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ABSTRACT

In this paper, clustering in the Kuramoto model with second-order coupling is investigated under the bimodal Lorentzian frequency distri-
bution. By linear stability analysis and the Ott-Antonsen ansatz treatment, the critical coupling strength for the synchronization transition is
obtained. The theoretical results are further veri�ed by numerical simulations. It has been revealed that various synchronization paths, includ-
ing the �rst- and second-order transitions as well as the multiple bifurcations, exist in this system with di�erent parameters of frequency
distribution. In certain parameter regimes, the Bellerophon states are observed and their dynamical features are fully characterized.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085407

Formore than four decades, extensive researches on synchroniza-
tion have been carried out based on the Kuramoto-like models,
in which simple phase oscillators are coupled via the mean-�eld.
So far, most works in this �eld focused on the situation where
the phase oscillators are coupled through the sine function, i.e.,
the �rst-order harmonics. Recently, attention has been paid to
the case of higher-order coupling, especially the second-order
coupling. On the other hand, one important issue in the study
of synchronization in coupled phase oscillators is how the dis-
tribution of natural frequencies of oscillators a�ect the system’s
collective behavior. Typically, two types of frequency distributions
are frequently considered, namely, the unimodal and bimodal dis-
tributions. In the present work, we investigate the clustering syn-
chronization of the Kuramoto model with second-order coupling
under the bimodal Lorentzian frequency distribution. By both
theoretical analysis and numerical simulations, signi�cant results
have been obtained, which will provide us a better understanding
of synchronization of coupled oscillators.

I. INTRODUCTION

Synchronization refers to coherent rhythm in a dynamical sys-
tem which consists of interacting elements. Typical examples include
the circadian rhythms of plants and animals,1 the synchronized �ash-
ing of �re�ies,2 the Josephson junction arrays,3 and neurons in the

human brain,4 just to name a few. It is now understood that the emer-
gence of coherence is crucial for the cooperative functioning inmany
dynamical systems. Due to this reason, such phenomena have been
extensively investigated in various �elds. A comprehensive review of
synchronization can be found in Ref. 5.

One prototype model for the theoretical study on synchroniza-
tion is the Kuramoto model,6,7 which describes the synchronization
transition among phase oscillators viamean-�eld coupling. Although
it has been studied for over 40 years, recently the research studies on
certain generalized Kuramoto models have presented novel physics,
such as the explosive (i.e., the �rst-order) synchronization,8–10 the
Chimera states,11,12 and the Bellerophon (B) states.13,14

The general form of the Kuramoto-like equation can be
expressed as

θ̇i = ωi +
κ

N

N
∑

j=1

H(θj − θi), i = 1, 2, . . . ,N, (1)

where θi and ωi are the phase and the natural frequency of the ith
oscillator and the dot denotes the time derivative. The second term
of the right-hand side is the coupling, whereH is a 2π-periodic func-
tion. If it takes the �rst-order term of H in a Fourier expansion, i.e.,
H(θ) = sin θ , Eq. (1) recovers the standard Kuramoto model,

θ̇i = ωi +
κ

N

N
∑

j=1

sin(θj − θi), i = 1, 2, . . . ,N. (2)
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This model and its variants have been extensively studied. In fact,
H could also take higher harmonic terms of the Fourier expansion.
For example, Refs. 15–19 have studied the Kuramoto model with the
following bi-harmonic coupling terms, whereH(θ) = sin θ + sin 2θ ,
i.e., including both the �rst- and second-order harmonics. Recently,
Ref. 20 investigated the case where phase oscillators are coupled only
with the second-order harmonic term, i.e.,

θ̇i = ωi +
κ

N

N
∑

j=1

sin
[

2(θj − θi)
]

, i = 1, 2, . . . ,N. (3)

It should be pointed out that, although Eqs. (3) and (2) look similar
in form, they are not equivalent since Eq. (3) cannot be recovered
into Eq. (2) by a linear transformation of phase. Interestingly, in
such a case, oscillators turn out to form two coherent clusters, with
phase di�erence π . This means that the π-state, rather than the
single-cluster synchronized state, is the stable manifold of synchro-
nization in this system. In Ref. 21, the synchronization induced by
the �nite size e�ect was investigated in the Kuramoto model with a
purely nonlinear second-harmonic coupling. We notice that in pre-
vious studies, the natural frequencies ωi are typically drawn from
the unimodal distributions, such as the Lorentzian distribution20 or
the Gaussian distribution.21 Motivated by these works, in this paper,
we will focus on another important frequency distribution, i.e., the
bimodal Lorentzian distribution

g(ω) =
1

2π

(

1

(ω − ω0)2 +12
+

1

(ω + ω0)2 +12

)

