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Abstract

This paper explores the use of the Fourier–Bessel analysis for characterizing patterns in a circular domain. A set of
stable patterns is found to be well-characterized by the Fourier–Bessel functions. Most patterns are dominated by a principal
Fourier–Bessel mode [n, m] which has the largest Fourier–Bessel decomposition amplitude when the control parameter R is
close to a corresponding non-trivial root (ρn,m) of the Bessel function. Moreover, when the control parameter is chosen to be
close to two or more roots of the Bessel function, the corresponding principal Fourier–Bessel modes compete to dominate
the morphology of the patterns. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The continued miniaturization of electronic de-
vices leads to a new realm of nanostructures, such as
functional ceramics, functional films, supermolecular
electronic packages, magnetic storage devices and
polymeric drug delivery systems that exhibit novel
electronic, superamolecular and magnetic properties.
Quantum well and quantum dot devices are already
widespread. Recently, much effort has been devoted
to the design of quantum wires and quantum dots
with specified properties. The nanotechnology of
the future will require the creation and control of
nanostructures at desirable shape, desirable size and
desirable arrangement of functional groups. A gen-
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eral strategy for controlled self-assembly of spherical
and cylindrical supermolecules has been recently re-
ported [1]. What is most relevant to our work is the
boundary effects in the design and control of nanos-
tructures. It is well understood that the boundary of
a nano-device plays an extremely important role in
the global properties of the device. Moreover, the
self-organization process of nano-device formation
can be controlled by a confining boundary. It has been
reported that boundary-confined polymerizations can
lead to thin films which possess dramatically dif-
ferent properties from those of ordinary polymers
[2].

There are different schools of thinking for the theo-
retical description of nanoscale devices and formation
of nanoscale patterns. The ideal approach is based on
the quantum mechanical first principle, which, in fact,
can be used for the estimation of certain statistical
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properties. However, for the dynamics of pattern for-
mation, the required computations are formidable for
the commonly available computer resources at present.
In particular, pattern formation involves mass (den-
sity), momentum, and energy transport, which is far
beyond the computational power of the foreseeable fu-
ture. Statistical treatment in terms of density operators,
such as the BBGKY theory (derived from the first prin-
ciple), provides a conceptual basis for visualizing the
dynamical process of pattern formation. However, the
more involved nonlinear integrodifferential equations
in terms of the phase space variables are still impossi-
ble to solve at present. In contrast, phenomenological
theories are generally suitable for a qualitative de-
scription [3–5]. One of the most commonly used theo-
retical model is the Cahn–Hilliard equation [6,5,8,20],
which is similar to the Kuramoto–Sivashinsky equa-
tion [7]. In its dimensionless form, the dynami-
cal evolution of a conserved scalar order param-
eter describing the phase separation and pattern
formation of a binary system (A + B) is given
by

∂Ψ

∂t
= 1

2
∇2(−∇2Ψ − Ψ + Ψ 3), (1)

where Ψ (r, t) (−1 ≤ Ψ (r, t) ≤ 1) is the conserved
scalar order parameter. Usually it is chosen to be the
difference between local densities of the components
A and B.

In the previous work, we carried out a theoreti-
cal study of the boundary-controlled nanoscale pat-
tern formation, using the Cahn–Hilliard equation as a
mathematical model [9]. A circular geometry was cho-
sen as the computational domain. The objective was to
simulate the experiments conducted over spheres and
cylinders [1]. A discrete singular convolution (DSC)
algorithm [10] was utilized for the numerical inte-
gration. Extensive high-precision simulations gener-
ated a new class of patterns resembling molecular
self-assembly.

The purpose of this paper is to analyze patterns
generated in the circular domain. Conventional meth-
ods for pattern analysis is often based on the Fourier
transform. In particular, the (Fourier) power spectrum
is useful for describing energy distribution and the

density of states of physical systems in Rn. How-
ever, in the circular domain, a natural basis is the
Fourier–Bessel functions [18]. A complementary ap-
proach for pattern characterization is the wavelet
analysis [11–15]. Recently, wavelet analysis has been
used to analyze fractals and their associated dynam-
ics. Moreover, wavelet packets are found to be useful
for local characterization of turbulence and pattern
recognition. In the field of pattern formation, due
to the multiscale nature of patterns, wavelet trans-
forms are regarded as “the bridge between theory and
experiment” [3]. It not only allows us to extract phys-
ical information from experimental and computed
patterns, but also provides us a convenient method to
detect and locate pattern defects. In this study, we will
focus on the use of Fourier–Bessel analysis for char-
acterizing the stable patterns. Quantitative wavelet
analysis and characterization of the spatio-temporal
patterns will be presented elsewhere.

