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We present results of ab initio numerical simulations of time delays in two-photon ionization of the
helium atom using the attosecond streaking technique. The temporal shifts in the streaking traces consist of
two contributions, namely, a time delay acquired during the absorption of the two photons from the
extreme-ultraviolet field and a time delay accumulated by the photoelectron after photoabsorption. In the
case of a nonresonant transition, the absorption of the two photons is found to occur without time delay.
In contrast, for a resonant transition a substantial absorption time delay is found, which scales linearly with
the duration of the ionizing pulse. The latter can be related to the phase acquired during the transition of
the electron from the initial ground state to the continuum and the influence of the streaking field on the
resonant structure of the atom.
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Advances in the understanding of the interaction of
intense laser pulses with matter have led to the observation
of a plethora of new phenomena and the development of
new technologies. Among this, the generation of ultrashort
extreme-ultraviolet (XUV) laser pulses with ever-shorter
duration via high-order harmonic generation is one exciting
trend [1]. The availability of (isolated) attosecond (1 as ¼
10−18 s) laser pulses [2–4] has opened the perspective to
temporally resolve the dynamics of electrons in atoms,
molecules, and solids [5–10]. One of the key methods for
such time-resolved measurements is the attosecond streak-
ing technique [11], in which the momentum of a photo-
electron, ionized by an isolated attosecond XUV laser
pulse, is changed by a superimposed infrared streaking
pulse. Observation of the momentum, or energy, of the
photoelectron as a function of the phase of the streaking
pulse, at which the center of the ionizing XUV pulse is
applied, provides the streaking trace.
In streaking experiments on the photoionization of atoms

[5] and solids [6], temporal shifts between different streak-
ing traces have been observed. When the traces are com-
pared with the vector potential of the streaking pulse, the
shifts can be interpreted as time delays accumulated by the
photoelectron after its transition into the continuum. This
continuum time delay is determined by the photoelectron
dynamics in the combined potential of the Coulomb and
streaking fields over a finite range in space until the streaking
pulse ceases [12–14]. For atomic photoionization, the
continuum time delay can be usually represented (e.g.,
Refs. [15–20]) by a sum of the (short-range) Wigner-Smith
time delay (e.g., Refs. [21–26]) and a time delay (e.g.,
Refs. [15,16,18,27]) induced by the coupling of the long-
range Coulomb tail and the streaking field.
Below, we show that the advanced understanding of the

continuum time delay opens the perspective to retrieve time-
resolved information during the transition of the electron

into the continuum. To this end, we consider two-photon
ionization (TPI) of the helium atom (see Fig. 1) and a model
system and perform ab initio simulations to obtain streaking
time delays Δts for different scenarios. We interpret the
results as such that for nonresonant TPI the temporal shifts in
streaking traces can be understood as solely due to the
continuum time delay Δtc. In contrast, we find a substantial
difference between the streaking temporal shift Δts and
the continuum time delay Δtc for a resonant transition. We
interpret this deviation as an additional time delay Δta,
acquired during the transition into the continuum.
To simulate the streaking process, we use the Crank-

Nicolson method to numerically solve the corresponding

FIG. 1 (color online). Time delays in attosecond streaking of ①
nonresonant and ② resonant TPI by an ultrashort XUV laser
pulse. The streaking time delay Δts obtained from the streaking
trace consists of two contributions, namely, the two-photon
absorption time delay Δta and the continuum time delay Δtc
that the photoelectron accumulates in the continuum after photo-
absorption.
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time-dependent Schrödinger equation (TDSE) on a grid in
space and time (Hartree atomic units, e ¼ m ¼ ℏ ¼ 1, are
used unless stated otherwise),

i
∂Ψðr;tÞ

∂t ¼
�
p2

2
þVðrÞþ½EXðtÞþEsðtÞ� ·r

�
Ψðr;tÞ; ð1Þ

where p is the momentum operator and EðtÞ ¼
E0cos2ðπt=TÞ cosðωtþ ϕÞẑ with peak amplitude E0, pulse
duration T, central frequency ω, and carrier-envelope phase
ϕ is used for both the ionizing (EX) and the streaking (Es)
fields. In all simulations, we propagate the wave function
on the grid for a sufficiently long time until both laser
pulses have ceased and the ionizing wave packet can be
clearly separated from the remaining bound part of the
wave function. The extensions of the grid [ ½0; 960� in the ρ
direction and ½−1100; 1100� in the z direction for the three-
dimensional (3D) He atom, ½−7000; 7000� for the one-
dimensional (1D) Coulomb potential] are chosen such that
the outgoing wave packet remains on the grid and does not
reach the boundaries. The momentum distributions are
obtained by projecting the ionizing wave function onto the
continuum eigenstates of the potential or by performing a
Fourier transform. Results of both methods are found to
agree well with each other.
We simulate the TPI process dressed by a streaking field

