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Evolutionary forces resulted from competitions between different populations are common, which change the
evolutionary behavior of a single population. In an isolated population of coordination games of two strategies
(e.g., s1 and s2), the previous studies focused on determining the fixation probability that the system is occupied
by only one strategy (s1) and their expectation times, given an initial mixture of two strategies. In this work, we
propose a model of two interdependent populations, disclosing the effects of the interaction strength on fixation
probabilities. In the well-mixing limit, a detailed linear stability analysis is performed, which allows us to find
and to classify the different equilibria, yielding a clear picture of the bifurcation patterns in phase space. We
demonstrate that the interactions between populations crucially alter the dynamic behavior. More specifically,
if the coupling strength is larger than some threshold value, the critical initial density of one strategy (s1) that
corresponds to fixation is significantly delayed. Instead, the two populations evolve to the opposite state of all
(s2) strategy, which are in favor of the red queen hypothesis. We delineate the extinction time of strategy (s1)
explicitly, which is an exponential form. These results are validated by systematic numerical simulations.
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I. INTRODUCTION

Evolutionary game theory helps to explain the characteristic
interaction patterns of a population of individuals [1,2]. In
a population of coordination games of two strategies, one
central problem is to disclose the striking properties of
fixation, which refers to the probability for one strategy to
take over the entire population, causing the extinction of the
other strategy [3]. For example, suppose that there are two
strategies, cooperation and defection, in a population of size
N , the quantity of interest in this evolutionary process is
the fixation probability of cooperators, i.e., the probability
to end up in a state with N cooperators given that the
initial number of cooperators is n. When the initial number
of cooperators is larger than n0, the system reaches a state
of population-wide of only cooperators, while on the other
hand, the system reaches a state of all defectors if the initial
number of cooperators is smaller than n0. Certainly, it is
necessary to determine the critical initial density of cooperators
x0 = n0/N that separates the two absorbing states of the
system and the corresponding expectation times. Traditionally,
when the population is homogeneously well mixed and of
infinite size (N → ∞), the system is essentially described
by deterministic replicator equations, which determine the
direction and velocity of the evolutionary dynamics [2].

However, large deviations have been observed in numerical
simulations due to finite-size effects [4,5], or heterogeneous
interaction patterns between players [6,7]. Evolutionary dy-
namics in populations of finite sizes are essentially stochastic,
which require stochastic tools to describe these phenomena
[8–15]. Comparing to the continuous representations of the
evolutionary dynamics by replicator equations, stochastic
approach considers the state space of the system as discrete and
determines into which direction the system will evolve with
certain probabilities. More importantly, a stochastic modeling
considers explicitly the microscopic mechanisms that govern
the transmission of strategies from one player to another in
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terms of various selection dynamics, for instance, pairwise
comparison processes, Moran process, and Wright-Fisher
process. Therefore, stochastic frameworks have provided
many insights on the microscopic properties of the dynamic
process of fixations [3–5,16–18]. Different implementations
of strategy updating rules make the fixation properties
fairly complicated, including selecting strength [19,20] and
imitation- and aspiration-driven dynamics [21]. Furthermore,
population structures and spatial constraints have influences on
the strategy-spreading dynamics [22–27] as well. Simulations
of this dynamic process on populations of complex network
structures show large deviations from the theoretical predic-
tions by replicator equations, which further demonstrate the
usefulness of stochastic tools [28].

So far most studies on the dynamic processes of fixations
have concentrated on a single population [5,28]. However, in
most cases of biological or social systems, the population is
not isolated, instead, interactions between populations often
take place at different levels according to different rules [29].
In general, when two populations interact with each other,
nontrivial co-evolutionary dynamics will take place in many
different contexts. For instance, in evolutionary biology, the
red queen hypothesis has been proposed to explain the
situation that every improvement in one species will lead to a
selective advantage for that species, but it gets a competitive
advantage on the other species over certain temporal and
geographic scales [30,31]. This means that fitness increase
in one population will tend to lead to fitness decrease in the
other population, yielding complex interaction patterns [32].
Concerning evolutionary game dynamics on interdependent
populations, many novel phenomena that would not be present
in a single population have been recently shown [33–35]. To a
large extent, it should be expected that the rules governing one
population do not necessarily play the same roles as for two or
more populations, since competitions exist among interacted
populations. In the particular case of fixation process, it
remains largely unclear how population interaction strengths
change the fixation probabilities and their corresponding
fixation times.
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In a single population of two strategies, s1 and s2 (where
each individual plays a coordination game with its coun-
terpart), the quantity of interest is to study the density of
individuals adopting the strategy s1, which is denoted by x,
while the density of individuals of strategy s2 is 1 − x. There
are two absorbing states: (i) one absorbing state corresponds
to all players are of pure s1 strategy, i.e., x = 1; and (ii)
the second absorbing state is x = 0, i.e., all players have s2

strategy. As replicator equation predicts, the system exhibits
bistability, which shows discontinuity at x∗ ∈ (0,1) separating
the absorbing state x = 0 from x = 1. Given an initial density
x of s1 strategy at time t0, the system eventually will be
absorbed at any of the two boundary states with probability
1. For an initial frequency above x∗, the population evolves
toward 100% of pure s1 individuals [4,10]. Certainly, the
estimation of the critical value of x∗ is an important issue and
has been recently discussed in detail in Ref. [28], especially
when dealing with structured populations of finite sizes. What
would happen to the value x∗ if another population is present?
Here, we propose a coordination game model on two coupled
populations, focusing on the roles of population interactions.
With detailed theoretical analysis and substantial numerical
simulations, we find that the value x∗ will be significantly
delayed in the presence of selection pressure exerted by
the other population. Furthermore, we find a regime where
the population shows red queen dynamic scenario, namely,
the system is attracted to the opposite state of pure s2 players
provided with sufficiently strong coupling strength.