This paper is organized as follows. Section 2 is de-
voted to a brief description of numerical experiments
and results of boundary-controlled patterns. Typical
stable patterns are given as the background material
for pattern characterization. Symmetry analysis is per-
formed for the stable patterns. Fourier–Bessel analy-
sis is conducted in Section 3. For the Cahn–Hilliard
equation in the circular domain, the Fourier–Bessel
decomposition not only provides a natural means for
“eigenmode” analysis, but also releases dynamical in-
formation, such as modal selection and competition.
This paper ends with a conclusion.

2. Patterns of ordered states

2.1. Numerical aspects

In a circular domain, it is necessary to carry out the
integration of the Cahn–Hilliard equation (1) in the
polar coordinates (r, θ), so that the O(2) symmetry is
preserved. The involved biharmonic operator

∇4 = ∂rrrr + 2r−1∂rrr − r−2∂rr + r−3∂r + 2r−2∂rrθθ

−2r−3∂rθθ + 4r−4∂θθ + r−4∂θθθθ , (2)

generates artificial singularities up to the fourth order
at the origin. Moreover, nonlinear terms may lead to
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additional complexity in the phase space. Therefore,
it is very challenging to integrate the Cahn–Hilliard
equation in the circular domain. We overcome these
numerical difficulties by utilizing a newly developed
DSC algorithm [10]. The DSC approach has both con-
trolled accuracy for maintaining integration stability
and the flexibility for handling complex boundary and
geometry [10,16]. It has been successfully used in the
integration of the sine-Gordon equation when the ini-
tial values are chosen to be close to the most excitable
homoclinic orbit [17].

The standard implicit Crank–Nicolson scheme is
used for time discretization. The nonlinear terms are
linearized by using a Newton-like technique. Coupled
collocation equations are solved at each time step
by a standard direct method. For all simulations, we
choose 32 and 64 grid points in the r and θ directions,
respectively. The DSC regularization parameters [10]
are set as σq/∆q = 3.8 (q = r, θ) in both directions.
The DSC bandwidth parameters are set to 30 in both
dimensions. The radius (R) of the circular domain
is used as the control parameter to regulate the pat-
tern morphology. A given random field, generated by
small amplitude noise (about 10−2) inside the circular
domain, is used as the initial values for all compu-
tations. Motivated by the underlying physics, we im-
pose the Dirichlet boundary condition (Ψ (r, t) = 0)

at the edge of the circular domain. Ordered state pat-
terns are generated by integrating Eq. (1) at a set of
selected control parameters, R, ranging from 1 to 13.
At each given radius, we integrate Eq. (1) up to 1000
time units, and some particular runs are integrated up
to 2000 time units to attain stable patterns. In order to
achieve the accuracy of spectral method level over the
circular domain, all the computations were extremely
expensive and time consuming in terms of computer
resources.

2.2. Symmetry analysis

Fig. 1 shows the 0–255 gray-scale plots of typical
patterns obtained from the numerical experiments. The
basic morphology of these patterns is concentric rings
of cells. Each cell can be regarded as an single-phase
domain of either component A or B, formed through

microphase separations. Notably, there are two in-
teresting symmetric aspects in the observed pat-
terns. The first is due to the conservation of order
parameter

∫∫
Ψ (r, θ, t)r dθ dr = 0 ∀t > 0. (3)

Therefore, the phase separation can only occur as
phase polarization with respect to the (r, θ) plane.
Moreover, if Ψ is an ordered state of the system, −Ψ

is also a possible ordered state of the system which has
the symmetric distribution of order parameter field as
that of Ψ . For example, the spatial distribution of the
pattern in Fig. 2(a) is a “mirror image” of the pattern
shown in Fig. 1(t), i.e., the distribution of order pa-
rameter fields of these two patterns are symmetric. In
fact, these two patterns correspond to the same con-
trol parameter R. Statistically, they should have equal
probability to appear if the time integration is suffi-
ciently long.

