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ABSTRACT

It has been demonstrated that the construction of ordinal partition transition networks (OPTNs) from time series provides a prospective
approach to improve our understanding of the underlying dynamical system. In this work, we introduce a suite of OPTN based complexity
measures to infer the coupling direction between two dynamical systems from pairs of time series. For several examples of coupled stochastic
processes, we demonstrate that our approach is able to successfully identify interaction delays of both unidirectional and bidirectional coupling
con�gurations. Moreover, we show that the causal interaction between two coupled chaotic Hénon maps can be captured by the OPTN based
complexitymeasures for a broad range of coupling strengths before the onset of synchronization. Finally, we apply ourmethod to two real-world
observational climate time series, disclosing the interaction delays underlying the temperature records from two distinct stations in Oxford
and Vienna. Our results suggest that ordinal partition transition networks can be used as complementary tools for causal inference tasks and
provide insights into the potentials and theoretical foundations of time series networks.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086527

The construction of transition networks from time series is one
of the most widely spread methods for time series analysis based
on complex network approaches. Transition networks allow to
characterize the intrinsic heterogeneity of the state transition
behavior of the system, which provides many novel insights sup-
plementing traditional time series analysis methods. However,
most existing works on this topic have focused on disclosing
properties of a single time series, which calls for a general-
ization to multivariate analysis. Here, we choose the problem
of identifying coupling direction as a showcase to demonstrate
that measures quantifying the heterogeneity of state transitions
in ordinal partition transition networks can successfully cap-
ture unidirectional and bidirectional coupling between paradig-
matic models of dynamical systems as well as real-world time
series.

I. INTRODUCTION

Over the last decade, various complex network approaches have
been proposed in the literature to understand the complexity of
nonlinear time series.1–3 The �rst step of constructing complex net-
works from time series is to identify proper de�nitions for network
nodes and links.3 Given the great variety of possible de�nitions,
this leads to diverse transformation approaches including recur-
rence networks,4,5 visibility graphs,6 transition networks,7,8 and cycle
networks9 as themost notable examples. The resulting network repre-
sentations have been successfully applied to diverse real-world obser-
vational time series from various �elds, for instance, climate and
Earth sciences,10–12 �uidmechanics and turbulence,13–17medicine,18,19

�nancial markets,20 or astrophysics.21,22 A comprehensive summary
of recent developments can be found in Ref. 3.
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In this work, we focus on the application of transition net-
works from time series. This class of time series network represen-
tations comprises several di�erent ways for de�ning the nodes of
a transition network upon a given data set. In general, the nodes
of a transition network correspond to certain discrete states or pat-
terns, and directed links are established if one of these nodes is
followed by the other with nonzero (empirical) probability along
the observed trajectory of the system under study. One common
way to de�ne a network node is to utilize symbolic encoding,
which transforms a time series into a set of K discrete states
or patterns (“symbols”) {π1, . . . ,πK}. The resulting transition net-
work is a weighted and directed graph, which corresponds to a
Markov chain with given transition probabilities between discrete
states.23

Ordinal partition transition networks (OPTN) constitute a spe-
ci�c type of transition networks, where a node is represented by the
vector of rank orders of the components of a sequence of observations
(referred to as an ordinal pattern), while a weighted link captures the
transition frequency between two successive ordinal patterns.8,24–27

In this regard, OPTNs utilize the framework of ordinal time series
analysis, which provides important methodological concepts (such
as the permutation entropy of a time series28 or complexity measures
based on a similar rationale) and allows building upon the well-
developed theory of symbolic methods in the context of dynamical
systems theory and nonlinear time series analysis.29–31While the clas-
sical permutation entropy provides just a single measure taking an
integrated view on the heterogeneous succession of ordinal patterns,
the OPTN8,24,32 provides information complementary to the standard
ordinal or symbolic analysis of time series by further exploiting the
corresponding transition frequencies and their mutual interdepen-
dencies more explicitly in various ways provided by the complex
network theory. Notably, in many dynamical systems, certain ordinal
patterns do not appear (forbidden patterns), which is indicative of a
deterministic nature of the underlying process.25–27 Moreover, it has
been suggested recently to quantify deviations from time reversibility
as an indication of nonlinear dynamics by means of ordinal pattern
based statistics.33 In a similar fashion, complexity measures based
on OPTNs have already been demonstrated to be powerful tools

for analyzing real-world time series like such originating from an
externally driven diode resonator circuit8 and electrocardiograms
(ECGs).32

Recently, the idea of OPTNs has been further extended to study
multivariate time series.34 One particular achievement is the con-
struction of cross and joint ordinal partition transition networks for
two coupled systems,35 which has been demonstrated to successfully
characterize di�erent types of synchronization transitions. Along
with the observation of such transitions, characterizing directed
(and potentially causal) interactions among coupled systems is of
great importance to identify the underlying coupling con�guration
from time series, since coupling direction and strength play impor-
tant roles in the process of synchronization. From a methodological
perspective, the identi�cation of coupling directions and associated
delays36 from time series has, however, remained a challenging task
so far. As a classical representative of a vast class of methods, the
Granger test for causality has become increasingly popular to infer
and quantitatively characterize the causal relation among two pos-
sibly interacting processes.37 Hence, this concept has found a broad
range of applications to time series in economy, neuroscience, and
physics.38,39 In this work, we propose and subsequently test a suite
of complexity measures based upon bipartite OPTNs that could
help identifying coupling directions (and, thus, potentially inferring
causality) from observational time series.

