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Origin of Bellerophon states in globally coupled phase oscillators
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We unveil the basic mechanisms and general conditions for the emergence of Bellerophon states, which are
higher order coherent states appearing in globally coupled phase oscillators. The critical points for the involved
phase transitions are determined analytically. The significant feature of Bellerophon states is that the oscillators’
effective frequencies are locked to quantized plateaus, a point which is fully clarified on the basis of circle map
theory. Each quantized plateau corresponds to a harmonic frequency of the Fourier decomposition of the order
parameter. Our approach exploits the fact that the order parameter is always real, due to a special symmetry of
the system which furthermore prevents the formation of even integer multiple plateaus of effective frequencies.
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Synchronization is one of the most common self-
organization phenomena that can be observed in nature.
To quote only a few examples of physical, biological, and
social systems where synchrony spontaneously emerges from
the interaction of unitary elements, one can refer to Josephson
junction arrays [1,2], power grids [3], neurons in the brain
[4–6], circadian rhythms of plants and animals [7], fireflies
flashing [8], etc.

A prototypic model for the description of synchrony was
introduced by Kuramoto [9], and for over four decades this
model and some generalizations of it have been extensively
studied [10–12]. Despite the simplicity of Kuramoto-like
models, very rich scenarios of coherent states can be iden-
tified, which may include synchronized states [9], clustered
states [13,14], traveling-wave states, π and standing-wave
states [15,16], glass and spurious glass states [17,18], splay
states [19,20], and higher order forms of entrainment [21,22].

Recently, the attention focused on two nontrivial states,
namely, the chimera and the Bellerophon (B) state. The orig-
inal chimera state referred to the coexistence of domains of
coherent and incoherent dynamics in locally coupled identical
oscillators [23,24], while later more complicated structures
were identified such as the breathing chimera state [25], the
clustered chimera state [26], and the multichimera state [27].
When, instead, globally coupled nonidentical oscillators are
considered and the coupling strength in Kuramoto models is
correlated with the natural frequency, a time-dependent and
clustered state (the Bellerophon state) is observed [28]. The
most important feature of such a latter state is that the system
forms quantized clusters. Inside each cluster the instantaneous
speeds of the oscillators are not locked. However, the average
speeds of the oscillators converge to a common value for a
long-time evolution. Further studies revealed that the emer-
gence of this state is robust to natural frequency distributions
and coupling schemes [29–31]. When compared with typical
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stationary coherent states, such as the (partially) synchronized
states and the traveling-wave states, B states represent actually
a higher order form of coherence. It should be pointed out
that B states are essentially different from the other higher
coherence previously reported [21,22]. First, B states are self-
organized in coupled autonomous oscillators, while the clus-
tering coherence observed in Refs. [21,22] occurs in systems
with external forces. Second, in B states coherent oscillators
always appear in pairs, while in the latter states they do not.

In this Rapid Communication, we provide the general con-
ditions for the formation of Bellerophon states, and elucidate
their dynamical behaviors both analytically and numerically.
To this end, we refer to a Kuramoto model of globally
coupled oscillators with in and out frequency-weighted cou-
pling. Namely, we focus on the transitions associated with
several states induced by this particular coupling, and show
that B states correspond in fact to periodic solutions of the
system. We reveal that the critical mean-field frequency and
the coupling pattern are the key parameters determining the
emergence of such oscillatory states, which occur in the
regime of intermediate coupling strength where the incoherent
state is unstable and the zero-frequency clustered state is
empty. Furthermore, the quantized nature of plateaus in the
average frequencies can be fully explained in terms of the
circle map theory, where such a simple structure is caused
by the property of Riccati’s equation. Finally, we prove that
the traveling-wave state (i.e., the nonzero-frequency partial
synchronized state) can never take place in the model.