, (4)

where 21 is the width at half-maximum of each peak and ±ω0 are
the center frequencies of two peaks. Notice that when 1 >

√
3ω0,

the bimodal distribution becomes the unimodal one.
In this work, we present two types of theoretical analyses to

Eq. (3) with distribution Eq. (4). In Sec. II, we apply linear stabil-
ity analysis to the incoherent state and obtain the critical coupling
strength for the transition of clustering synchronization. Then, in
Sec. III, an analysis based on the Ott-Antonsen (OA) ansatz is per-
formed and once again, the critical point for synchronization is
solved. In Sec. IV, the theoretical results are further veri�ed by
numerical simulations. Besides the usual π-state, we found that the
Bellerophon states could occur in this model. The speci�c dynamical
features of the Bellerophon states are characterized in detail. Finally,
the main conclusion will be drawn in Sec. V.

II. LINEAR STABILITY ANALYSIS

As pointed in Ref. 20, under certain circumstances, the second-
order coupling Kuramoto model might exhibit some clustering
behaviors that generally lack in the standard Kuramoto model. To
characterize the level of clustering coherence of phase oscillators
governed by Eq. (3), two order parameters

rme
imψm =

1

N

N
∑

j=1

eimθj , m = 1, 2 (5)

can be de�ned.20 In principle, both r1 and r2 should be used to fully
characterize the higher order coherence in system (3).20 The state
with rm = 0, for allm corresponds to a totally incoherent state where

the phases of oscillators are uniformly distributed, while non-zero
values of at least one order parameter indicate for certain synchrony
in the ensemble of oscillators. In model (3), the oscillators tend to
form two clusters due to the second-order coupling. Therefore, in this
system, order parameter r2 describes the degree of two-cluster syn-
chrony, while r1 measures the degree of asymmetry in such clustering
(or the global synchronization trend).20

By introducing order parameter r2, Eq. (3) can be rewritten as
the following mean-�eld form:

θ̇i = ωi + κr2 sin(2ψ2 − 2θi), i = 1, 2, . . . ,N. (6)

Based on this mean-form equation, we can apply theoretical analy-
sis on the transition of clustering synchronization characterized by
order parameter r2. To characterize the global synchronization, we
numerically compute the order parameter r1. We consider the ther-
modynamical limit, i.e., N → ∞. In this case, a continuum descrip-
tion can be obtained by introducing the density function f (θ ,ω, t),
which describes the density of oscillators with phase θ and natural
frequency ω at time t. The evolution of f (θ ,ω, t) is governed by the
continuity equation

∂f

∂t
+
∂( f θ̇ )

∂θ
= 0. (7)

Then, a linear stability analysis can be achieved based on the mean-
�eld equation and the continuity equation. Following the standard
procedure as in Refs. 7 and 9, we obtain the characteristic equation
which relates explicitly the coupling strength κ with the eigenvalue
λ, i.e.,

1 = κ

∫ +∞

−∞

g(ω)

λ+ 2iω
dω. (8)

The real part of λ determines the stability of the incoherent state,
i.e., when Re(λ) changes from negative to positive, the incoherent
state loses its stability. One can then use this condition to determine
the critical coupling strength κf for the forward synchronization
transition. Substituting Eq. (4) into the above equation, we get

1

κ
=

∫ +∞

−∞

[

f1(ω)+ f2(ω)
]

dω, (9)

where

f1(ω) =
1

λ+ 2iω

1

2π

1

(ω − ω0)2 +12
, (10)

f2(ω) =
1

λ+ 2iω

1

2π

1

(ω + ω0)2 +12
. (11)

For generalized Kuramoto models, there is no guarantee that λ
in Eq. (8) is necessarily real. Thus, one has to consider the general
situation assuming λ is complex as λ = a + ib (a, b ∈ R, and b 6= 0).
In the following, we discuss three distinct cases, corresponding to
a > 0, a = 0, and a < 0, respectively. Note that we can apply analytic
continuation for g(ω) to the whole complex plane. So the integral in
Eq. (9) can be conveniently done by choosing a contour either in the
lower half complex plane or in the upper complex plane.