The outline of this paper is as follows: In Sec. II, we provide
an introduction on the construction of OPTNs from time series,
focusing on two possibly interacting processes. In Sec. III, we pro-
pose three measures to quantify heterogeneity in the linkage patterns
of the resulting bipartite OPTNs. Some numerical results for dif-
ferent model systems are presented in Sec. IV, while the results for
two observational temperature recordings at spatially distinct sites
are discussed in Sec. V as a real-world example. Finally, our main
conclusions are summarized in Sec. VI.

II. ORDINAL PARTITION TRANSITION NETWORKS

The basic idea underlying the transformation of a time series
into an OPTN is illustrated in Fig. 1. Given a univariate time

FIG. 1. Illustrative example showing ordinal
pattern definitions and evolution. Panel (a)
shows an embedding vector Ex9 with embedding
parameters τd = 9 andD = 6. (b) The resulting
series of ordinal patterns before (top) and after
(bottom) removal of all self-transitions.
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series {xt}
N
t=1 with time step 1t = ti+1 − ti, we start by following

the traditional algorithm to reconstruct its state space by time delay
embedding2,40 Ext = [xt , xt+τd

, . . . , xt+(D−1)τd ]with embedding dimen-
sion D. Based on the respective amplitudes of the recorded vari-
able X, the resulting rank order among the components of each
state vector Ext is used to obtain a corresponding symbolic encoding.
Here, the order of the resulting ordinal patterns associated with the
embedding vectors Ext is determined by the embedding dimension
D, i.e., there exist at most D! di�erent patterns, which are denoted
by π1,π2, . . . ,πD!. The choice of the embedding parameters τd and
D is often based on some standard criteria like the �rst root of
the autocorrelation function of the time series and the false near-
est neighbor method, respectively.2 In the example shown in Fig. 1,
we have used τd = 9 and D = 6, and the embedded state vector Ex9
is represented by its associated ordinal pattern π80 [Fig. 1(a)]. As
we follow the system’s trajectory in the accordingly reconstructed
state space, we obtain a new state vector that is represented by a new
ordinal pattern (here, π68). The resulting series of ordinal patterns
is shown in Fig. 1(b). By taking the empirical frequencies of succes-
sions between all possible pairs of ordinal patterns from the entire
time series, we construct an ordinal partition transition network of
D! vertices representing the di�erent patterns and directed edges that
are weighted by the corresponding empirical transition frequencies.
For convenience, we remove self-transitions (loops) in the network
[see the sequence in the bottom panel of Fig. 1(b)], which would
indicate an enduring state or a pattern of the underlying process that
commonly does not often appear in the case of discrete stochastic
processes.

Now, let us transfer the above idea fromone to two series of ordi-
nal patterns πX

i and πY
j constructed from two possibly interacting

systemsX andY , respectively, as schematically shown in Fig. 2. ForX
exhibiting an ordinal pattern πi at some time t, we compute the time-
lagged co-occurrence frequencies with all ordinal patterns of Y to be
observed at time t + τ , i.e., p(πY

j (τ )|πX
i ). When τ = 0, we study the

simultaneous co-occurrence of ordinal patterns in both sequences.
In turn, nonzero delays τ capture possible indications of causal rela-
tionships among the two systems since it commonly takes some time
for the driven process to respond properly to the driving system. An
example of p(πY

j (τ )|πX
i ) for two unidirectionally (X → Y) coupled

FIG. 2. Schematic illustration of the OPTN analysis for two series of ordinal
patterns with a unidirectional coupling X → Y with a coupling delay of 1. The
time-lagged conditional co-occurrences of the patterns πX

i and πY
j (τ ) are indi-

cated by dashed arrows. In this example, we observe two cases of occurrences
of π6 in the Y series when X presents the pattern π1 at the previous time
step.

linear-stochastic systems41

A :

{

xt+1 = −0.3xt + εt ,

yt+1 = 0.3yt − 0.9xt + ηt ,
(1)

(with {εt} and {ηt} being independent and identically distributed
(i.i.d.) Gaussian white noise processes with zero mean and unit vari-
ance) with delay τ = 1 is shown in Fig. 3. Figures 3(a) and 3(b)
reveal that both cases of τ = −1 and τ = 0 result in rather homo-
geneous values of p(πY

j (τ )|πX
i ). By contrast, for τ = 1, p(πY

j (τ )|πX
i )

presents markedly nonuniform co-occurrence frequencies among
the D! ordinal patterns of Y as shown in Fig. 3(c). Furthermore,
this heterogeneous pattern co-occurrence has been observed for all
reference patterns πX

i (i = 1, . . . ,D!) in X, as shown in the two-
dimensional plots in Figs. 3(d)–3(f). More speci�cally, the hetero-
geneous time-lagged conditional co-occurrence frequencies of πY

j

given the reference pattern πX
i for di�erent delays τ as shown

in Figs. 3(a)–3(c) are, respectively, represented by one column
in Figs. 3(d)–3(f).

From the described construction of OPTNs for the case of two
time series, it is obvious that the resulting networks exhibit two dis-
tinct types of nodes, corresponding to the ordinal patterns πX

i of X
and πY

j of Y , respectively, and exclusively (weighted and directed)
links from any πX

i to any πY
j based on the corresponding conditional

co-occurrence frequencies. Hence, this type of network constitutes
a weighted and directed bipartite network. Given that speci�c net-
work properties tailored to describing the topological characteristics
of such networks are rather limited as compared to unweighted,
undirected, and unipartite graphs, in what follows we will intro-
duce a suite of network characteristics that are speci�cally designed
to capture di�erent aspects of the underlying heterogeneity of link
weights.