The other symmetric aspect involves geometric
symmetry of the ordered state patterns. First, we note
the existence of symmetric center (I) in all patterns
plotted in Fig. 1. There are also rotational symme-
tries (Cm) classified by m values in the gray-scale
plots shown in Fig. 1. For example, as shown in
Fig. 1(c), (l) and (s), m = 3 implies a 3-fold sym-
metry. Obviously the combination of symmetries of
the first type (Cm) and the second type (I) leads to
another symmetry of the second type (�v). Therefore,
patterns in Fig. 1 are of Cmv type. Further analysis
in Section 3 indicates that they predominantly con-
sist of certain Fourier–Bessel modes. For multi-ring
patterns, the number of cells in different rings are
usually the same, partially due to the Cmv symme-
try. However, in some rare cases the number of cells
in different rings could be different. For instance,
Fig. 8(c) depicts a pattern which has two rings of
cells. Unlike those patterns shown in Fig. 1, it has a
single cell in the inner ring and 10 cells in the outer
ring. Nevertheless, in both situations, the spatial dis-
tribution of the cells is interlacing, i.e., the signs of
the order parameter of any two neighboring cells are
opposite.
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3. Fourier–Bessel analysis

3.1. Theoretical background

Like the use of the Fourier analysis on the rectan-
gular domain, Fourier–Bessel analysis [18] is a pow-

Fig. 1. 0–255 gray-scale plots of typical ordered state patterns and the initial values: (a) [1,1] (t = 1000); (b) [1,2] (t = 1000); (c) [1,3]
(t = 1240); (d) [1,4] (t = 1000); (e) [1,5] (t = 900); (f) [1,6] (t = 1000); (g) [1,7] (t = 740); (h) [1,8] (t = 1000); (i) [2,0] (t = 580);
(j) [2,1] (t = 850); (k) [2,2] (t = 1000); (l) [2,3] (t = 1000); (m) [2,4] (t = 990); (n) [2,5] (t = 990); (o) [2,6] (t = 1000); (p) [3,0]
(t = 760); (q) [3,1] (t = 740); (r) [3,2] (t = 1000); (s) [3,3] (t = 1000); (t) [4,0] (t = 700); (u) the initial values. The corresponding
control parameters are listed in Table 2.

erful analysis tool in the circular domain. To illustrate
the uniqueness of the Fourier–Bessel analysis for the
present characterization, let us consider the linearized
stationary Cahn–Hilliard equation

∇2(∇2 + 1)Ψ̃ = 0. (4)
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Fig. 1. (Continued).
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Fig. 2. (a) 0–255 gray-scale plots; (b) mesh plots of the pattern at R = 11, t = 730; (c) mesh plot corresponding to the pattern shown in
Fig. 1(t).

Eq. (4) can be factorized as

∇2Ψ̃ = 0, (5)

(∇2 + 1)Ψ̃ = 0. (6)

Eqs. (5) and (6) are the Laplace equation and
Helmholtz equation, respectively. In polar coordi-
nates, by separation of variables Ψ̃ (r, θ) = Θ(θ)B(r),
both equations can be decomposed into

d2Θ

dθ2
+ m2Θ = 0, (7)

and the Bessel equation

r2 d2B

dr2
+ r

dB

dr
+ (r2 − m2)B = 0. (8)

Solution to Eqs. (7) and (8) are eimθ and the Bessel
functions, respectively. Hence, a general solution to
Eq. (6) can be expressed as

Ψ̃ (r, θ) =
∞∑

m=0

[AmJm(r) + BmNm(r)] eimθ ,

m = 0, 1, . . . , (9)

where Jm(r) and Nm(r) are the Bessel functions of the
first and second kinds, respectively. Since the circular
domain includes the origin, in order to avoid singu-
larity at the origin, Bm must be set to zero. Thus the
solution to Eq. (6) is