Let us then start with considering a generalized Kuramoto
model, describing the dynamics of an ensemble of N globally
coupled phase oscillators:

θ̇i = ωi + Ki

N

N∑
j=1

Gj sin(θj − θi ), i = 1, . . . , N, (1)

where the dot stands for the temporal derivative, and θi and
ωi are, respectively, the instantaneous phase and the natural
frequency of the ith oscillator. The set of frequencies {ωi}
are extracted from a probability density function g(ω) in the
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limit N → ∞. Ki and Gj are in- and out-coupling strength
which both cause heterogeneity in the system [32]. We here
consider a class of coupling patterns, the frequency-weighted
one, where the in- and out-coupling strengths are proportional
to the absolute value of the nodes’ natural frequencies. Two
distinct cases will be discussed: the in-coupling weighted
(where Ki = κ|ωi | and Gj ≡ 1 ∀j ) and the out-coupling
weighted (where Ki ≡ 1 ∀i and Gj = κ|ωj |) configurations,
both having κ > 0.

For simplicity, let us start with the in-coupling weighted
case. The level of synchronization can be monitored by the or-
der parameter z(t ) = R(t )ei�(t ) = 1

N

∑N
j=1 eiθj (t ). z(t ) is the

average of the complex amplitudes eiθj (t ), R(t ) is the module
of z(t ) (reflecting coherence of the oscillators’ instantaneous
phases), and �(t ) is the averaged phase. One can assume that
the mean-field phase � rotates uniformly with frequency �,
i.e., �(t ) = �t + �(0). In this rotating frame with frequency
�, following the treatment in Ref. [33] [Eqs. (3)– (20) in [33]],
one can obtain the self-consistent equations for the mean field
(R,�) as

R =
∫ ∞

−∞
dω g(ω)

√
1 −

(
ω − �

κRω

)2

�

(
1 −

∣∣∣∣ω − �

κRω

∣∣∣∣
)

(2)

and

0 =
∫ ∞

−∞
dω g(ω)

ω − �

κR|ω| −
∫ ∞

−∞
dω g(ω)

×
√(

ω − �

κRω

)2

− 1�

(∣∣∣∣ω − �

κRω

∣∣∣∣ − 1

)
, (3)

where �(x) is the Heaviside step function. Then the critical
point, where the incoherent state loses its stability, can be
obtained as κc,1 = 2

π |�c|g(�c ) . Here �c is the critical mean-field
frequency [33,34].

For the sake of illustration, let us take a bimodal Lorentzian
distribution:

g(ω) = �

2π

[
1

(ω − ω0)2 + �2
+ 1

(ω + ω0)2 + �2

]
. (4)

In this case, a pair of �c are obtained, namely, �c =
±

√
ω2

0 + �2 . Substituting �c into the equation for κc,1 yields

κc,1 = 4

/√
1 +

(ω0

�

)2
. (5)

From the solution, it appears that κc,1 is inversely proportional
to the dimensionless parameter ω0/�, and the physical picture
can be understood as follows. When ω0 = 0, the distribution
is actually unimodal, and the natural frequencies of most
oscillators are centered around zero. Consequently, a maxi-
mum of κc,1 = 4 is expected, in order to make the effective
coupling strength κR|ωi | exceed the threshold for entraining
oscillators in the system. As ω0/� exceeds

√
3/3, g(ω)

becomes bimodal and thus the natural frequencies of most
oscillators clusterize around ±ω0. This latter fact contributes
a larger factor in the effective coupling strength, and therefore
a smaller κc,1 is enough to induce phase coherence.

On the other hand, one finds that � ≡ 0 is always a trivial
solution of Eq. (3). Combining with Eq. (2), a cluster partially
synchronized state can be solved, which occurs at κc,2 = 2

with [35]

R± =
√

2

2

√
1 ±

√
1 − 4

κ2
, κ � κc,2. (6)

To get insights on the dynamical stability of R±, one can
analyze the system based on the Ott-Antonsen (OA) ansatz
[36–38]. In the thermodynamical limit N → ∞, a probability
density function ρ(θ, ω, t ) can be defined that represents the
fraction of oscillators with frequency ω having, at time t , an
instantaneous phase between θ and θ + dθ . Considering the
2π periodicity with respect to θ , ρ(θ, ω, t ) can be expanded as
a Fourier series ρ(θ, ω, t ) = g(ω)