III. COMPLEXITY MEASURES FOR BIPARTITE OPTNS

Based on our qualitative observations as shown in Fig. 3, in the
following we propose a suite of measures to quantitatively charac-
terize the heterogeneous co-occurrence of ordinal patterns in two
time series. All these measures will make use of the time-lagged
co-occurrence frequencies between ordinal patterns in the two time
series under study.

A. Standard deviation of conditional co-occurrence

frequencies

First, we note that for one reference pattern πX
i of X, the hetero-

geneity of the conditional frequencies of patterns πY
j in Y at a time

lag τ can simply be characterized by their corresponding standard
deviation

σ X
i (τ ) =

√

∑D!
j=1[p(π

Y
j (τ )|πX

i ) − p(πY
j (τ )|πX

i )]2

D!
, (2)

where • denotes here the average over all patterns πY
j in Y , i.e.,

p(πY
j (τ )|πX

i ) gives the mean probability of all patterns πY
j (τ ) in the

series Y to occur at a time lag τ under the condition that the series
X has exhibited the pattern πX

i . In the case of no interdependency
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FIG. 3. Graphical representation of time-lagged conditional co-occurrence frequencies for the ordinal patterns πj(τ ) of the Y series when X has the same randomly chosen

ordinal pattern πX
i for D = 5. (a)–(c) The pattern πX

i is considered fixed and placed in the center while the different patterns πY
j are varied and aligned on the unit circle.

The thickness of each connecting line corresponds to the time-lagged occurrence frequency of πY
j under the condition that X has pattern πX

i . Panels (a)–(c) are for one

reference ordinal pattern πX
i with (a) p(πY

j (τ = −1)|πX
i ), (b) p(πY

j (τ = 0)|πX
i ), and (c) p(πY

j (τ = 1)|πX
i ). Panels (d)–(f) give the corresponding two-dimensional plots

for all patterns of πY
i under the condition that X has reference pattern πX

i , i = 1, . . . ,D!. Note that the missing patterns have been indicated by white dots, which are
frequently found in the case of τ = 1. The color bar represents the co-occurrence frequencies between patterns.

betweenX andY , p(πY
j (τ )|πX

i )will be independent ofπX
i and, hence,

solely re�ects the marginal distribution of the ordinal patterns πY
j , so

that p(πY
j (τ )|πX

i ) = 1/D! because of the normalization of probabil-
ities. In such a case, any nonzero value of σ X

i simply originates from
the heterogeneity of the frequency distribution of ordinal patterns
in Y . If this distribution is homogeneous, the numerator of Eq. (2)
will be (close to) zero. In turn, if there is dependency between Y and

X, p(πY
j (τ )|πX

i ) 6= 1/D! and, hence, σ X
i (τ )will di�er from the afore-

mentioned benchmark (independence) case. Hence, any signi�cant
deviation of σ X

i (τ ) from this benchmark, which can be computed by

replacing in Eq. (2) p(πY
j (τ )|πX

i ) by p(πY
j ), will indicate the presence

of (time-lagged) coupling between both systems in the (causal) sense
of X determining the behavior of Y .

While the above considerations have focused on a single ordi-
nal pattern πX

i in X only, we obtain a general measure for the

corresponding dependency between X and Y by summing up the
values found for all ordinal patterns πX

i as

σX→Y(τ ) =

D!
∑

i=1

σ X
i (τ ). (3)

B. Shannon entropy of conditional co-occurrence

frequencies

Our second characteristic property is based on a similar ratio-
nale as a measure recently proposed in Ref. 32. Here, we �rst
characterize the heterogeneity of per-node ordinal pattern co-
occurrence by the Shannon entropy

H
πi
X→Y(τ ) = −

D!
∑

j=1

p(πY
j (τ )|πX

i ) log2 p(π
Y
j (τ )|πX

i ), (4)
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where the summation runs over all possible patterns of πY
j (τ ). Note

that for each patternπX
i and delay τ , a normalization is introduced by

∑D!
j=1 p(π

Y
j (τ )|πX

i ) = 1. Since patterns πi can have di�erent empiri-

cal frequencies p(πX
i ), we further compute the expectation value of

the co-occurrence entropy of the whole bipartite OPTN as

HX→Y(τ ) =

D!
∑

i=1

p(πX
i )H

πi
X→Y(τ ), (5)

which we call global ordinal pattern co-occurrence entropy.
For a memoryless and stationary stochastic process, we may

expect p(πX
i ) = 1/D! for any pattern order D. Accordingly, the local

(per-node) co-occurrence entropy of Eq. (4) simpli�es as

p(πY
j (τ )|πX

i ) log2 p(π
Y
j (τ )|πX

i ) =
1

D!
log2

1

D!
. (6)

Therefore, the global co-occurrence entropy [Eq. (5)] has a maximal
value HX→Y = log2 D! if all D! patterns are distributed uniformly in
bothX andY . For example,Hmax

X→Y ≈ 6.9whenD = 6 for two series of
ordinal patterns that are obtained from two i.i.d. noise processes. We
note that this observationmight be used for obtaining a proper renor-
malization of HX→Y(τ ), which shall however not be further pursued
here.