1. a > 0. In this case, in the lower half complex plane, f1 has one
pole ω0 − i1, while f2 has another one −ω0 − i1. Equation (9)

Chaos 29, 043102 (2019); doi: 10.1063/1.5085407 29, 043102-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

becomes

1

κ
= −2π i

[

Res(ω0 − i1, f1)+ Res(−ω0 − i1, f2)
]

=
λ+ 21

(λ+ 21)2 + 4ω2
0

, (12)

where Res means the residue. From this equation, we can explic-
itly get the closed form of the eigenvalue as

λ =
κ ±

√

κ2 − 16ω2
0

2
− 21. (13)

Notice that a > 0 is assumed from the beginning, and we can
use the condition Re[λ]→ 0+ to determine the critical coupling
strength for the synchronization transition, which leads to

κf =
{

41 (1 ≤ ω0),
2(12 + ω2

0)/1 (1 > ω0).
(14)

2. a = 0. In this case, the eigenvalue λ = ib. f1(ω) has one pole
−b/2 in the real axis and one pole ω0 + i1 in the upper half
plane. In the mean time, f2(ω) has one pole −b/2 in the real
axis and one pole −ω0 + i1 in the upper half plane. Therefore,
Eq. (9) becomes

1

κ
= 2π iRes(ω0 + i1, f1)+ π iRes

(

−
b

2
, f1

)

+ 2π iRes(−ω0 + i1, f2)+ π iRes

(

−
b

2
, f2

)

= 0 + i
b
4
(−b2 − 412 + 4ω2

0)

4[( b
2

+ ω0)2 +12][(− b
2

+ ω0)2 +12]
. (15)

According to the above equation, obviously, κ is purely complex
regardless of1 andω0. So this case is not physical and should be
neglected. By the way, from Eq. (15) the eigenvalue can also be
explicitly solved as

λ = 2

√

ω2
0 −12i (1 ≤ ω0), (16)

which is a purely imaginary number, consistent with the assump-
tion a = 0 in the start.

3. a < 0. In this case, f1(ω) has one pole ω0 + i1 in the upper half
plane, while f2(ω)has one pole−ω0 + i1 in the upper half plane.
Therefore, Eq. (9) can be written as

1

κ
= 2π i

[

Res(ω0 + i1, f1)+ Res(−ω0 + i1, f2)
]

=
λ− 21

(λ− 21)2 + 4ω2
0

. (17)

From this equation, the eigenvalue can be analytically obtained
as

=⇒ λ =
κ ±

√

κ2 − 16ω2
0

2
+ 21. (18)

Notice that, as a < 0 has been assumed, one can determine the
critical coupling strength by setting Re[λ] → 0−, i.e.,

κf =
{

−41 (κ < 4ω0),
−2(12 + ω2

0)/1 (κ ≥ 4ω0).
(19)

Since 1 characterizes the width of the peaks in the frequency
distribution, physically, we always have 1 > 0. Thus, the above
solutions for the critical point are not signi�cant and should be
neglected.

To summarize, by linear stability analysis, we have successfully
obtained the critical point for the forward transition, i.e., Eq. (14).

III. OA ANALYSIS

In the seminal works,22,23 Ott and Antonsen proposed a general
framework to e�ectively reduce the dimension of coupled oscillators
system. Following Ref. 20, we can use a variation of the OA ansatz
to seek a low-dimensional analytical solution for the dynamics of the
symmetric part of f (θ ,ω, t). Speci�cally, for the symmetric part of
f (θ ,ω, t), it can be expanded as Fourier series

fs(θ ,ω, t) =
g(ω)

2π

[

1 +
∞

∑

n=1

( f2n(ω, t)e
2inθ + c.c.)