Ψ̃ (r, θ) =
∞∑

m=0

AmJm(r) eimθ , m = 0, 1, . . . , (10)
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i.e., the linearized stationary Cahn–Hilliard equation
has the solutions of the Bessel functions of the first
kind. In addition, a careful observation of the typical
patterns in Fig. 1 reveals that they resemble the trun-
cated Fourier–Bessel functions to a given radius in the
circular domain. The above analysis suggests that for
the full Cahn–Hilliard equation, stable solutions can
be expressed as a Fourier–Bessel series

Ψ (r, θ) =
∑
n,m

Zn,mΦn,m(r, θ) + c.c., (11)

where Φn,m(r, θ), [Φn,m(r, θ) = Jm(ρn,mr/R) eimθ

(m ≥ 0, n > 0)], is a Fourier–Bessel mode character-
ized by [n, m], and c.c. denotes the complex conju-
gate. Jm(ρn,mr/R) are the mth Bessel function of the
first kind [19] and ρn,m is its nth non-trivial root. Here,
Zn,m are the complex coefficients except for Zn,0, the
latter is real. The orthonormality and completeness of
the functions Φn,m(r, θ) provide

Zn,m = 1

πR2J 2
m+1(ρn,m)

×
∫ 2π

0

∫ R

0
Ψ (r, θ)Φ̄n,m(r, θ)r dθ dr,

m > 0, (12)

while the coefficients Zn,0 take half of the value given
by the above formula when m equal to zero. Here
the bar denotes the complex conjugate. Eq. (11) is
used for characterizing stable patterns in the circular
domain.

3.2. Modal decomposition

Since the linearized Cahn–Hilliard equation has the
Bessel function as a solution, it is expected that the
full solution to the Cahn–Hilliard equation would be
proportional to the Fourier–Bessel functions. This is
indeed the case. Each of the patterns in Fig. 1 actually
resembles a Fourier–Bessel mode. However, due to the
nonlinearity of Cahn–Hilliard equation and the Dirich-
let boundary condition used in the computations, the
possibility of pure Fourier–Bessel modes to be the so-
lutions of our model is generally ruled out. Therefore,
a quantitative analysis is required for the detailed com-

position of each pattern. This can be done by com-
puting the Fourier–Bessel decomposition (expansion)
coefficients Zn,m for each pattern plotted in Fig. 1.

Fig. 3 plots the decomposition amplitudes |Zn,m|
of the pattern in Fig. 1(c) corresponding to the largest
20 Fourier–Bessel modes. It is found that most of
the amplitudes are very small (below 10−2) except
that there are a few Fourier–Bessel modes whose
decomposition amplitudes are significantly large. Fur-
thermore, there is a dominant Fourier–Bessel mode
whose Fourier–Bessel decomposition amplitude is
much larger than the second largest amplitude and
other amplitudes. It is this dominant mode that de-
termines the morphology of the pattern. In Table 1,
the three largest Fourier–Bessel decomposition am-
plitudes are listed for all patterns shown in Fig. 1
except for Fig. 1(u). On an average, the largest am-
plitude is about 0.8, while the second largest ampli-
tude is usually below 0.1. We describe this dominant
Fourier–Bessel mode as the principal Fourier–Bessel
mode, which has the largest contribution to the pat-
tern. In Fig. 1, we have classified the typical patterns
according to their principal Fourier–Bessel modes in
terms of their “quantum number”, [n, m].

It is found that the morphology of the pattern is
mainly determined by the principal Fourier–Bessel
mode, whereas the contributions from the non-principal
Fourier–Bessel modes can slightly change the cells’
shape. Fig. 4(a)–(c) depicts three patterns which are
observed at the same control parameter R = 12.
Fourier–Bessel decomposition shows that the prin-
cipal Fourier–Bessel mode of these three patterns is
[3, 3] and two important non-principal Fourier–Bessel
modes are [2, 3] and [4, 3]. The picture of the pure
Fourier–Bessel mode [3, 3] is given in Fig. 4(d).
A comparison of these three patterns with the pure
Fourier–Bessel mode shows that the morphology of
patterns in Fig. 4(a)–(c) basically resemble that of the
pure Fourier–Bessel mode [3, 3], while the outer cells
in Fig. 4(b) and the middle ring in Fig. 4(c) are slightly
modified. Fourier–Bessel decomposition shows that
the corresponding Fourier–Bessel decomposition am-
plitudes of the principal Fourier–Bessel mode in
these three patterns are 0.705, 0.691 and 0.676, re-
spectively. This implies that the pure Fourier–Bessel
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Fig. 3. Fourier–Bessel decomposition of the pattern shown in Fig. 1(c). The 20 largest Fourier–Bessel decomposition amplitudes are sorted
in the decreasing order. The first four largest amplitudes are |Z1,3| = 0.837, |Z2,3| = 0.0746, |Z3,3| = 0.0623 and |Z4,3| = 0.0155,
respectively. The others are all below 0.01.