C. Kullback–Leibler divergence of conditional

co-occurrence frequencies

Finally, we propose a third measure to capture possible causal
in�uences of X on Y , which quanti�es how much more heteroge-
neous the co-occurrence frequencies p(πY

j |πX
i ) are in comparison

with the marginal distribution p(πY
j ) (without prior knowledge of

the driving process). For this purpose, we compute the node-wise
Kullback–Leibler divergence (KLD) in the following way:

KLDπi(τ ) =

D!
∑

j=1

p(πY
j (τ )|πX

i ) log2
p(πY

j (τ )|πX
i )

p(πY
j )

, (7)

which appears to be closer to the Granger-type idea of causality than
the two previous measures. Here, we use the KLD to distinguish
between two probability distributions p(πY

j |πX
i ) and p(πY

j ), whose
value vanishes if and only if the ordinal pattern series {πX

i } and {πY
j }

are independent, while any positive value suggests a possible directed
in�uence from X to Y . As a corresponding global characteristic, the
expected KLD of the whole network is calculated as

KLDX→Y(τ ) =

D!
∑

i=1

p(πX
i )KLDπi(τ ), (8)

where the summation runs over all patterns πX
i of X.

D. Relationship with existing measures

The three statistical characteristics of co-occurrence frequen-
cies introduced above should be seen as representatives of a larger
class of nonlinear measures based on symbolic sequences of ordi-
nal patterns, some of which have already been used in the exist-
ing literature. In this spirit, we may emphasize that entropic

characteristics like HX→Y(τ ) and KLD are based on the same
rationale as other information-theoretic measures like conditional
mutual information or transfer entropy. These as well as closely
related measures have been originally de�ned for general symbolic
sequences and, hence, can also be applied to sequences of ordinal
patterns.

Two notable conceptually related characteristics previously
used for similar purposes of detecting directional coupling among
time series include the permutation conditional mutual information
(PCMI)42 and (symbolic) transfer entropy ((S)TE).43,44Although both
exhibit certain similarities with our co-occurrence entropy and KLD,
they di�er in important details. The PCMI IX→Y(τ ) can be written as
the conditional mutual information between the symbols πY(τ ) and
πX given πY . A similar idea applies to the (S)TE; in fact, the sim-
plest version of (S)TE taking only one past time step into account
would be fully equivalent to the PCMI. Both (S)TE and PCMI are
thus based on the idea of predictive (Granger) causality, i.e., to use
knowledge about the past of both processes to predict the future of
one of them.

More speci�cally, the time-delayed conditional mutual infor-
mation underlying PCMI quanti�es the interaction information
from X to Y by the di�erence between p(πY

j (τ );πY
k |πX

i ) and

p(πY
j (τ );πY

k ). Similarly, S(TE) characterizes the coupling between
two series by the amount of uncertainty reduced in the predic-
tion of future values of πY(τ ) (knowing the past values of πY )
due to the knowledge of πX as the possible causal e�ect. Accord-
ingly, the information transfer from X to Y is expressed in terms
of the dissimilarity between the two probabilities p(πY

j (τ )|πY
k ,π

X
i )

and p(πY
j (τ )|πY

k ).
Other than PCMI and (S)TE, HX→Y is de�ned as the weighted-

average permutation entropy of Y under the respective condition of
the previous occurrence of each possible symbol πX

i in X, where the
weights are given by the probabilities of πX

i . In other words, both
HX→Y and also KLD do not involve any conditioning on the per-
mutation πY

j observed at the current point in time, but just take
the past symbol in one series to statistically evaluate the next one
in the other series. That is, our three measures provide estimates for
the coupling strength between two time series at a given time lag,
which can be used to infer causality in the sense of a cause preced-
ing the e�ect, but not in the predictive sense of causality as PCMI
and (S)TE.

Further di�erences between the di�erent measures exist regard-
ing the choice of the parameter τ . In PCMI,42 τ has been suggested
not to be smaller than the embedding dimensionD. In turn, in STE,44

τ is treated as an algorithmic parameter that is commonly taken as
τ = 1, which is considered to be always applicable as long as a mean-
ingful natural sampling rate of the time series is given. According
to our discussions presented in the previous subsections, our mea-
sures interpret τ in a somewhat di�erent way, i.e., as a continuous
parameter that has to be systematically varied in order to identify the
correct coupling delay, thereby treating τ explicitly as an unknown
variable.

IV. NUMERICAL EXAMPLES

In the following section, we demonstrate that the time-lagged
ordinal pattern co-occurrence complexity measures introduced in
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Sec. III can capture causal interactions in both unidirectional and
bidirectional coupling con�gurations. In order to illustrate this, we
consider examples from two typical classes of time-discrete dynami-
cal systems: simple stochastic processes and chaotic maps.

A. Coupled stochastic processes

We �rst test our measures regarding their capability to cor-
rectly identify coupling directions and delays among simple one-
dimensional stochastic processes. For this purpose, we study two
examples in a unidirectional coupling con�guration and two others
in a bidirectional setting. Moreover, we consider cases with a single
delay term vs such with more than one delay, as well as nonlinear
model versions obtained by static nonlinear transformations of the
�rst subsystem as proposed in Ref. 41.

In all considered models, we generate time series {xt} and {yt}
of length N = 105, which are then used to construct ordinal pattern
representationswith the embedding parametersD = 5 and τd = 100.
We have checked that our results do not change qualitatively if other
parameter combinations are chosen (not shown). The relevance of
all inferred interaction delays has been con�rmed by switching the
roles of X and Y (for instance, a positive delay τ from X to Y should
coincidewith a negative delay−τ when exchanging the two systems).

The results presented in the following are based on averages
over 20 independent realizations of the considered processes. We
emphasize that the di�erences between the individual realizations are
in general very small. Hence, in the following �gures we will omit
error bars indicating the corresponding ensemble standard devia-
tions, since they appear negligible in comparison with the overall
found values of all considered OPTN based complexity measures.