]

, (20)

where c.c. denotes the complex conjugate of the previous term. For
dynamical system (3), the following variation of the OA ansatz on
the symmetric part of fs(θ ,ω, t) can be used

f2n(ω, t) = αn(ω, t). (21)

Then, from Eqs. (6), (7), and (21), one can obtain the following ODE
for α:

∂α

∂t
+ κ(r2α

2 − r∗2)+ 2iωα = 0. (22)

In the continuum limit, we get

r2(t) =
∫ ∞

−∞

∫ 2π

0

e2iθ f (θ ,ω, t)dθdω

=
∫ ∞

−∞
g(ω)α∗(ω, t)dω. (23)

Substituting the bimodal frequency distribution, i.e., Eq. (4), into the
above equation and applying a contour integration in the lower half
complex plane, we have

r2(t) =
∫ ∞

−∞

1

2π

(

α∗(ω, t)

(ω − ω0)2 +12
+

α∗(ω, t)

(ω + ω0)2 +12

)

dω

=
1

2
[α∗(−ω0 − i1, t)+ α∗(ω0 − i1, t)]

=
1

2
[ra(t)+ rb(t)], (24)

where ra(t) = α∗(−ω0 − i1, t) and rb(t) = α∗(ω0 − i1, t), respec-
tively. Combining Eq. (22) with Eq. (24), one gets

ṙa = −2(1+ iω0)ra +
κ

2
[ra + rb − (r∗a + r∗b)r

2
a],

ṙb = −2(1− iω0)rb +
κ

2
[ra + rb − (r∗a + r∗b)r

2
b]. (25)

In polar coordinates, we can de�ne

ra = ρae
iφa , rb = ρbe

iφb , φ = φb − φa. (26)
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Then, the 4-ODE system (25) can be reduced into 3 ODEs as

ρ̇a = −21ρa +
κ

2
(1 − ρ2

a)(ρa + ρb cosφ), (27)

ρ̇b = −21ρb +
κ

2
(1 − ρ2

b)(ρa cosφ + ρb), (28)

φ̇ = 4ω0 −
κ

2

ρ2
a + ρ2

b + 2ρ2
aρ

2
b

ρaρb
sinφ. (29)

Without loss of generality, we now seek for solutions of the above
equations that satisfy the symmetry condition

ρa(t) = ρb(t) = ρ(t). (30)

As a result, the system can be further simpli�ed into the following 2
ODEs:

ρ̇ =
κ

2
ρ[1 −

41

κ
− ρ2 + (1 − ρ2) cosφ], (31)

φ̇ = 4ω0 − κ(1 + ρ2) sinφ. (32)

The incoherent state is de�ned by ρ∗ = 0 and sinφ∗ = 4ω0/κ , which
is a �xed point of the 2-dimensional system described by the above
ODEs. By linearizing the above equations with respect to this �xed
point, we can obtain the characteristic equation as

∣

∣

∣

∣

∣

[κ

2
(1 + cosφ∗)− 21

]

− λ 0

0 −κ cosφ∗ − λ

∣

∣

∣

∣

∣

= 0. (33)

Noticing that cosφ∗ = ±
√

1 − (4ω0/κ)2, we then obtain Eq. (13),
which will lead to the critical point for the forward transition as in
Eq. (14). Therefore, the OA analysis gives exactly the same result as
the linear stability analysis method does in Sec. II.

IV. NUMERICAL RESULTS

In the above, we have applied both linear stability analysis and
OA analysis to obtain the critical point of system (3). On the other
hand, we have carried out extensive numerical simulations to inves-
tigate the synchronization transitions in this system. In the present
work, numerical integrations are performed with a fourth-order
Runge-Kutta method with integration time step1t = 0.01. The ini-
tial conditions for the phase variables are randomly taken and the
typical number of oscillators in the ensemble is N = 104. In the
following, we report the numerical results in detail.

In Fig. 1, we compare the critical coupling strength obtained by
numerical simulations to the theoretical predictions. The critical cou-
pling strength of the forward transition κf is plotted vs 1 for three
parameters ω0 = 2.0, 3.0, and 12.0, respectively. It is shown that the
numerical results (circles) fully support the theoretical predictions
(solid lines). Speci�cally, the analytical results, i.e., Eq. (14), predict
that the critical point κf has two branches of solutions separated by
1 ≤ ω0 and1 > ω0. This feature is totally veri�ed as shown in Fig. 1.

In Fig. 2, we report the rich phenomena of synchronization tran-
sitions in dynamical system (3) as the coupling strength varies. We
�x parameter ω0 = 2.0, and let parameter 1 increase. Figure 2(a)
plots the order parameter r2 vs the coupling strength κ for 1 = 0.8.