The structure of this paper is organized as follows: We
present the game model in Sec. II and the equations governing
the dynamics are derived in Sec. III. In Sec. IV, we obtain
the fixed points of the system and their respective stability
properties. The theoretical analysis will be validated by
numerical simulations in Sec. V, where we find red queen
dynamic behavior. In Sec. VI, we come to the conclusions.

II. GAME MODEL

Consider two populations P and Q. In each population there
are N players and each player has two options for strategy s1

and s2. In the case of well-mixed populations, a pair of two
connected players in population P (respectively, in Q) play a
symmetric game and the payoff matrix AP (respectively, AQ)
are expressed as

AP =
(

a b

c d

)
, AQ =

(
A B

C D

)
. (1)

Depending on the choice of the payoff matrices AP and
AQ, one implements different game models. In this work,
we choose a > c, d > b (A > C,D > B) in both matrices
such that we have coordination games with bistability in each
system [5]. At time step t , we assume there are i out of N

players in P having s1 strategy and correspondingly there are j

out of N players in Q having s1 strategy. If the two populations
P and Q are independent, the payoffs of each strategy are the
following:

uP
s1

= ai + b(N − i),

uP
s2

= ci + d(N − i),

uQ
s1

= Aj + B(N − j ),

uQ
s2

= Cj + D(N − j ), (2)

where the superscripts represent the group P and Q, respec-
tively.

The interaction between P and Q influences the individ-
ual’s payoffs and hence fitness. In this work, we assume that the
payoff of one player is determined by the actions between its
opponent and itself. Therefore, we use the coupling parameter
λ to quantify the interacting information between populations.
More specifically, the payoffs of each strategy read

uP
s1

= [ai + b(N − i)] + λP [aj + b(N − j )],

uP
s2

= [ci + d(N − i)] + λP [cj + d(N − j )],
(3)

uQ
s1

= [Aj + B(N − j )] + λQ[Ai + B(N − i)],

uQ
s2

= [Cj + D(N − j )] + λQ[Ci + D(N − i)],

where λP,Q � 0 and λP �= λQ are the coupling parameters.
Putting it differently, λP can be regarded as the sensitivity of
a player in population P to the information that it collects
from the group Q (λQ can be interpreted in a full analogy).
Furthermore, λP,Q can be understood as considering the
influence of migration rates on the stochastic dynamics of
subdivided populations [36–39]. We define the frequency of
s1 players in P and Q as x = i/N and y = j/N . When N is
sufficiently large, the payoffs of each strategy [Eqs. (3)] are
rewritten as

uP
s1

= N{[ax + b(1 − x)] + λP [ay + b(1 − y)]},
uP

s2
= N{[cx + d(1 − x)] + λP [cy + d(1 − y)]},

(4)
uQ

s1
= N{[Ay + B(1 − y)] + λQ[Ax + B(1 − x)]},

uQ
s2

= N{[Cy + D(1 − y)] + λQ[Cx + D(1 − x)]}.
By definition, it is assumed that fitness of a strategy is a

monotonically increasing function of its payoff, i.e., f P
s1

≡
f P

s1
(uP

s1
), f P

s2
≡ f P

s2
(uP

s2
), f Q

s1
≡ f Q

s1
(uQ

s1
), and f Q

s2
≡ f Q

s2
(uQ

s2
).

There are several alternative functions in representing fitness.
In general, the most commonly adopted one is the linear
fitness function f = 1 − β̂ + β̂u, where f denotes fitness,
u is the average payoff, and β̂ is selection strength [40].
However, the selection strength β̂ cannot exceed a thresh-
old β̂max because of negative fitness, which is typical for
frequency-dependent Moran processes. In order to obtain
results with any higher selection strengths, in this work,
we apply an exponential fitness function f = eβu [6,40,41].
More specifically, f P

s1
≡ exp(βuP

s1
), f P

s2
≡ exp(βuP

s2
), f Q

s1
≡

exp(βuQ
s1

), and f Q
s2

≡ exp(βuQ
s2

). Note that the selection
strength β has an order of population size N in comparison
to β̂, namely β̂ = β/N , which was often used in the literature
based on the average payoffs [5,19].

When considering two populations of unequal sizes NP �=
NQ, one can introduce a parameter α = NP /NQ in Eqs. (4)
as has been done in Refs. [33,42]. In our model, this
could be implemented by two different selection strength
βP , βQ provided the assumption that fitness of a strategy is
a monotonic function of its payoff is fulfilled. In this work,
we consider the case of equal population sizes, yet with rich
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dynamics. The study of a more general case of NP �= NQ will
be a subject of future work.

III. TRANSITION PROBABILITIES

We consider each population, respectively, undergoes the
Moran process: Suppose at time t , there are i and j players
in P and Q having action s1. At time t , one of player X in
P is chosen proportional to its fitness. This chosen individual
produces one identical offspring. To keep the population size
N constant, a randomly chosen individual X′ in P is removed
from the population before the offspring is added [5,10]. This
birth-death process is repeated for population Q, separately.