1. Unidirectional coupling

We start with the system of two coupled linear-stochastic sys-

tems from Eq. (1). A nonlinear transformation f (x) =
[

x+|x|
2

]5
is

applied to each realization of the �rst system X, and the resulting
realization of the transformed system X̃ is denoted as {x̃t}.

Based on the resulting sequences of ordinal patterns, we com-
pute the three measures σX→Y(τ ), HX→Y(τ ), and KLD(τ ) and show
the corresponding results in Fig. 4. We clearly �nd at τ = 1 a
uniquemaximumof σX→Y(τ ) andKLD(τ ) [Figs. 4(a) and 4(e)] while
HX→Y(τ ) presents a minimum [Fig. 4(c)]. Thus, all three measures
consistently suggest that there is an interaction from X to Y at a
delay τ = 1. Almost identical results are obtained if the system X
is replaced by its nonlinearly transformed counterpart X̃ [Figs. 4(b),
4(d), and 4(f)].

When introducing more interaction delays from X to Y ,
σX→Y(τ ), HX→Y(τ ), and KLD(τ ) exhibit additional maxima and
minima, respectively, at various values of τ . To illustrate this, we
generate time series from the following linear system:41

B :



























xt+1 = −

7
∑

k=0

ckxt−k + εt ,

yt+1 = −

7
∑

k=0

ckyt−k + 100
8

∑

k=0

ckxt−k + ηt ,

(9)

FIG. 4. Values of three ordinal pattern co-occurrence complexity measures
in dependence on the mutual delay τ for realizations of Eq. (1): (a) and (b)
σX→Y (τ ), (c) and (d) HX→Y (τ ), (e) and (f) KLD(τ ). Panels (a), (c), and (e)
show the results for realizations from the linear model, while (b), (d), and (f) cor-
respond to the nonlinear transformation of the first subsystem as described in
the text. The vertical red dashed lines indicate the values for vanishing mutual
delay (τ = 0).

where εt and ηt are again independent Gaussian random variables.
In this model, there are nine interaction terms from X to Y at dif-
ferent delays. By taking the coe�cients {ck} from the polynomial
∑8

k=0 ckz
k = [(1 − re−2π if z)(1 − re2π if z)]4 with f = 0.1 and r = 0.8

as studied in Ref. 41, it is ensured that the evolution of Y is in�u-
enced more by the interaction terms at smaller delays than those
with larger delays. A nonlinearly transformed signal X̃ is obtained
by setting x̃t = x5t .

In comparison with the previous case of a system with only
one interaction delay τ (Fig. 4), the presence of multiple interaction
delays is clearly identi�ed by all three measures (Fig. 5). However,
since these interactions occur at subsequent delays, the correspond-
ing e�ects partially cancel each other, resulting in a succession of
local maxima and minima of these measures. Hence, not all individ-
ual delays are identi�ed by our approach in the considered setting.
Notably, the nonlinearly transformed version of the model shows
again results that are almost equivalent to those of the underlying
linear version.
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FIG. 5. Same as in Fig. 4 but for Eq. (9).

2. Bidirectional coupling

Next, we consider a symmetric bidirectional interaction with
a delay of τ = 1 from X to Y and from Y to X. The corresponding
numerical model reads as follows:

C :

{

xt+1 = −0.5yt + εt ,

yt+1 = −0.5xt + ηt ,
(10)

where {εt} and {ηt} are again i.i.d. standard Gaussian random vari-
ables. The nonlinearly transformed signal X̃ is obtained by setting
x̃t = x2t . In this case, X in�uences Y at a delay τ = 1 while Y in�u-
ences X at the same delay. As shown in Figs. 6(a), 6(c), and 6(e), both
delays are correctly identi�ed by σX→Y(τ ), HX→Y(τ ), and KLD(τ ).
For the nonlinearly transformed case, this result is essentially repro-
duced. In all cases, the corresponding measures exhibit two large
peaks/troughs at the positive time lag τ = 1 and the negative time
delay τ = −1. This indicates that the employed coupling is bidirec-
tional and symmetric in both the linear and nonlinear systems.

As a �nal example of coupled stochastic processes, we consider
a more challenging case of asymmetric bidirectional interactions
between X and Y . More speci�cally, X in�uences Y at a delay τ = 2,
while the interaction from Y to X appears at a delay τ = 1. The

FIG. 6. Same as in Fig. 4 but for Eq. (10).

corresponding linear-stochastic model reads as follows:

D :

{

xt+1 = 0.3yt + εt ,

yt+1 = 0.5xt−1 + ηt ,
(11)

where {εt} and {ηt} are again realizations of i.i.d. Gaussian noise.
The nonlinearly transformed X̃ is de�ned as x̃t = tanh 10xt . As in
the previous three examples, in both the linear and nonlinear cases,
the curves of σX→Y(τ ),HX→Y(τ ), and KLD(τ ) correctly identify two
delays at τ = −1 and τ = 2 as shown in Fig. 7. This correctly sug-
gests thatX (X̃) a�ectsY at a delay of τ = 2, whileY in�uencesX (X̃)
at τ = 1.