2π
(1 + ρ+ + ρ−), where ρ+ =∑∞

n=1 α̃n(ω, t )einθ , and ρ− = ρ̃+. α(ω, t ) is the first Fourier
coefficient of ρ(θ, ω, t ), denoting the suborder parameter at
a given frequency ω. Accordingly, the global order param-
eter becomes z(t ) = ∫ ∞

−∞ g(ω)α(ω, t )dω. Following the OA
ansatz [36,37], the evolution of α(ω, t ) is ruled by

∂α(ω, t )

∂t
= iωα(ω, t ) + κ|ω|

2
[z(t ) − α2(ω, t )z̃(t )], (7)

where z̃ denotes the complex conjugation of z.
An analytical continuation for the frequency-weighted Ku-

ramoto model is hampered by the fact that |ω| in Eq. (7)
is not an analytic function. Therefore, the system cannot be
further reduced into a low-dimensional dynamics described by
a few ordinary differential equations. However, one can still
analyze the stability of solutions of Eq. (6) based on Eq. (7).
Defining αp(t ) [αn(t )] as the suborder parameter contributed
by all oscillators with natural frequency ω > 0 (ω < 0), one
can obtain the following governing equations:

α̇p,n = iωαp,n + κ|ω|
2

R
(
1 − α2

p,n

)
, (8)

which admit, as stationary solutions,

α∗
p,n =

√
1 −

(
1

κR

)2

± i
1

κR
. (9)

As αp,n → α∗
p,n, R → R±. From Eq. (6), it is easy to verify

that κR > 1. Physically, α∗
p,n just corresponds to the complex

amplitude of two phase-locked clusters on the unit circle [see
Fig. 2(b) in Ref. [35]]. Letting y = αp(t )/αn(t ), one has

ẏ = 2i|ω|y + κ|ω|
2

(1 − y2). (10)

The eigenvalue for the stationary state is λ = −κ|ω|(1 −
2

1−R2 ). Further analysis indicates that λ(R+) < 0 and
λ(R−) > 0, which implies that the solution R+ is stable.
Therefore, the OA manifold contains a particular direction
where partially synchronous state R− is unstable with the
separation of two cluster phase-locked oscillators.

Notice that there is no guarantee that � ≡ 0 is the only
solution Eq. (3) [39,40], as at least �c = ±

√
ω2

0 + �2 �= 0
are also solutions. However, a traveling-wave solution � �=
0 is not found in the system. Although a general analysis
on the existence and stability of traveling-wave solutions in
the frequency-weighted Kuramoto model is very problematic
[41], the local bifurcation information of the traveling-wave
solution near the critical point κc,1 can still be captured. On
the one hand, including the high-order terms of Taylor series
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in Eq. (2) (� → �c, κ → κc), the critical behavior of R with
� ≈ �c (traveling-wave solution) is

R =
√

− 8

πβ

δκ

κ4
c

, (11)

where β = 3�cg(�c ) + 3�2
cg

′(�c ) + 1
2�3

cg
′′(�c ) (the bifur-

cation is subcritical when β > 0, and supercritical for β < 0).
On the other hand, further information on local bifurcation
and stability can be gathered by the use of the Crawford
central manifold theory [42]. It is found that for the frequency-
weighted model, the system undergoes a Hopf bifurcation
near the critical coupling κc,1. As a result, a traveling-wave
solution and a standing-wave solution emerge above κc,1 [33].
Provided g(ω) is even, the traveling-wave solution is always
locally unstable. One can then conclude that the system
tends to a stationary solution with � ≡ 0. Furthermore, when
|�c|g(�c ) < 1/π , the system undergoes a first-order phase
transition such as in the cases of the unimodal Lorentzian,
triangle, and Gaussian distributions [34].