Table 1
The first three largest Fourier–Bessel decomposition amplitudes
for the patterns shown in Fig. 1

First Second Third

(a) |Z1,1| = 0.776 |Z2,1| = 0.117 |Z3,1| = 0.0324
(b) |Z1,2| = 0.853 |Z2,2| = 0.0769 |Z3,2| = 0.0262
(c) |Z1,3| = 0.837 |Z2,3| = 0.0746 |Z3,3| = 0.0624
(d) |Z1,4| = 0.893 |Z2,4| = 0.0807 |Z3,4| = 0.0102
(e) |Z1,5| = 0.762 |Z2,5| = 0.0895 |Z3,5| = 0.0519
(f) |Z1,6| = 0.791 |Z3,6| = 0.0919 |Z2,6| = 0.0475
(g) |Z1,7| = 0.848 |Z2,7| = 0.0417 |Z3,7| = 0.0258
(h) |Z1,8| = 0.906 |Z2,8| = 0.0438 |Z3,1| = 0.0170
(i) |Z2,0| = 0.496 |Z1,0| = 0.128 |Z3,0| = 0.106
(j) |Z2,1| = 0.719 |Z3,1| = 0.101 |Z4,1| = 0.0625
(k) |Z2,2| = 0.744 |Z3,2| = 0.0926 |Z4,2| = 0.0634
(l) |Z2,3| = 0.775 |Z3,3| = 0.0845 |Z4,3| = 0.0608
(m) |Z2,4| = 0.809 |Z3,4| = 0.0592 |Z4,4| = 0.0583
(n) |Z2,5| = 0.831 |Z3,5| = 0.0479 |Z4,5| = 0.0464
(o) |Z2,6| = 0.705 |Z4,6| = 0.0971 |Z3,6| = 0.0492
(p) |Z3,0| = 0.361 |Z1,0| = 0.0972 |Z4,2| = 0.0949
(q) |Z3,1| = 0.816 |Z4,1| = 0.0614 |Z2,1| = 0.0377
(r) |Z3,2| = 0.773 |Z1,2| = 0.0622 |Z2,2| = 0.0564
(s) |Z3,3| = 0.705 |Z4,3| = 0.151 |Z2,3| = 0.0924
(t) |Z4,0| = 0.513 |Z2,0| = 0.0969 |Z3,0| = 0.0794

mode contributes approximately the same to these
three patterns. We attribute the minor difference of
the morphology of the patterns to the existence of
many non-principal Fourier–Bessel modes. Another
interesting example is the pattern in Fig. 1(p). Al-
though the Fourier–Bessel decomposition amplitude
of the principal Fourier–Bessel mode is 0.361, which
is the smallest among all the amplitudes of principal
Fourier–Bessel modes listed in Table 1, the morphol-
ogy of the pattern is predominantly determined by
the principal Fourier–Bessel mode [3, 0], which is
shown in Fig. 5(a). In Fig. 5(b), we show the contour
plot for the difference between the computed pattern
Fig. 1(p) and the pure Fourier–Bessel mode [3, 0]. It
is found that the contribution from the non-principal
Fourier–Bessel modes only makes the edge of the
outer ring slightly rough. Apart from this minor
change, non-principal modes contribute very little to
the basic morphology of the pattern.