B. Coupled nonlinear chaotic maps

As an additional numerical example, we further illustrate the
performance of the proposed ordinal pattern co-occurrence com-
plexity measures for detecting the coupling direction between two
unidirectionally coupled identical nonlinear chaotic Hénon maps.45

In this case, the driving system X reads

X :

{

x(1)
t+1 = 1.4 − x(1)

t x(1)
t + b1x

(2)
t ,

x(2)
t+1 = x(1)

t ,
(12)
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FIG. 7. Same as in Fig. 6 but for Eq. (11). The two employed delays of τ = −1
and τ = 2 are additionally highlighted by vertical blue dashed lines.

while the response system Y is given as

Y :

{

y(1)
t+1 = 1.4 − [µx(1)

t y(1)
t + (1 − µ)y(1)

t y(1)
t ] + b2y

(2)
t ,

y(2)
t+1 = y(1)

t ,
(13)

with µ being the coupling strength and b1 = b2 = 0.3. Following
Ref. 45, we restrict our discussion to values of the coupling strength
within the interval µ ∈ [0, 0.6], since the coupling direction cannot
be identi�ed in the presence of identical synchronization, which sets
in at approximately µ = 0.65. Mimicking the common situation in
the case of real-world observational time series, we assume that we
have only observed the two scalar time series {x(1)

t }Nt=1 (system X)
and {y(1)

t }Nt=1 (system Y) instead of the full system. The resulting
series are transformed into corresponding ordinal patterns using the
embedding dimensionD = 5 and time delay τd = 100, i.e., the same
parameters as for the stochastic processes in the examples discussed
in Sec. IV A. Again, we note that the results described in the fol-
lowing do not change qualitatively when other reasonable choices of
embedding parameters are used (not shown).

We choose four representative coupling strengths (µ = 0.2, 0.3,
0.4, and 0.5) and show the corresponding results in Fig. 8. The maxi-
mum values of σX→Y and KLD(τ ) and the minimum values ofHX→Y

become more pronounced when the coupling strength µ increases.
Our numerical results demonstrate a monotonic increase in the

amplitudes of the maxima of σX→Y and KLD(τ ) along with a mono-
tonic decrease in the minima ofHX→Y when increasing the coupling
strength µ, which are indicated by the left (black) vertical axes of
Figs. 8(b), 8(d), and 8(f). Furthermore, we observe that the positions
of local maxima of σX→Y and KLD(τ ) as well as the local minima
of HX→Y get gradually closer to zero, which originates from the syn-
chronization process among the two coupled systems. Notably, the
positions of these maxima/minima are shifted toward zero time lag
when X and Y are identically synchronized. We de�ne an index
X → Y to capture the coupling direction by the positions of global
maxima τmax of σX→Y(τ ) and KLD(τ ) [global minima τmin of
HX→Y(τ )], where a positive value of this index re�ects a coupling
direction from X to Y . When increasing the coupling strength µ as
shown by the right (blue) vertical axes in Figs. 8(b), 8(d), and 8(f),
we conclude that the unidirectional coupling direction from X to Y
has been well captured by the positive values of this coupling direc-
tion index. We note that the �uctuations of this index at rather weak
interactions [µ ∈ [0, 0.02]] are due to the imprecise identi�cation
of the maxima of σX→Y(τ ) and KLD(τ ) [minima of HX→Y(τ )]. In
turn, the index X → Y drops to zero values when µ & 0.52 because

FIG. 8. (a), (c), and (e) Same as in Figs. 4(a), 4(c), and 4(e) but for the case of
unidirectionally coupled Hénon maps [Eqs. (12) and (13)]. We show four cases
of coupling strengths µ = 0.2, 0.3, 0.4, and 0.5 as indicated by the legends. The
correspondingmaximum/minimum values of the threemeasures σX→Y (a),HX→Y

(c), and KLD (e) are annotated by different types of symbols. (b), (d), and (f) The
left vertical axes indicate themaximum/minimum values of the corresponding ordi-
nal pattern co-occurrence complexity measures, while the right one provides the
values of the coupling direction index X → Y (i.e., the positions of the respective
maxima/minima of the three considered measures).
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the coupling strength gets close to the complete synchronization
regime.45

C. Sample size dependence of complexity measures

So far, we have shown that all three OPTN based complex-
ity measures have been able to extract the coupling directions in
our numerical examples correctly. As discussed above, σX→Y(τ ) is
expected to be zero, while HX→Y(τ ) converges to a maximal value
HX→Y = log2 D! if all D! patterns are independently and uniformly
distributed in both X and Y , where independence corresponds to
two uncoupled systems. These empirical expectations may be altered
by nonuniform marginal probability distributions of the di�erent
patterns.

In contrast to the two other measures, we do expect zero val-
ues of KLD(τ ) for uncoupled systems even if the marginal frequency
distributions of the corresponding ordinal patterns are nonuniform
or not exactly the same, since the KLD measure [Eqs. (7) and (8)] is
de�ned such that it should always asymptotically approach zero in
the case of uncoupled systems. In turn, we expect positive nonzero
values of KLD for two coupled systems, in particular at the positions
of the true interaction delays. However, due to the �nite length of any
given pair of time series, one may observe small nonzero KLD values
in the case of noncausal delays, as has been shown in our numerical
results discussed above (cf. Figs. 4–7).

In order to further study such �nite sample size e�ects on the
obtained complexity measures, we reconsider the coupled stochastic
processes from Sec. IV A and choose two speci�c time lags τ , one
corresponding to the position of the maximal values of σ and KLD
(minimal value of H) indicating some relevant interaction, while
the other is coinciding with the position of some noncausal delay
with small σ and KLD value (large value of H). In the following, we
report the numerical results for the KLDmeasure only since this dis-
criminator should not be a�ected by nonuniform pattern frequency
distributions. However, similar results can be obtained for the other
twomeasures (i.e., σX→Y andHX→Y ), as it is shown in Figs. S1 and S2
in the supplementary material accompanying this paper.

