fixed coupling strength and mean degree. (b) Numerical results for networked SL oscillators. (c) Numerical results for networked R€ossler oscillators.

p¼ 0, N¼ 500, hKi ¼ 50. Other parameters are the same as in Fig. 7.
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inactivation in homogeneous networks the variation of criti-

cal point is almost neglectable. However, as we have shown

before, the variation of critical point induced by different

inactivation strategies still exits even in a regular ring.

Interestingly, Eq. (16) coincides with one situation investi-

gated in Ref. 6, where Eq. (16) is derived by a different

approach. Moreover, Eqs. (14) and (16) can recover Eq. (4)

in Ref. 4 when the topology is globally connected; and

under the strong coupling limit, Eq. (16) can reproduce the

results in Refs. 5 and 21. Therefore, all these studies pro-

vide insights from different perspectives into the variation

of critical point in aging transition.

IV. CONCLUSION

In this work, we investigated the variation of critical

point in aging transition. For a networked system with both

active and inactive oscillators, we found that the critical

point of aging transition varies even thought the coupling

strength and the network topology are fixed. By analytical

treatment and numerical experiments, we successfully

explained why this variation occurs and how it relates to

the normalized cross links determined by the specific con-

figuration of active and inactive oscillators in the network.

We further studied the dynamical robustness under three

strategies of targeted inactivation. The result revealed that

the global dynamics in this system is the most vulnerable

when inactivation starts from the low-degree nodes, rather

than the hubs. The present work provided helpful under-

standing of transition phenomena in networked systems.

It might also shed light on designing effective strategies

to enhance/destroy the dynamical robustness in real

circumstances.
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APPENDIX: METHOD TO TUNE THE NETWORK
TOPOLOGY

Previously, there are several methods to change network

topology from homogeneous to heterogeneous.22,23 For

example, the degree distribution of network can be tuned

between exponential and power-law. However, in the present

work, we expect a much wide tuning range that the degree

distribution of homogeneous network could be Poisson form

or even approximate Delta function. So we propose a simple

but effective method for this purpose. The main idea is to

gradually rewire edges from an initially heterogeneous net-

work. Here, are the main steps: (1) Generate a heterogeneous

network using the strategy of preferential attachment, i.e.,

newly added edges have more chance to connect to nodes

with large degree. Typically, a network with power law

degree distribution can be obtained using this strategy which

is called BA (Barab�asi-Albert) network;24 (2) Choose an arbi-

trary edge and compare the degrees of its both ends; (3)

Disconnect the edge from the node with higher degree and

randomly rewire it to a node in the network. We define the

rewiring probability p as the number of edges rewired nor-

malized by the total number of edges in the network. When p
varies from 0 to 1, a heterogeneous scale-free network gradu-

ally converts into a homogeneous one. It should be empha-

sized that by homogeneous here we mean its degree satisfies

Poisson distribution, rather than strictly regular network.

Numerically, this has been verified. Therefore, p is the

parameter that can control the extent of heterogeneity/

homogeneity in a network. In our simulations, we have also

started from other scale-free networks with power law expo-

nents between 2 and 3 (the BA network has a power law

exponent of 3), but the results are qualitatively the same.
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