It is noted that the amplitudes of principal
Fourier–Bessel modes [n, 0] (n = 2, 3, 4) are
relatively smaller compared to those of the other



S. Guan et al. / Physica D 151 (2001) 83–98 91

patterns. The Fourier–Bessel decomposition ampli-
tudes for the principal Fourier–Bessel modes [2, 0],
[3, 0] and [4, 0] are |Z2,0| = 0.496, |Z3,0| = 0.361
and |Z4,0| = 0.513, respectively. Strictly speaking,
these patterns are complicated super-positions of
many Fourier–Bessel modes. For example, there are
19 Fourier–Bessel decomposition amplitudes that are
greater than 0.01 for the pattern shown in Fig. 1(p).
Fig. 6 depicts these amplitudes in their decreasing or-
der. It is also noted that the Fourier–Bessel decompo-
sition amplitudes of all non-principal Fourier–Bessel

Fig. 4. (a)–(c) Mesh and contour plots of three typical patterns observed at R = 12 and the corresponding principal Fourier–Bessel mode:
(a) t = 800; (b) t = 830; (c) t = 840; (d) pure Fourier–Bessel mode [3, 3].

modes are very small (less than 0.1). This phenomenon
is due to the fact that the Dirichlet boundary condition
leads to a boundary stress at the pattern edge, which is
not compatible to the principal Fourier–Bessel modes
of [n, 0] type.

3.3. Modal competition

The system tends to stabilize at a principal
Fourier–Bessel mode [n, m] when the control pa-
rameter R is close to the corresponding non-trivial
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Fig. 4. (Continued).

root value (ρn,m) of the Bessel function. A com-
parison of control parameter R used for obtain-
ing these patterns and theoretical values ρn,m

for corresponding principal Fourier–Bessel modes
[n, m] are listed in Table 2. Generally, theoreti-
cal predictions match the experimental results very
well. However, the discrepancy cannot be avoided
due to the nonlinear nature of the Cahn–Hilliard
equation and the Dirichlet boundary condition.
The order of appearance of the patterns with
increase in R is consistent with the well-known

interlacing property of the Bessel functions’ roots
[19]:

0 < ρ1,m < ρ1,m+1 < ρ2,m < ρ2,m+1 < ρ3,m · · · .

Moreover, for a given m value, when R is large, it
approximately takes a π increment in R to obtain the
pattern with one more ring of cells, i.e., the value of
n increases 1.

The question arises as to what happens if the con-
trol parameter R is simultaneously close to two or
more roots of the Bessel function. In such a case, the
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Fig. 5. (a) Pure Fourier–Bessel mode [3, 0]; (b) contour plot for the difference between the computed pattern shown in Fig. 1(p) and pure
Fourier–Bessel mode [3, 0].

Fig. 6. Fourier–Bessel decomposition of the pattern shown in Fig. 1(p). The 19 largest Fourier–Bessel decomposition amplitudes which
are greater than 0.01 are plotted by the decreasing order.
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Table 2
A comparison of control parameters R used for attaining stable patterns and the corresponding non-trivial roots, ρn,m of the Bessel function

m n = 1 n = 2 n = 3 n = 4

R ρ1,m R ρ2,m R ρ3,m R ρ4,m

0 – – 5.5 5.520 8.25 8.654 11.0 11.792
1 4.0 3.832 6.5 7.016 9.75 10.173 – –
2 5.0 5.136 8.0 8.417 10.875 11.620 – –
3 6.0 6.380 9.25 9.761 12.0 13.015 – –
4 7.5 7.588 10.5 11.065 – – – –
5 8.5 8.771 11.5 12.339 – – – –
6 9.375 9.936 12.5 13.589 – – – –
7 10.0 11.086 – – – – – –
8 11.375 12.225 – – – – – –

Fig. 7. Mesh and contour plots of two typical patterns at R = 6.5: (a) t = 920; (b) t = 1000.
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formation of patterns might be complicated by pos-
sible competition among different Fourier–Bessel
modes since the system can stabilize itself at either
principal Fourier–Bessel mode [n, m] or [n′, m′].
Thus numerically it is possible to observe two or
more different patterns at a given control parameter.

We illustrate a typical case in Fig. 7 — two ob-
served patterns attained at a single control pa-
rameter. Fig. 7(a) plots a pattern having principal

Fig. 8. (a)–(c) Mesh and contour plots of three typical patterns at R = 8.25: (a) t = 310; (b) t = 380; (c) t = 870; (d) a reconstructed
pattern which corresponds to the transient pattern (c).