For all four previously studied systems, we observe di�erent
asymptotic behaviors of KLD at the two selected delays. Notably,
when increasing the time series lengthN, theKLDvalues at the actual
interaction delays show convergence to nonzero values, while drop-
ping toward zero approximately as 1/N at the noncausal delays. This
feature is clearly visible for all four stochastic processes with both
unidirectional and bidirectional coupling con�gurations as shown in
Fig. 9.

In all cases, our convergence results are reliable if the time series
length is larger than N & 104, which may exceed the typical lengths
of real-world observational time series. The main reason for this is
the selected pattern order ofD = 5, which calls forD! = 120 di�erent
nodes and, hence, (D!)2 = 14 400 possible pairs of patterns for which
mutual co-occurrence frequencies need to be estimated from the
available data. For smaller pattern orders, much earlier convergence
is found (see Figs. S3–S5 in the supplementary material), which may
however come at the cost of less accuracy in the task of discriminating
between actual and possibly spurious interaction delays.

Qualitatively equivalent results are obtained for the two cou-
pled chaotic Hénon maps from Sec. IV B as shown in Fig. 10. Here,

FIG. 9. Double logarithmic plot (logarithms with respect to base 10) of the depen-
dence of KLD on the sample size N for the optimal (causal) lags (blue/red)
and some noncausal lag (black) for the four cases of coupled linear-stochastic
systems: (a) Eq. (1) (unidirectional), (b) Eq. (9) (unidirectional), (c) Eq. (10) (sym-
metric bidirectional), (d) Eq. (11) (asymmetric bidirectional). In (c) and (d), the
values for both causal delays are shown. Error bars correspond to the standard
deviation (linear scale) over 20 independent realizations.

we have again studied four di�erent values of the coupling strength,
µ = 0.2, 0.3, 0.4, and 0.5, and chosen the coupling delays based on
the results of Fig. 8, corresponding to the respective maximum KLD
values on the one hand, and some noncausal delay with a low value of
KLDon the other hand.As for the previously considered cases of cou-
pled stochastic processes, the convergence results are reliable for time
series of lengthN & 104. A special case arises for the ratherweak cou-
pling of µ = 0.2, where the di�erent convergence behavior of KLD
gets only visible for N & 106. Similar results have been obtained for
σX→Y and HX→Y , as shown in Figs. S6 and S7 in the supplementary
information. Again, reducing the pattern order leads to faster con-
vergence of all three OPTN based measures for the true coupling
delays, but on the cost of generally larger uncertainty (see Figs.
S8–S10 in the supplementary material for the corresponding results
for D = 4).

Taken together, we conclude that the small nonzero KLD values
(as well as di�erences of the other two OPTN complexity measures
from their asymptotic values) at noncausal delays are indeed due to
the �nite length of the studied time series. This suggests a straight-
forward strategy for obtaining con�dence bounds for the computed
complexity values by comparing them with those for surrogate data
constructed by shu�ing or bootstrapping the underlying time series
individually. We leave a more detailed exploration of this idea as a
subject of future work.

V. REAL-WORLD EXAMPLE

In this section, we apply the proposed methodology to charac-
terize the statistical interdependence between temperature records
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FIG. 10. Same as in Fig. 9 but for the two coupled Hénon maps at four different
coupling strengthsµ: (a)µ = 0.2 (b) 0.3, (c) 0.4, and (d) 0.5. The blue lines show
the behavior at the delay corresponding to maximum KLD, while the black ones
show the values for a noncausal delay of τ = 10.

from two distant meteorological stations. Speci�cally, we study two
long-termdaily temperature records fromOxford (Great Britain) and
Vienna (Austria) as previously investigated in Ref. 46 by means of
phase synchronization measures. The data used here are publicly
available via the KNMI Climate Explorer (http://climexp.knmi.nl)
and cover the period from 1 January 1901 to 31 December 2010.
Missing values have been ignored in the subsequent analysis, and
the mean annual cycles (estimated by the mean temperature values
of each station for a given calendar day) have been subtracted from
both records to avoid the otherwise dominating e�ect of this regular
variability mode.

In general, temperature records like those used here are char-
acterized by some irregular alternation between colder and warmer
phases due to synoptic circulation patterns (corresponding to high
and low pressure centers, respectively), which in the case of western-
to-central Europe travel in the majority of situations in the east-
ward direction.47,48 According to the typical spatial extent of such
pressure systems, it is likely that both considered sites experience
similar variability patterns (due to spatial autocorrelations in the sur-
face air temperature �eld or so-called long-distance teleconnections),
yet with some mutual delay. Indeed, Rybski et al.46 reported phase
synchronization between both stations with the record obtained in
Oxford leading that from Vienna by on average 1 day. It should be
noted, however, that one should not expect a simple strong linear
correlation between both series, since the typical climatology at both
sites is clearly di�erent (i.e., more marine—and, hence, variable—vs
more continental—and, hence, persistent) and potentially a�ected by
di�erent circulation regimes.