In the next time step t + 1, the transition probability that the
number of s1 players is increased to i + 1 in P (respectively,
j + 1 in Q) can be expressed as

T P
+ = N − i

N
· f P

s1
· i

f P
s1

· i + f P
s2

· (N − i)
, (5)

T
Q
+ = N − j

N
· f Q

s1
· j

f
Q
s1 · j + f

Q
s2 · (N − j )

. (6)

Replacing x = i/N,y = j/N (proportions of populations
playing s1 strategy in P and Q, respectively), we obtain

T P
+ = (1 − x)

f P
s1

x

f P
s1

x + f P
s2

(1 − x)
= x(1 − x)

f P
s1

¯f P
, (7)

T
Q
+ = (1 − y)

f Q
s1

y

f
Q
s1 y + f

Q
s2 (1 − y)

= y(1 − y)
f Q

s1

¯f Q
, (8)

where ¯f P = f P
s1

x + f P
s2

(1 − x) and ¯f Q = f Q
s1

y + f Q
s2

(1 − y)
characterize the average fitness of group P and Q, respectively.
In a fully analogy, the transition probabilities that the number
of s1 players is reduced to i − 1 in P (respectively, j − 1 in
Q) are

T P
− = x(1 − x)

f P
s2

¯f P
, (9)

T
Q
− = y(1 − y)

f Q
s2

¯f Q
. (10)

The probabilities to keep i s1 players in P unchanged is T P
0 =

1 − T P
+ − T P

− , respectively, in Q we have T
Q

0 = 1 − T
Q
+ −

T
Q
− .

When N → ∞, the evolutionary dynamics of the strategy
densities are determined by the following two-dimensional
replicator equations:

dx

dt
= F = T P

+ − T P
− = x(1 − x)

f P
s1

− f P
s2

¯f P
, (11)

dy

dt
= G = T

Q
+ − T

Q
− = y(1 − y)

f Q
s1

− f Q
s2

¯f Q
. (12)

In this coupled system, we have the phase plane of unit square
[0,1] × [0,1].

Note that, for coordination games [(a > c,d > b) and (A >

C,D > B)] on two independent populations P and Q (λP,Q =
0), we recover the results that have been reported in Ref. [5].
More specifically, the replicator equation shows that there are

trivial equilibria points x̂ = 0 and x̂ = 1 and an unstable fixed
points x∗ in P (respectively, ŷ = 0, ŷ = 1, and y∗ in Q), where
x∗ and y∗ read

x∗ = d − b

a + d − b − c
, (13)

y∗ = D − B

A + D − B − C
, (14)

where 0 < x∗,y∗ < 1. The ratios between x∗ and y∗ for two
uncoupled populations are further denoted by

ε1 = y∗

x∗ , ε2 = 1 − y∗

1 − x∗ . (15)

It turns out that ε1 and ε2 are helpful for bifurcation analysis
as shown below.

IV. FIXED POINTS AND STABILITIES

The fixed points of the two coupled populations [Eqs. (11)
and (12)] are determined by F = dx/dt = 0 and G =
dy/dt = 0, which yield nine fixed points: (0,0), (0,1), (1,0),
(1,1), (xL(0),0), (xL(1),1), (0,yL(0)), (1,yL(1)), and (x�,y�).
It is an easy task to obtain fixed points (0,0), (0,1), (1,0), and
(1,1), but it is more complicated to obtain (xL(0),0), (xL(1),1),
(0,yL(0)), (1,yL(1)), and (x�,y�), which will be discussed in
detail below.

We start by providing a geometrical method to obtain
fixed points of the system. We first consider the quasisteady
(marginal) state of the system, namely F = 0,G �= 0 as an
example. The x nullcline is defined by F = 0, which yields
three solutions, x = 0, x = 1, and the third implicit solution
of f P

s1
= f P

s2
. The assumption that fitness is a monotonically

increasing function of the payoff leads to uP
s1

= uP
s2

, namely,

ax + b(1 − x) + λP [ay + b(1 − y)]

= cx + d(1 − x) + λP [cy + d(1 − y)]. (16)

Thus, the x nullcline is simplified as

xL(y) = (d − b)(1 + λP )

a + d − b − c
− λP y = x∗ + λP (x∗ − y), (17)

where 0 � xL(y),y � 1. It is certain that xL = x∗ when λP =
0. The x nullcline [Eq. (17)] characterizes the influence of
population Q on the fixed point x∗ of population P and the
interpretation is rather straightforward:

(1) The quasisteady state xL of population P is a linear
function of y.

(2) For λP > 0, the contribution of the density y of Q is to
change the position of x∗. More specifically, we have xL > x∗
if y < x∗, while xL < x∗ if y > x∗.

(3) For any given density y of population Q, the quasis-
teady state xL depends on the position of x∗ and λP , while
independent of the payoff matrix Q and λQ.

In a full analogy, the y-nullcline yL(x) (defined by F �=
0,G = 0) is as follows:

yL(x) = (D − B)(1 + λQ)

A + D − B − C
− λQx = y∗ + λQ(y∗ − x), (18)

where 0 � x,yL(x) � 1. Furthermore, yL(x) has the same
properties as xL(y).

032307-3



ZHANG, YING, ZHOU, GUAN, AND ZOU PHYSICAL REVIEW E 94, 032307 (2016)

TABLE I. Entries of the Jacobian matrix [Eq. (19)].