FIG. 1. The critical coupling strength of the forward transition κf vs 1 for ω0 =
12.0, 3.0, and 2.0, respectively. The numerical results are represented by circles.
It is shown that κf has two branches of solutions separated by 1 = ω0. The
numerical results are well consistent with the theoretical predictions (solid lines),
i.e., Eq. (14).

In this case, the frequency distribution is a typical bimodal one, as
shown in the inset of Fig. 2(a). It is found that the system is in the
incoherent state when the coupling strength is small (κ < κf ). Then,
when κ exceeds the critical point, the system bifurcates via a second-
order transition into the B state, which is a quantized non-stationary
coherent state.13 As the coupling strength further increases, the sys-
tem �nally achieves the stationary synchronized state. Figure 2(b)
describes the synchronization transitions for 1 = 1.5, where the
two peaks become a little wider. In this case, the system undergoes
two transitions toward synchronization. As the coupling strength
exceeds the critical point κf , the system �rst bifurcates via a second-
order transition into the B state. Then, further increasing the cou-
pling strength will cause the system to jump into the synchronized
state (see the �rst-order transition in the inset). On the other hand,
when the system starts from the synchronized state, as the cou-
pling strength decreases, it will �rst jump down to the B state via a
�rst-order transition. Then, the system bifurcates into the incoher-
ent state when the coupling strength is smaller than the critical point
κf . For the second transition, a hysteresis loop is observed which
typically characterizes the �rst-order phase transition. In Fig. 2(c),
1 = 1.8, where the two peaks of frequency distribution become
more wider. In this case, two transitions occur in the forward direc-
tion. The �rst one is continuous, where the system bifurcates into
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FIG. 2. Typical synchronization transition paths in Eq. (3) with bimodal frequency distribution, characterized by order parameter r2 vs coupling strength κ . ω0 = 2.0. The
bifurcation scenarios in (a)–(f) correspond to1 = 0.8, 1.5, 1.8, 2.0, 2.2, and 3.3, respectively, when the two peaks in the distribution become wider and wider. Both forward
(pinkish circles) and backward (blue triangles) transitions are numerically studied in an adiabatic way. The regimes of Bellerophon states are denoted by green circles in
(a)–(c). The insets show the frequency distributions. In fact, we have also computed r1 and found they are all 0 in the above six cases. In (a), r1 is shown as an example
(black circles). For better visualization, we do not plot r1 in the rest panels.

the B state from the initial incoherent state, and the second one is
of �rst-order, where the system jumps from the B state to the �nal
synchronized state. However, this case is di�erent from Fig. 2(b) in
the backward direction. When along the backward direction, there
is only one �rst-order transition, where the system directly jumps
from the synchronized state back to the incoherent state as shown
in the inset of Fig. 2(c). So we observe an interesting synchronization
transition path here. There are two successive transitions in the for-
ward direction while only one transition occurs in the backward

direction. As parameter 1 increases even larger, which means that
the two peaks in the frequency distribution become more and more
wider, a typical �rst-order transition toward synchronization occurs
in the system, as shown in Figs. 2(d) and 2(e). In these two cases, B
state is not observed in our simulations. The system directly jumps
into the synchronized state in the forward direction, and the reverse
process happens in the backward transition with a hysteresis loop.

As we know, when 1 >
√
3ω0, the bimodal frequency distribution

becomes a unimodal one. In Fig. 2(f), we illustrate an example with
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FIG. 3. The B state corresponding to point I in Fig. 2(a). κ = 3.7. Snapshots of the instantaneous phase θi (a), the instantaneous speed θ̇i (b), and the average speed
〈θ̇i〉 (c) versus the natural frequencies ωi of the oscillators. Note that the instantaneous frequencies of oscillators in each coherent cluster are not locked, but their averaged
frequencies are locked.�1 is the principle frequency, i.e., the lowest average frequency among coherent clusters. (d) and (e) illustrate the snapshots of coherent oscillators C

1

and C−1 on the unit circle. In (f), the local order parameters of the two clusters corresponding to ω > 0 (red) and ω < 0 (green) are plotted, and the global order parameter
for all oscillators is the blue line, which oscillates almost periodically as shown by the insets.

1 = 3.3, which is very close to
√
3ω0 = 3.46, i.e., the distribution

is approaching a unimodal one as shown in the inset. In this case,
there is only one continuous transition toward synchronization as the
coupling strength increases. This is just like the situation in the clas-
sical Kuramotomodel. It should be emphasized that actually, we have
also computed order parameter r1 for the above six cases. It is found
that they are typically 0, as illustrated in panel (a) of Fig. 2. These
results suggest that although the manifold of global synchronization

exists for Eq. (3), it turns out to be unstable for the parameter regimes
studied.