When |�c|g(�c ) > 1/π , an oscillatory state emerges in
the middle regime of coupling strength (κc,1 < κ < κc,2), for
both the uniform and the bimodal Lorentzian distribution
(ω0 > �/

√
3). Such a state was termed as the B state in

Ref. [28]. It is a quantized, time-dependent, clustered and
coherent phase. The most important characteristic of B states
is that inside each cluster, the oscillators’ instantaneous fre-
quencies are not locked, but their long-time averages (i.e., the
effective frequencies) converge into a fixed value. Further-
more, symmetric quantized plateaus of effective frequencies
emerge, made of an integer multiple of a principal frequency.

In previous studies of ours [28,30], these features of B
states were characterized in detail. However, the mechanism
underlying such a higher order coherence was still elusive.
Motivated by the work in Ref. [43], in the following we move
to reveal the reasons why B states display such dynamical
traits and features.

Without loss of generality, we take the in-coupling case
as an example. As the order parameter for B states is
time dependent, the angular speed of each oscillator can be
written as

θ̇ = ω + κ|ω|Im[z(t )e−iθ ]. (12)

Note that the index i is replaced here by the frequency ω since
N → ∞. In addition, we emphasize that it does not matter
whether z(t ) is a driving force from outside or some ensemble
average quantity (such as an order parameter). What matters
is instead that z(t ) be the same for all ω and be periodic in
time [z(t + T ) = z(t ) for a given period T ]. According to
Eq. (12), the effective frequency for each ω is defined by
ωeff = limt→∞ θ (t )/t .

The flow map of Eq. (12) is defined as Poincaré map fω,
which charts (in each period) the initial phase θ0 = θ (0) to
another phase on the unit circle, i.e., fω(θ0) = θ (T ). The
circle map fω : S1 → S1 is an orientation-preserving diffeo-
morphism, and it is helpful to lift the circle map to R [44],
i.e., eiFω (θ ) = fω(eiθ ), θ ∈ R. The circle map lift Fω : R →
R is strictly increasing, and satisfies Fω(θ + 2π ) = Fω(θ ) +
2π . Moreover, Fω(θ ) − θ is a periodic function on R with
period 2π .

The rotation number of Fω is defined as rot(Fω ) =
limn→∞ Fn

ω (θ )/n. According to the circle map theory, the ro-
tation number rot(Fω ) exists and does not depend on the initial
phase θ . It is easy to check that ωeff = rot(Fω )/T [43]. If a q-
periodic solution for fω exists, then f

q
ω (θ0) = θ0 for θ0 ∈ S1,

which implies F
q
ω (θ0) = θ0 + 2πp, θ0 ∈ R where p, q ∈ Z.

Then, the rotation number becomes rot(Fω ) = 2πp/q.
Now, if the lift F

q
ω (θ ) intersects with the straight line

y = θ + 2πp at a point (θ0, θ0 + 2πp) a nonempty interval
of ω must exist (according to the implicit function theorem) in
which the curves always intersect, except for the case of F

q
ω (θ )

being an identical map. This latter property warrants that for
a generalized circle map lift Fω the rotation number always
exhibits a “devil’s staircase” structure, where the plateaus
appear for any rational fraction 2πp/q [44].

The Kuramoto-like model considered here is, in fact, sim-
ple to treat. If we let y = eiθ (i.e., ẏ = iyθ̇ ), Eq. (12) becomes

ẏ = − 1
2κ|ω|z̃y2 + iωy + 1

2κ|ω|z, (13)

which is a typical Riccati equation on the extended complex
plane [45]. Furthermore, if one sets

y(t ) = 2

κ|ω|z̃
ẋ(t )

x(t )
, (14)

then the Riccati equation is closely related to the following
second-order linear differential equation:

ẍ −
( ˙̃z

z̃
+ iω

)
ẋ − 1

4
[κ|ω|R(t )]2x = 0. (15)

Accordingly, due to the linear superposition principle, a solu-
tion of the Riccati equation is the Möbius transformation of
the inner parameters.