Fixed point ¯f P ∂F

∂x
¯f P ∂F

∂y
¯f Q ∂G

∂x
¯f Q ∂G

∂y

(0,0) (f P
s1

− f P
s2

)|(0,0) 0 0 (f Q
s1

− f Q
s2

)|(0,0)

(0,1) (f P
s1

− f P
s2

)|(0,1) 0 0 −(f Q
s1

− f Q
s2

)|(0,1)

(1,0) −(f P
s1

− f P
s2

)|(1,0) 0 0 (f Q
s1

− f Q
s2

)|(1,0)

(1,1) −(f P
s1

− f P
s2

)|(1,1) 0 0 −(f Q
s1

− f Q
s2

)|(1,1)

(xL(0),0) xL(0)[1 − xL(0)] λP xL(0)[1 − xL(0)] 0 (f Q
s1

− f Q
s2

)|(xL(0),0)

η1(a + d − b − c) η1(a + d − b − c)

(xL(1),1) xL(1)[1 − xL(1)] λP xL(1)[1 − xL(1)] 0 −(f Q
s1

− f Q
s2

)|(xL(1),1)

η2(a + d − b − c) η2(a + d − b − c)
(0,yL(0)) (f P

s1
− f P

s2
)|(0,yL(0)) 0 λQyL (0)[1 − yL(0)] (yL(0)[1 − yL(0)]

η3(A + D − B − C) η3(A + D − B − C)
(1,yL(1)) −(f P

s1
− f P

s2
)|(1,yL(0)) 0 λQyL (1)[1 − yL(1)] yL(1)[1 − yL(1)]J

η4(A + D − B − C) η4(A + D − B − C)
(x�,y�) x�[1 − x�]C λP x�[1 − x�] λQy�[1 − y�] y�[1 − y�]I

η5(a + d − b − c) η5(a + d − b − c) η6(A + D − B − C) η6(A + D − B − C)

When nullclines xL(y) and yL(x) cross the boundaries of
the unit square [0,1] × [0,1], we have fixed points of (xL(0),0),
(xL(1),1), (0,yL(0)), (1,yL(1)), and the intersection of xL(y)
and yL(x) yields (x�,y�). We emphasize the different notations
between (x�,y�) and x∗,y∗ [Eqs. (13) and (14)].

The stability of the fixed points is determined by the
Jacobian matrix

J =
(

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)
. (19)

The particular expressions for the entries of Eq. (19) are
provided in TableI (Appendix A). We further denote the
determinant and trace of the matrix as

	 = ∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x
, (20)

T = ∂F

∂x
+ ∂G

∂y
. (21)

Therefore, the necessary and sufficient conditions for a fixed
point being stable is 	 > 0 and T < 0. A fixed point is called
a saddle point if 	 < 0. For the purpose of convenience, we
make the following notations:

λ
c1
P = d − b

a − c
, λ

c1
Q = A − C

D − B
,

(22)

λ
c2
P = a − c

d − b
, λ

c2
Q = D − B

A − C
.

Therefore, we evaluate the stability conditions for each fixed
point in the following.

A. Fixed points (0,0) and (1,1)

It is easy to show that the following terms are negative:(
f P

s1
− f P

s2

)∣∣
(0,0),

(
f Q

s1
− f Q

s2

)∣∣
(0,0), − (

f P
s1

− f P
s2

)∣∣
(1,1),

− (
f Q

s1
− f Q

s2

)∣∣
(1,1). (23)

Furthermore, we obtain 	|(0,0) > 0,	|(1,1) > 0, T |(0,0) < 0,
and T |(1,1) < 0. Therefore, both steady states of (0,0) and
(1,1) are stable.

B. Fixed points (0,1) and (1,0)

For the fixed point (0,1), we have the following cases:
(1) (0,1) is stable if λP < λ

c1
P and λQ < λ

c1
Q, since we have

	|(0,1) > 0, T |(0,1) < 0. Note that λ
c1
P and λ

c1
Q represent the

critical values of coupling strength as defined by Eqs. (22).
(2) (0,1) is a saddle if λP < λ

c1
P , λQ > λ

c1
Q, or λP >

λ
c1
P , λQ < λ

c1
Q since both conditions leads to 	|(0,1) < 0.

(3) (0,1) is unstable if λP > λ
c1
P , λQ > λ

c1
Q since this leads

to 	|(0,1) > 0, T |(0,1) > 0.
In a full analogy, we have the following cases for the fixed

point (1,0):
(1) (1,0) is stable if λP < λ

c2
P and λQ < λ

c2
Q, since 	|(1,0) >

0, T |(1,0) < 0. Again, λc2
P and λ

c2
Q are critical values of coupling

strength.
(2) (1,0) is a saddle if λP < λ

c2
P , λQ > λ

c2
Q, or λP >

λ
c2
P , λQ < λ

c2
Q since both conditions leads to 	|(1,0) < 0.

(3) (1,0) is unstable if λP > λ
c2
P , λQ > λ

c2
Q since this leads

to 	|(1,0) > 0, T |(1,0) > 0.

C. Quasisteady states

Again, we take (xL(0),0) as an example. We show that
	|(xL(0),0) < 0, since 0 < xL(0) < 1, λP < λ

c2
P and (f Q

s1
−

f Q
s2

)|(xL(0),0). This shows that the fixed point (xL(0),0) is a
saddle.

By the same procedure, we prove that quasi-steady states
(xL(1),1), (0,yL(0)) and (1,yL(1)) are saddles.