We now characterize the typical coherent states observed in the
system. In the �rst example, a B state is illustrated in Fig. 3, which cor-
responds to point I in Fig. 2(a). In such a state, oscillators withω > 0
form a π-state, and so do the oscillators with ω < 0, as shown in
panels 3(a), 3(d), and 3(e). These two π-states rotate in the opposite
direction. However, this is not a standing wave state because the

FIG. 4. The B state corresponding to point II in Fig. 2(a) showing multiple symmetric coherent clusters. κ = 5.3. For (a)–(c), the figure captions are the same as in Fig. 3.
(d) Enlargement of the average speeds of the coherent clusters. They correspond to odd-numbered multiples of the principle frequency�1. In the insets, the snapshots for
clusters C1,C3,C5, and C7 are plotted, respectively. Note that all coherent clusters together with the incoherent ones are actually on the same circle.
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FIG. 5. The π -state corresponding to point III in Fig. 2(a). κ = 10.0. Contrary to
the B states, the instantaneous frequencies of coherent oscillators are locked as
shown in (b).

instantaneous frequencies of oscillators in each cluster are not locked
[panel 3(b)]. Actually, these are time-dependent. However, it is found
that their averaged frequencies are locked [panel 3(c)]. In panel 3(f),
the local order parameters for oscillators withω > 0 (red) andω < 0
(green) are plotted, which turn out to be two smeared ovals. The
global order parameter for all oscillators is the blue line, which oscil-
lates as shown in the insets. So actually this state is a special case of
B state, which is non-stationary and has two quantized plateaus in
terms of averaged frequencies.

In the second example, a typical B state is shown in Fig. 4, cor-
responding to point II in Fig. 2(a). In such a state, oscillators split
into multiple symmetric coherent clusters [panels 4(a)–4(c)]. The
most important characteristic is that the oscillators’ instantaneous
frequencies are not locked [panel 4(b)], whereas their averaged fre-
quencies form quantized plateaus [panel 4(c)]. In panel 4(d), it is
further shown that the staircases of the averaged frequencies cor-
respond to odd-numbered multiples of the principle frequency �1,
which is the lowest one. This means that on average the oscillators
in cluster C2n−1, n = 1, 2, 3, . . . , rotate (2n − 1) loops, respectively,
during the period 2π/�1. In the insets of panel 4(d), snapshots of
oscillators in clusters C1,C3,C5, and C7 are illustrated. For better
visualization, they are plotted on separated circles. Actually, they
are all on one circle together with the incoherent drifting oscilla-
tors. Therefore, one can imagine a picture of higher-order coherence
in this system: oscillators are correlated to a certain extent on the
one hand, but still have certain degrees of freedom on the other
hand.

Finally, Fig. 5 shows the synchronized state in the system, corre-
sponding to point III in Fig. 2(a). This state is a typical π-state, where
oscillators form two coherent clusters. As shown in 5(b), the instan-
taneous frequencies of oscillators in the coherent clusters are locked.
This is essentially di�erent from the B states, as shown in Figs. 3 and
4. In panel 5(d), both order parameters r1 and r2 are plotted with
respect to time. It is shown that r2 approaches a value near 1, but
r1 is always approximately zero. This implies that the two clusters in
the π-state are symmetric. In fact, since the bimodal Lorentzian dis-
tribution is symmetric, we do not observe asymmetric π-state in the
current model.

V. CONCLUSION

In this work, we studied synchronization in the Kuramoto
model with second-order coupling under the bimodal Lorentzian
frequency distribution. By applying theoretical analyses, including
both linear stability analysis and the Ott-Antonsen analysis, we have
successfully obtained the critical point for synchronization transi-
tion. Then, we carried extensive numerical simulations which fully
supported the theoretical predictions. Furthermore, it is found that
the system has two typical coherent clustering states, i.e., the B state
and the π-state, whereas the complete synchronized state has not
been observed with such second-order coupling scheme. Finally,
various bifurcations among the incoherent state and these two coher-
ent states have been numerically revealed. The present analytical
and numerical results will enhance our understandings of collective
behavior in coupled oscillator systems.
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