Taking the two temperature series as described above, we con-
struct the corresponding bipartite OPTN. Subsequently, we com-
pute the OPTN complexity measures σX→Y , HX→Y , and KLDX→Y

for di�erent time lags, which are shown in Figs. 11(a)–11(c). When
mutually shifting both series with respect to each other by sev-
eral days in any of the two possible directions, we �nd a marked
yet relatively slow decrease of σX→Y(τ ), HX→Y(τ ), and KLDX→Y ,
which can most likely be explained by the known persistence of
air temperature time series,49 together with the expectation that the
actual delay should be time-dependent and, thus, distributed over
several values. Altogether, the most signi�cant values of all three
measures are attained at a mutual delay of τ = 1 day, with the val-
ues at τ = 2 days being only slightly less prominent. In summary, our
analysis identi�es an interaction delay between the respective local
temperature variations of 1 to 2 days (with Oxford leading Vienna),
which is consistentwith the previous results of phase synchronization
analysis.46

In order to put the estimated coupling delay into a meteoro-
logical context, we note that the actual travel direction and speed
of synoptic-scale atmospheric patterns over Europe vary greatly over
the year.48 However, westwind patterns are generally most frequently
observed. Given a distance between the two stations in Oxford and
Vienna of about 1300 km, we may associate the inferred coupling
delay of 1 to 2 days with a typical zonal (westward) propagation speed
of such atmospheric patterns over Western and Central Europe of
the order of 30 to 60 km/h, which appears not unreasonable given
everyday experience. Of course, the actual values at speci�c points in
time and space will vary greatly (e.g., storms travel with much larger
speed, while we may observe almost no zonal dynamics in the case
of northerly or southerly winds, or even eastward propagation in rel-
atively rare cases). This great variety of synoptic weather situations
thus leads to a strongly time-dependent travel time of an air parcel

FIG. 11. OPTN based statistical coupling indicators between the daily surface
air temperature records from Oxford (X ) and Vienna (Y ): (a) mean squared
deviations of the conditional co-occurrence frequencies of ordinal patterns
σX→Y (τ ), (b) global ordinal pattern co-occurrence entropyHX→Y(τ ), and (c) Kull-
back–Leibler divergence KLD(τ ). Dashed red vertical lines indicate the values for
possible instantaneous interactions. (d) Dependence of KLD on the sample length
N at the optimal delay (τ = 1 day, blue) and some arbitrarily chosen large delay
(τ = 20 days, black).
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starting at Oxford until reaching its closest distance to Vienna, which
explains our observation of not a single sharply de�ned coupling
delay, but rather some broad distribution of possible delays.

In addition to the identi�cation of the expected interaction delay
between both temperature records, we have again studied the e�ect
of the time series length on the estimatedOPTNbased coupling indi-
cators for the example of KLD. For this purpose, pairs of time series
values have been selected at random to form subsamples of arbitrary
sizes. This kind of cross-validation procedure demonstrates the sat-
uration of the obtained estimates at su�ciently large sample sizes
[Fig. 11(d)]. Most importantly, the KLD values at the optimal inter-
action delay of τ = 1 day are consistently larger than those at any
other delay that would not be justi�ed by the underlying meteoro-
logical processes. However, there is a nonzero statistical relationship
between both records even at a delay of 20 days, which is manifested
in the saturation of KLD for this delay with increasing time series
length N instead of a gradual decrease as previously observed in our
numerical model examples. Similar results have been obtained for
σX→Y andHX→Y , as shown in Fig. S11 in the supplementarymaterial.

VI. CONCLUSIONS

In summary, we have proposed to infer coupling direction and
strength among pairs of dynamical systems by computing complexity
measures based upon the resulting bipartite ordinal partition transi-
tion networks (OPTNs). More speci�cally, we have estimated three
quantitative characteristics capturing di�erent aspects of the hetero-
geneity of conditional frequencies of occurrences in one time series
relative to the second one. The �rst two measures, σX→Y and HX→Y ,
both characterize the degree to which the ordinal pattern distribu-
tion in one series can be attributed to prior information from the
ordinal patterns of the second one. By contrast, the Kullback–Leibler
divergence (KLD) between the conditional probability distribution of
ordinal patterns p(πY

j |πX
i ) and the corresponding marginals p(πY

j )

directly characterizes the presence of interdependence between the
two underlying systems X and Y .

In order to identify the direction and relevant delay of coupling,
we have performed a time-lagged analysis using all three measures,
where the ordinal pattern series have been shifted relative to each
other by a given time delay τ prior to evaluating the associated
empirical co-occurrence frequencies. Numerical results for unidirec-
tionally and bidirectionally coupled stochastic processes and Hénon
maps have demonstrated the existence of pronounced signatures at
the respective interaction delays, capturing the prescribed coupling
directions successfully. In the particular case of coupling analysis
for two temperature records from Oxford and Vienna, the ordinal
pattern co-occurrence complexity measures have consistently iden-
ti�ed interactions at a delay of 1 to 2 days, which suggests that these
measures can be useful for analyzing interactions among real-world
(noisy) time series. Follow-up studies should take up this prob-
lem to address more systematically the e�ect of observational noise
on coupling identi�cation using OPTN based complexity measures
as compared to other existing statistical approaches serving sim-
ilar purposes. The present work has provided a proof-of-concept
that concepts from ordinal time series analysis, combined with ideas
from the complex network theory, can provide complementary tools
for coupling analysis. However, we have not attempted to study the

performance of these measures along with that of other existing
techniques, which remains a subject of future studies.

Further open challenges along these lines of research include,
but are not limited to characterizing dynamic variations of the cou-
pling direction, i.e., situations where coupling changes its strength
and possibly even direction as time evolves. A sliding window tech-
niquemay be an option for such studies, however, the construction of
proper OPTNs could be a�ected by the window sizes (relative to the
time scales at which the coupling changes), which requires reliable
estimation of the considered OPTN complexity measures. In addi-
tion, the generalization of the proposed measures to the case of more
than two interacting processes is interesting, since complex interac-
tion schemes are frequently observed across a vast range of scienti�c
disciplines. Along with such examples, for instance, distinguishing
direct from indirect coupling among three of more mutually coupled
systems is still a subject of active research, which could be extended
to further applications of OPTNs.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete list of �gures
of the sample size dependence of complexity measures.
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