D. Fixed point (x�, y�)

The intersection point by the nullclines xL(y), yL(x)
[Eqs. (17), (18)] in the (x–y) plane yields the fixed point
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(x�,y�) of the system. In particular, we have

x� = x∗ + λP x∗ − λP y∗ − λP λQy∗

1 − λP λQ

, (24)

y� = y∗ + λQy∗ − λQx∗ − λP λQx∗

1 − λP λQ

. (25)

Because of 0 � x�, y� � 1, we obtain the existence conditions
of (x�,y�) as following:

max

{
y∗

x∗ ,
1 − y∗

1 − x∗

}
<

1 + λP

λP + λP λQ

,

max

{
x∗

y∗ ,
1 − x∗

1 − y∗

}
<

1 + λQ

λQ + λP λQ

,

if λP λQ < 1, (26)

min

{
y∗

x∗ ,
1 − y∗

1 − x∗

}
>

1 + λP

λP + λP λQ

,

min

{
x∗

y∗ ,
1 − x∗

1 − y∗

}
>

1 + λQ

λQ + λP λQ

,

if λP λQ > 1. (27)

With the notations of Eqs. (15), the above existence conditions
[Eqs. (26) and (27)] are simplified as

λc1 < ε1,ε2 < λc2 , λP λQ < 1, (28)

λc2 < ε1,ε2 < λc1 , λP λQ > 1, (29)

where

λc1 = λQ + λP λQ

1 + λQ

, λc2 = 1 + λP

λP + λP λQ

. (30)

Therefore, we distinguish the following three cases:
(1) (x�,y�) exists for both weak (λP ,λQ 	 1) and strong

couplings (λP ,λQ 
 1);
(2) (x�,y�) does not exist if λP λQ ≈ 1 because λc1 ≈ λc2 ≈

1;
(3) The conditions [Eqs. (26) and (27)] become easily

fulfilled when x∗ is close to y∗.
Once the existence conditions are fulfilled, we have

T |(x�,y�) > 0, which further suggests the stability of the steady
state (x�,y�) as follows:

(1) If λP λQ < 1, (x�,y�) is unstable since 	|(x�,y�) > 0.
(2) If λP λQ > 1, (x�,y�) is a saddle since 	|(x�,y�) < 0.
In summary, the system has parameters AP ,AQ,λP , and λQ,

which make bifurcation analysis complicated. Nevertheless,
the fixed points and their corresponding stability properties
are summarized in the following (as schematically shown in
Figs. 1 and 2):

(1) (0,0) and (1,1) always exist and are stable.
(2) (0,1) is stable if the conditions (i) λP < λ

c1
P and (ii)

λQ < λ
c1
Q are fulfilled. (0,1) is unstable if either (i) or (ii) is not

fulfilled [see the areas delineated by horizontal and vertical
dashed lines in Fig. 1(a)].

(3) Similarly, (1,0) is stable if the conditions (iii) λP < λ
c2
P

and (iv) λQ < λ
c2
Q are fulfilled. (1,0) is unstable if either (iii)

or (iv) is not fulfilled [see the areas delineated by horizontal
and vertical dashed lines Fig. 1(b)].

(4) (xL(0),0), (xL(1),1),(0,yL(0)), and (1,yL(1)) are sad-
dles when they exist (see the areas filled with diagonal
continuous lines in Fig. 1).

FIG. 1. Illustrations of the bifurcation diagrams in (λP ,λQ). Note
that (0,0) and (1,1) always exist and are stable. (a) Fixed point (0,1)
is stable in the area of λP < λ

c1
P and λQ < λ

c1
Q . The existence areas of

fixed points (saddles) (xL(1),1) and (1,yL(1)) are filled with diagonal
continuous lines as indicated by legends, respectively. (b) Fixed point
(1,0) is stable in the area of λP < λ

c2
P and λQ < λ

c2
Q . The existence

areas of fixed points (saddles) (xL(0),0) and (0,yL(0)) are filled with
diagonal continuous lines as indicated by legends, respectively.

(5) (x�,y�) is unstable if the existence conditions [Eqs. (28)
and (29)] are fulfilled (see Fig. 2).

V. NUMERICAL RESULTS

For numerical simulations, we first study the stabilities of
fixed points in the corresponding phase space [0,1] × [0,1] in
Sec. V A. Later, we choose parameter settings in such a way
that P population is absorbed to all s2 strategies (x = 0) and
study the coupling effects λQ on the fixation probability pQ

of Q population in Secs. V B, V C. Finally, we show that our
results hold for a wide range of selection strength β. To this
end, we focus on the payoff matrices

AP =
(

1.2 0
0.8 1

)
, AQ =

(
1.4 0
0.5 1

)
. (31)

The selection strength β = 100 and population size is
N = 1000. According to the definitions by Eqs. (22),
we have λ

c1
P = 2.5, λ

c1
Q = 0.9, λ

c2
P = 0.4, λ

c2
Q = 10/9. Further-

more, x∗ = 0.71, y∗ = 0.53. We note that the bifurcation
scenarios below do not depend on the particular values of
the payoff matrices once the conditions of coordination games
are fulfilled.

A. Phase space partitions

We start the simulations when the fixed points (1,0) and
(0,1) are stable, plus the other two always-stable points
(0,0) and (1,1). For convenience, these four stable states
are denoted by 
00 = (0,0),
10 = (1,0),
01 = (0,1),
11 =

FIG. 2. Schematic illustrations of the existence conditions
[Eqs. (28) and (29)] of the unstable fixed point (x�,y�) in the parameter
space of (ε1,ε2), where λc1 ,λc2 are defined by Eq. (30). (a) λP λQ < 1
and (b) λP λQ > 1.
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FIG. 3. Phase space depending on different coupling strength between two groups P and Q. Dashed lines are nullclines xL(y) and yL(x).
The velocity field is indicated by the arrows, showing the direction of evolution. Stable fixed points are denoted by filled dots, while unstable
ones are represented by open circles. The relationship between � and each stable state is the following: � = 0 means that the system is
attracted to 
00 with probability 1 (dark green); � = 1 means that the system is attracted to 
10 with probability 1 (green); � = 2 means
that the system is attracted to 
01 with probability 1 (light green); and � = 3 means that the system is absorbed into 
11 with probability 1
(yellow).