The Möbius transformation is the linear fractional map,
which preserves the unit disk and can be classified into three
types: elliptic (conjugate to a rotation of the disk), hyperbolic
(having an attracting-repelling pair of fixed points on the
circle), and parabolic (featuring a unique, globally attracting,
fixed point on the circle) [43,46]. Therefore, all periodic
solutions of fω corresponding to |q| > 1 are ruled out, and
the quantized plateaus for the effective frequencies which
are locked to 2πk/T can only take place in the interval
[ωk, ωk+1] [43].

Further observations indicate that the integer multiple k is
odd in the frequency-weighted Kuramoto model. The latter
can be explained as follows [43]. Due to the symmetry of
g(ω), the system has a class of solution θ−j (t ) = −θj (t ).
Then, the mean-field equation (12) becomes

θ̇ = ω − κ|ω|R(t ) sin θ. (16)

Additionally, Eq. (16) is invariant under a translation π [where
R(t ) becomes −R(t )]. Since R(t + T ) = R(t ), then R(t )
and −R(t ) must be shifted by T

2 , i.e., R(t + T
2 ) = −R(t ).

Therefore, if θ (t ) is a solution of Eq. (16), then θ (t + T
2 ) + π

is also a solution. In each plateau, the Möbius map is parabolic
or hyperbolic, and has an attracting fixed point θ (t ) on the unit
circle. Consequently, for the lift θ (t + T

2 ) + π = θ (t ) + 2πn,
the effective frequency is 2π

T
(2n − 1), n ∈ Z.
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In order to strengthen our arguments, we next study the
case of out-coupling weights for Eq. (1), i.e., Gj = κ|ωj | and
Ki ≡ 1. There, one defines a weighted-order parameter

w(t ) = D(t )ei�(t ) = 1

N

N∑
j=1

|ωj |eiθj (t ), (17)

which constitutes another useful measure of phase coherence.
Note that a one-body equation of θi follows from Eq. (1) for
each i,

θ̇i = ωi + κD sin(� − θi ). (18)

Next, one sets a self-consistent equation for D, and expresses
R in terms of D. Following a method similar to the in-
coupling case, and assuming that both R and D become
asymptotically stationary (�̇ = �), one can obtain the self-
consistent equation for D and � as

D =
∫ ∞

−∞
dω|ω|g(ω)

√
1 −

(
ω − �

κD

)2

�

(
1 −

∣∣∣∣ω − �

κD

∣∣∣∣
)

(19)

and

0 =
∫ ∞

−∞
dω|ω|g(ω)

ω − �

κD
−

∫ ∞

−∞
dω|ω|g(ω)

ω − �

κD

×
√

1 −
(

κD

ω − �

)2

�

(∣∣∣∣ω − �

κD

∣∣∣∣ − 1

)
. (20)

The order parameter R is

R =
∫ ∞

−∞
dω g(ω)

√
1 −

(
ω − �

κD

)2

�

(
1 −

∣∣∣∣ω − �

κD

∣∣∣∣
)

.

(21)

It should be pointed out that the first critical coupling κc,1 for
the emergence of a nonzero order parameter is the same as that
for the in-coupling weighted case, whereas � ≡ 0 is always
a trivial solution of Eq. (20) and it can be used to calculate
the second critical coupling κc,2. For convenience, in the
Lorentzian distribution we set ω0 = 0 and � = 1 and obtain

D = 2

π

⎛
⎝

√
1 +

(
1

κD

)2

arcsinh(κD) − 1

⎞
⎠. (22)

The solutions of Eq. (22) individuate all stationary features
of the out-coupling weighted case. From Fig. 1 it can be seen
that the curves representing both sides of Eq. (22) have always
a trivial intersection at (0, 0) for all κ . This implies that the
incoherent state (D = R = 0) is always a solution of the sys-
tem. However, linear stability analysis suggests that the state
D = R = 0 is only stable in the regime 0 < κ � κc,1. When
κ > κc,1, the two curves have no other intersections, which
means that the zero-frequency coherent state (D > 0, 0 <