Fourier–Bessel mode [2, 1] and Fig. 7(b) plots a
pattern having principal Fourier–Bessel mode [1, 3].
Their corresponding Bessel roots are ρ2,1 = 7.016,
and ρ1,3 = 6.380, respectively. Both roots are very
close to the control parameter used, R = 6.5. Two cor-
responding principal Fourier–Bessel modes [2, 1] and
[1, 3], compete to dominate the pattern morphology
during the numerical integration with R = 6.5. Many
similar cases are observed. For example, at R = 10,
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Fig. 8. (Continued).

three competing principal Fourier–Bessel modes are
[1, 7](ρ1,7 = 11.086), [2, 4](ρ2,4 = 11.065) and
[3, 1](ρ3,1 = 10.173). Nevertheless, in all cases, the
values of the control parameter R are qualitatively
consistent with the theoretical roots of the Bessel
functions. The intermediate patterns between two sta-
ble patterns are usually very irregular as the result
of bifurcation and spontaneous multi-mode excita-
tion. In addition, when n is sufficiently large, the
density of Fourier–Bessel modes (number of modes
per unit length of r) is also very large. In that case,

multi-mode competition can be expected to occur
frequently.

Fig. 8 illustrates another interesting case. The con-
trol parameter R = 8.25 is used for the numerical inte-
gration. Two resulting principal competing modes are
[1, 5] and [3, 0] and their corresponding roots of the
Bessel function are ρ1,5 = 8.771 and ρ3,0 = 8.654,
respectively. The computed patterns are depicted in
Fig. 8(a) and (b) for a comparison. The morphology of
the patterns is dominated alternatively at different time
steps by either principal Fourier–Bessel mode [1, 5] or
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[3, 0]. Modal decomposition of the pattern shown in
Fig. 8(a) gives that |Z1,5| = 0.857 and |Z3,0| = 0.014.
Obviously, Fourier–Bessel mode [3, 0] contributes lit-
tle to this pattern. On the contrary, in the pattern
shown in Fig. 8(b), the contribution of Fourier–Bessel
mode [3, 0](|Z3,0| = 0.357) is essential while the con-
tribution of Fourier–Bessel mode [1, 5] is negligible
(|Z1,5| = 0.000528). However, this example is very
different from the previous two cases. In the transient
period, there is a stable pattern, Fig. 8(c), which is
really a mixture of both Fourier–Bessel modes [1, 5]
and [3, 0], with decomposition amplitudes |Z1,5| =
0.565 and |Z3,0| = 0.141, respectively. Because these
two amplitudes are comparable, the two corresponding
principal Fourier–Bessel modes contribute together to
determine the morphology of the pattern in Fig. 8(c).
A reconstructed pattern is depicted in Fig. 8(d), which
is given by the linear combination (c1Φ1,5 + c2Φ3,0,
where c1 = 0.565 and c2 = 0.141) of the two pure
Fourier–Bessel modes [1, 5] and [3, 0]. It is interest-
ing to see that Fig. 8(c) and (d) are almost identical to
each other.

Our computations are limited to the control parame-
ter R < 13. Four complete classes (n = 1–4) of stable
patterns are observed. The principal Fourier–Bessel
mode [1, 0] is absent because it does not satisfy the
conservation of order parameter. Obviously, as the
control parameter R continues to increase, other series
of stable state patterns (n ≥ 5) can also be expected
appear. However, further increase in R requires a more
refined computational grid, which is more expensive
in terms of computer resources.

4. Conclusion

In this study, the Fourier–Bessel analysis is uti-
lized to characterize a new class of patterns generated
from long-time integration of the phenomenological
Cahn–Hilliard equation on a circular domain. It is
found that generally all stable patterns can be ex-
pressed as a linear combination of Fourier–Bessel
functions and they can be well classified by prin-
cipal Fourier–Bessel modes. The morphologies of
the patterns are mainly determined by the prin-

cipal Fourier–Bessel modes, while non-principal
Fourier–Bessel modes can slightly modify the shape
of single-phase cells. In addition, modal competition
among two or more Fourier–Bessel modes occurs
when their corresponding roots of the Bessel function
are close to a given control parameter value. In this
case, the morphology of patterns can be dominated
by anyone of the competing Fourier–Bessel modes. It
is believed that our analysis is useful for the under-
standing of pattern formation of binary systems in a
circular domain.
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