(1,1), respectively. Starting from any pair of initial condition
(x0,y0), the system reaches one of the state 
i with proba-
bility pi,(

∑
pi = 1, i = [1,4]). We further introduce a global

variable � = 0p1 + 1p2 + 2p3 + 3p4, which helps the color
coding to separate the basin of attractions as shown in Fig. 3.

The results are summarized in the following:
(1) Small coupling λP = 0.1 [Figs. 3(a)–3(e)].

(a) For small coupling λQ = 0.2, there are nine fixed
points. Starting from any pair of initial condition (x0,y0),
the system is attracted to one of the stable state φi . When
λQ is increased to λQ = 0.8 < λ

c1
Q, the y nullcline yL(x)

rotates around (x�,y�) in a clockwise direction, changing
the basins of attraction to the respective stable steady
states.

(b) When λQ is increased toλ
c1
Q = 0.9, the y nullcline

crosses (0,1), leading that (0,1) is at a critical stage.
Interestingly, we find that the basin of attraction to (0,1)
is significantly decreased due to the change of group
interaction. Namely, the critical fixation probability of
population Q to all s1 strategies is significantly increased
(delayed). We will discuss about this process in more
detail.

(c) When λQ is increased to 1.0 (larger than λ
c1
Q), the

point (0,1) becomes a saddle and (0,yL(0) disappears.
Except the absorbing state (x0,y0) = (0,1), all initial
conditions in the region (x0,y0) = [0,xL(y0)] × [0,1) are
attracted to the absorbing state 
00.

(d) When λQ is further increased to 1.2, the point (1,0)
becomes a saddle, too. All initial conditions in the region
(x0,y0) = (xL(y0),1) × (0,1) are attracted to the absorbing
state 
11.
(2) Intermediate coupling λP = 1.0 > λ

c2
P [Figs. 3(f)–

3(j)].
(a) When λQ = 0.2, the x-nullcline crosses (1,0) and

the point (1,0) is a saddle.
(b) When λQ = 0.8, the point (x�,y�) does not exist.

The phase space is divided into three regimes by nullclines
xL(y),yL(x), representing three absorbing states 
00,
01,
and 
11 respectively.

(c) When λQ = 1.0 > λ
c1
Q, the point (0,1) becomes a

saddle. All initial conditions in the region (x0,y0) = [0,1) ×
[0,yL(x0)) are attracted to the absorbing state 
00, except
the absorbing state (x0,y0) = (0,1).

(d) When λQ is further increased to 1.2, the point (1,0)
keeps to be unstable.
(3) Strong coupling λP = 10.0 > λ

c1
P [Figs. 3(k)–3(o)].

(a) When λQ = 0.2, the fixed point (0,1) is a saddle
before x nullcline xL(y) crosses (0,1). This means that
there are only two stable fixed points (0,0) and (1,1).

(b) When λQ is increased to 0.8, the fixed point (x�,y�)
is newly created, which is a saddle.

(c) When λQ is further increased from 0.9 to 1.2, the y

nullcline yL(x) rotates in the clockwise direction, showing
similar scenarios as the case of Figs. 3(a)–3(e).
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FIG. 4. Fixation probabilities pQ to pure s1 players (selection strength β = 100). (a) Effects of coupling strength λQ on pQ. Legends are
for various λQ values. The critical values of the unstable point yL

λQ
(x0 = 0.6,λQ = 0.8) ≈ 0.47, yL

λQ
(x0 = 0.6,λQ = 1.0) ≈ 0.45 (when P and

Q are coupled) are highlighted by two vertical dashed lines. Each dot is an average over 1 × 105 random realizations. (b) Fixation probabilities
for an isolated Q population, where an explosive transition is observed when y0 > y∗ ≈ 0.53.

B. Red queen scenario

Next we choose the initial density of s1 players in P

population as x0 = 0.6 and coupling strength λP = 0.1. Based
on Eqs. (11) and (12), P group evolves to x = 0 for any
initial conditions of population Q (0 < y0 < 1) because of
F < 0. By this initial settings for P population, we study
the effect of coupling strength λQ on the fixation probability
pQ. The results are illustrated in Fig. 4(a). Taking λQ =
0.8 < λ

c1
Q = 0.9 as an example, there is an unstable fixed

point yL(x0 = 0.6, λQ = 0.8) ≈ 0.47, which separates the
absorbing state y = 0 from y = 1. Namely, above the critical
density value 0.47, the Q population evolves toward 100% of
s1 individuals [4,10,28]. Furthermore, according to Eq. (18)
we have yL(x0) < y∗ when λQ is introduced.

Comparing to the case when Q is decoupled with P

[Fig. 4(b)], we find rather distinct scenarios of the fixation
probabilities of pQ for coupled populations (i.e., λQ > 0.8) as
follows:

(1) When coupling strength λQ is increased from 0.8 to 1.0,
pQ is significantly decreased from 1 to 0. For instance, the fixed
point yL

λQ
(x0 = 0.6,λQ = 0.8) is not able to clearly separate

the two absorbing states. This is because the absorbing state
y = 1 for the single population is not an attractor any more
when λQ is present.

(2) When y0 > yL(x0), Q population shows a gradual
continuous transition from one absorbing state y = 0 to the
other y = 1. Namely, there are intermediate situations that Q

group evolves to pure s1 players only with some probabilities.
In contrast, in a single Q population, there is an explosive
jump in pQ when the initial density y0 > y∗ [Fig. 4(b)].

The explanations for the above two results are based on
Eqs. (11) and (12). Population P evolves to x = 0 always
since F < 0 for any y0 ∈ (0,1). For the Q population, we
have two different cases: (i) For y0 < yL(x0), we have G < 0
such that Q evolves to y = 0. (ii) For y0 > yL(x0), we have
G > 0 such that Q evolves to y = 1. The s2 players in group
Q get higher payoffs than that of s1 players due to the coupling
to P population, which changes G to be negative [Eqs. (12)].
Finally, the two populations evolves to 
00, namely, all players

have s2 strategy. Certainly, the P group has larger influences
on players of Q group if the coupling strength λQ is larger,
which increases the probability that the system is attracted to

00.