R � 1, � ≡ 0) exists only when κ gets to κc,2. Remarkably,
κc,2 can be computed in the special case where the two curves
plotting both sides of Eq. (22) are tangent (see Fig. 1). A pair
of solutions exists in the regime κ > κc,2, expressed by D+
and D−. With the increasing of κ , D+ → ∞ corresponds to

FIG. 1. Graphic method for the solution of Eq. (22). The blue
curve represents the expression at the right-hand side of Eq. (22).
The three lines correspond to the cases κ < κc,2 (dashed red line),
κ = κc,2 (dash-dot pink line), and κ > κc,2 (dash-dot-dot green line),
respectively.

R+ =
√

1+(κD+ )2−1
κD+

→ 1, which is the stable solution repre-
senting full synchronization. In addition, D− → 0 leads to
R− → 0, which is unstable, standing for desynchronization
of the system [see Fig. 2(a)].

The emergence of B states follows a way similar to that
of the in-coupling weighted case. On the one hand, the order
parameters R(t ) and D(t ) are always real due to the symmetry
[θ−j (t ) = −θj (t )], and traveling-wave solutions (� �= 0) are
not permitted. On the other hand, since the incoherent state is
unstable and the zero-frequency coherent state is empty when
κc,1 < κ < κc,2, the system undergoes a Hopf bifurcation near
the critical point κc,1, and a B state is set [see Fig. 2(a)].
Actually, the B state is a special type of periodic solution
of the system such that both order parameters R(t ) and D(t )
oscillate periodically. The real and periodic properties of R(t )
and D(t ) lead to special patterns of the effective frequencies
[visible in Fig. 2(b)].

In conclusion, we studied large populations of globally
coupled oscillators interacting with both in- and out-frequency
weighted strengths. The emergence of oscillatory states is a

FIG. 2. (a) Phase diagram R vs κ for the out-coupling case with
a Lorentzian distribution (ω0 = 0 and � = 1). The dark-blue vertical
region (κc,1 < κ < κc,2) is the area where B states emerge. The red
triangles report the results of numerical simulation, while the curves
labeled with R+ and R− are the theoretic predictions. (b) A typical B
state, observed at κ = 4.80. The panel reports the long-time average
frequency ωeff of the oscillators vs their natural frequency ω. Ck (k ∈
Z) are the different plateaus with index k. The inset reports the time
evolution of the order parameter z(t ), and T is the value of the period.
In both panels, N = 100 000.
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common phenomenon in such systems, and it occurs in the
middle regime of coupling strength (κc,1 < κ < κc,2) where
the incoherent state is unstable and the trivial partial syn-
chrony state is empty. The two critical coupling strengths are
obtained analytically in the frame of the Ott-Antosen ansatz.
The macroscopic and microscopic mechanisms behind these
oscillatory states correspond to a class of periodic solutions of
the system, and the quantized plateaus structure of effective
frequencies is rooted in the characteristics of the Riccati
equation. Moreover, it is shown that the symmetry of the
system (which only preserves locked effective frequencies at
odd integer multiples of a main rhythm) warrants a real value
of the order parameter.

Let us emphasize the major contributions of our work
which are different from what has already been unveiled in
previous studies [20,28,30,31,33–35]. As a first difference, we
highlight that so far the focus was mainly put on frequency-
weighted Kuramoto models with out-coupling arrangements.
In this Rapid Communication, instead, a comprehensive

analysis is given of both the in- and out-coupling configura-
tions (the critical point κc,1 is obtained for both the in- and
out-coupling cases). In addition, a general criterion for the
stability of the two-cluster state is established within the help
of the Ott-Antonsen ansatz, while linear stability theory was
typically used in previous works. In particular, we could prove
that a traveling-wave state is forbidden in the model. Finally,
we provided the general conditions for the formation of B
states, and elucidated their quantized plateaus on the basis of
circle map theory. Our analytical and numerical description
will then be helpful to physicists for seeking such oscillatory
states in a variety of other experimental and natural systems.
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