There are significant evolutionary biological insights for
the above findings. According to evolutionary dynamics of
one single population, the mutant genes (say, of s2 strategy)
are not able to take over the whole Q population. However,
when Q interacts with group P significantly (larger than some
proper threshold λQ), the mutant genes may dominant the
whole Q population although they still have small fitness
within Q group. Our result supports the red queen hypothesis
that the evolution of P population provides much pressure on
the evolution of Q population due to the group interactions
and interdependencies. So Q population has to evolve though
the environment within Q is not ever-changed (i.e., the payoff
matrix AQ is unchanged). This scenario takes place if the
coupling strength is larger than some threshold λ

c1
Q.

Note that we find similar red queen dynamics for different
coupling strength and initial density of s1 players in P

population, which are illustrated in Appendix B.

C. Decaying of s1 strategy in population Q

Next, we compute the decaying (extinction) speed of the
density of s1 players in Q population, or equivalent to show
how fast s2 strategy takes over the entire Q population. For
the ease of explanations, we again choose x0 = 0.6 and λP =
0.1, which yields x = 0 (pure s2 players) in P population. In
other words, there is always a dying-out process for the s1

strategy in the P population. When λQ > λ
c1
Q, we find that pQ

decreases monotonically as shown in Fig. 5. Furthermore, pQ

decays faster if the initial number of s2 players is larger in
Q population. In other words, the probability that s2 strategy
takes over the Q population increases monotonically.

Based on Figs. 4 and 5, there are two competing timescales
that are responsible for the change of the fixation probabilities
pQ. The first is the growing process of the density of s1 strategy
of Q population (i.e., dying-out of s2 players). The second
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FIG. 5. Fixation probabilities pQ versus coupling strength λQ in
Q population. Parameter settings are the same as Fig. 4. Four cases of
initial number of s2 players in Q are denoted by n = 1, 2, 5, 10. The
vertical dashed line corresponds to the critical coupling λ

c1
Q = 0.9.

Continuous lines are from the corresponding theoretical predictions
[Eq. (38)].

timescale is the dying-out process of the density of s1 players
in the P population (i.e., growing of s2 players). Starting
from a given initial condition, the payoffs of s2-players in Q

population are smaller than that of s1 strategy, which suggests
that the frequency of s2 players is decreased in Q. If there
would be no coupling (i.e., isolated Q), the Q population
reaches the absorbing state of all s1 strategy (y = 1), which
needs time TQ. When Q is coupled with P , however, before
reaching the absorbing state y = 1, there is an increasing
number of s2 players in P population who have larger payoffs
than those s2 players in Q, since P is attracted to all s2 players.

More specifically, given the initial condition x0 in P , we
suppose it needs some time t ′ to reach the transient state of x ′,
which reads

x ′ = C − A

λQ(A + D − B − C)
+ D − B

A + D − B − C
,

(32)
λQ � λ

c1
Q.

Again, x represents the frequency of s1 players in the P

population. Therefore, the Q population reaches the state of
pure s1 strategy (y = 1) if TQ < t ′. On the other hand, the Q

population is occupied by pure s2 players if TQ > t ′. In other

words, the time scale for the dying-out phase of s2 players in
Q has to be longer than the average time that the P group
reaches the absorbing state of x = 0 (pure s2 players).

In the following, we compute the fixation probabilities of Q

population to the state of pure s1 players (i.e., s2 strategy takes
over the entire Q population). Let us denote θ (n,t) to be the
probability that the Q population evolves to pure s1 players
in t time steps when initially n players having s2 strategy
(namely, density variable y = 1 − n/N in Eq. (12)). In the
same evolutionary time period t ′ (from the initial condition
x0 to x ′), the fixation probabilities of Q population to pure s1

strategy is given by

pQ =
∫ t ′

t=0
θ (n,t)dt. (33)

Further, we suppose the parameter β → ∞ and we have
f P

s1
	 f P

s2
and f Q

s1

 f Q

s2
. Equations (7)–(10) are approxi-

mated by

T P
+ ≈ 0, T P

− ≈ x (34)

and

T
Q
+ ≈ 1 − y = n

N
, T

Q
− ≈ 0. (35)

When N is very large, we have

t ′ ≈ N

∫ x ′

x0

1

x
dx = N ln

x ′

x0
, (36)

and

θ (n,t) =
t∑

tn−1=n−1

· · ·
t3∑

t2=2

t2∑
t1=1

(
1 − 1

N

)t1−1 1

N

(
1 − 2

N

)t2−t1−1

× 2

N
· · ·

(
1 − n

N

)t−tn−1−1
n

N
. (37)

Substituting condition Eqs. (36) and (37) into Eq. (33), we
have

pQ ≈
(

1 − x ′

x0

)n

, (38)

since limx→∞(1 + 1
x

)x = e when n 	 N . This approximation
suggests that the fixation probabilities pQ decays exponen-
tially when the number of s2 players is increased, provided the

FIG. 6. Effects of selection strength β on the estimation of fixation probabilities pQ [Eq. (38)]. The parameters are the same as described
in the caption of Fig. 5, besides λQ = 1.2. (a) pQ vs. β for various initial number of s2 players in Q population. (b) Estimation errors.
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coupling λQ > λ
c1
Q and x0 < xL(y). The numerical simulation

has confirmed this theoretical prediction as shown in Fig. 5.
Note that the above considerations in obtaining Eq. (38)

are based on large selection strength β → ∞. We verify that
this result holds for a rather large interval of β as shown in
Fig. 6. We further compute the estimation errors between the
numerical simulation and Eq. (38), which is denoted by ε.
The estimation errors are approximately smaller than 0.05 if
β > 50 [Fig. 6(b)]. Therefore, our results do not depend much
on the selection parameter β.

VI. CONCLUSIONS

In general, when two populations interact with each other,
nontrivial coevolutionary dynamics will take place in many
different contexts. We generalize coordination game model
from one to two interacting populations, focusing on the effects
of coupling strength to the dynamic process. We perform a
systematic analysis for this model under the well-mixing limit
and obtain all fixed points and their corresponding existence
and stability conditions, which have been summarized in
Sec. IV.

We have demonstrated that the interaction strength between
two populations crucially alter the dynamic behavior, as shown
by the corresponding phase space [0,1] × [0,1] (Fig. 3). More
specifically, in a single population of two strategies s1 and s2,
the whole population is attracted to all s1 players if the initial
density x0 of s1 players is larger than x∗ (x0 > x∗). The variants
of low density (1 − x0) die out. Furthermore, the fixation
probability shows an explosive transition from x = 0 to x = 1
at x∗ as predicted by the replicator equation [Fig. 4(b)].
However, when coupling strength is introduced between two
populations, this critical initial density x∗ corresponding
to fixation is significantly delayed if the coupling strength
is larger than some threshold value. In contrast, the two
populations evolve to the opposite state of pure s2 players,
which are in favor of the red queen hypothesis. The very few
variants in one population can take over the whole population
before dying out due to the higher payoffs they get from the
other population, when coupling strength is sufficiently strong.
We delineate the extinction time of strategy s1 explicitly (or
equivalent to the growing time of strategy s2), which is an
exponential form.

In our game models on interacted populations, we focused
on well-mixing limit only. Note that further work will consider
effects of under-dominance [36,37], migration between di-
vided populations [38,39], and correlated dynamics of strategy
updating rules with structure variation of populations [43].
Coupled populations of different sizes NP �= NQ may intro-
duce cooperation pressure and strategy correlations to the
system [42]. More specifically, we need to introduce a new
parameter α = NP /NQ in the payoffs [Eqs. (3) and (4)].
The transition probabilities [Eqs. (5)–(10)] and the two-
dimensional replicator Eqs. (11) and (12) do not change their
functional forms. However, the fixed points and their respective
stability conditions become more challenging since α affects
all the following analysis. Furthermore, we focused on the
Moran process only. The extension to other dynamic processes
is a subject of future work, including pairwise payoff com-
parison [5,28], or even a mixture of both updating rules [44].

Nevertheless, we expect that much more complicated dynamic
scenarios will appear in these different contexts.
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APPENDIX A: JACOBIAN MATRIX

Here we provide the details for the Jacobian matrix for all
nine fixed points.

Note that ηi, i = 1, . . . ,6 are defined as

η1 = df P
s1

duP
s1

|(xL(0),0) = df P
s2

duP
s2

|(xL(0),0),

(A1)

η2 = df P
s1

duP
s1

|(xL(1),1) = df P
s2

duP
s2

|(xL(1),1),

η3 = df Q
s1

du
Q
s1

|(0,yL(0)) = df Q
s2

du
Q
s2

|(0,yL(0)),

(A2)

η4 = df Q
s1

du
Q
s1

|(1,yL(1)) = df Q
s2

du
Q
s2

|(1,yL(1)),

η5 = df P
s1

duP
s1

|(x�,y�) = df P
s2

duP
s2

|(x�,y�),

η6 = df Q
s1

du
Q
s1

|(x�,y�) = df Q
s2

du
Q
s2

|(x�,y�). (A3)

FIG. 7. Fixation probabilities pQ to pure s1 players in Q

population for various coupling strength λQ as indicated by legends.
(a) The initial density of s1 players in P population is x0 = 0.6.
The critical values of the unstable point yL

λQ
(x0 = 0.6, λQ = 0.8) ≈

0.47, yL
λQ

(x0 = 0.6, λQ = 1.0) ≈ 0.45 are highlighted by two vertical

dashed lines. Each dot is an average over 1 × 105 random realizations.
(b) The same as (a) but the initial density of s1 players in P population
is x0 = 0.4.
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We have ηi > 0, i = 1, . . . ,6, since fitness are monotonic
increasing functions of payoffs.

APPENDIX B: RED QUEEN DYNAMICS FOR λP = 1

We show that the red queen dynamics has been observed
for different coupling strength λP = 1.0 and initial density of
s1 players in P population (shown in Fig. 7). For instance, if
the initial density of s1-players in P population is chosen as
x0 = 0.6, the critical fixation probability for Q population is

significantly delayed [Fig. 7(a)]. According to Eq. (17), we
have xL(y) = x∗ + λP (x∗ − y)|x0=0.6. When y0 < 0.828, P

is absorbed to the state x = 0 (all s2 players), since F < 0
[Eq. (11)]. On the other hand, if y0 > 0.828, P population
is attracted to the state x = 1 (all s1 players) since F > 0.
Due to the transition from x = 0 to x = 1 at y0 ≈ 0.828 in P

population, Q population evolves to the state of all s1 players
since G > 0 [Eq. (12)]. Note, however, that if x0 is chosen as
0.4, P group is attracted to zero density of s1 players (x =
0) for any y0 ∈ (0,1). The result of Fig. 7(b) shows similar
dynamic behavior as Fig. 4.
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