for a helium atom (He) in the 3D cylindrical coordinates as
well as for a 1D Coulomb model potential. For colinear
polarization of the two fields, the calculations for the He
atom reduce to 2D (ρ and z coordinates) because of the
azimuthal symmetry of the problem. Using spatial steps of
Δρ ¼ Δz ¼ 0.2 and a time step of Δt ¼ 0.02, we obtain
eigenenergies of the three lowest states as E1s ¼ −0.90,
E2s ¼ −0.16, and E2p ¼ −0.13, using the single-active-
electron model potential introduced in Ref. [28] and
imaginary time propagation. To ionize the electron initially
bound in the 1s state via the absorption of two photons, we
choose the central frequency of the XUV field to be ωX ¼
15.63 or 21.07 eV. The latter resonant frequency corre-
sponds to the energy difference between the 1s and 2p
states in the He atom potential. Since the streaking field
may have a non-negligible effect on the electronic structure
of the He atom, we have furthermore considered a simple
1D Coulomb potential of the form VðxÞ ¼ −Z=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p
with Z ¼ 3.0 and a ¼ 0.15 and the energies of the three
lowest states E1 ¼ −5.32, E2 ¼ −2.31, and E3 ¼ −1.30,
for Δx ¼ 0.05 and Δt ¼ 0.01. Accordingly, we have
chosen ωX ¼ 95.62 and 81.81 eV, corresponding to non-
resonant and resonant TPI processes. The 1D model system
provides us the opportunity to selectively study the ioniza-
tion via the deeply bound first excited state only, which is
not influenced by the streaking field. In comparison with
the case of the 3D He atom, we can therefore identify the
potential effects of the streaking field on the resonant two-
photon absorption process. Other parameters for the XUV

pulse are chosen as IX ¼ 1.0 × 1014 (nonresonant transi-
tions) or 1.0 × 1013 W=cm2 (resonant transitions), and
ϕX ¼ −π=2 in all calculations. In order to keep the duration
of the XUV pulse shorter than the oscillation period of
the streaking pulse, we have used a three-cycle streaking
field of at least 2400 nm in wavelength with Is ¼ 1.0 ×
1011 W=cm2 and ϕs ¼ −π=2.
In Fig. 2 we present results of time delays retrieved from

the numerical streaking simulations. To this end, we have
applied the ionizing XUV pulse at different phases (in time
steps of 12.0 a.u.) of the streaking pulse, solved the TDSE,
and recorded the momentum distribution of the photo-
electron. The streaking time delay has then been obtained
as the temporal offset between the streaking trace, i.e., the
momentum distributions as a function of the phase of the
streaking pulse, and the vector potential of the streaking
pulse [13]. In each panel of Fig. 2 we show the streaking
time delays as a function of the XUV pulse duration for
resonant (green lines with squares) and nonresonant (blue
lines with circles) ionization. The trends of the time delays
are obviously different. In the case of resonant TPI, the
streaking time delay increases with TX, at long XUV pulse
durations linearly with the increase of TX. In contrast, for
a nonresonant TPI, the streaking time delay remains almost
unchanged, in particular at longer pulse durations. To
contrast our present results with those for single-photon
ionization (SPI), we have performed simulations with XUV
pulses having central frequencies equal to twice that of the
corresponding nonresonant TPI processes. The peak inten-
sities of the XUV pulse are IX ¼ 1.0 × 1014 W=cm2 for
the 1D Coulomb potential and IX ¼ 1.0 × 1012 W=cm2 for
the He atom. Similar to the case in the nonresonant TPI
process, the retrieved SPI streaking time delays are nearly
independent of the XUV pulse duration (Fig. 2). For the 3D
He atom, these two time delays are not exactly equivalent,
since in SPI and TPI the photoelectron has different angular
momenta in the continuum (p wave for SPI, and a mixture
of s and d waves for TPI), which results in different
streaking time delays (e.g., Refs. [15,18]).

FIG. 2 (color online). Streaking time delay as a function of
XUV pulse duration for (a) 1D Coulomb and (b) 3D He
potentials. Three ionization processes are considered: nonreso-
nant TPI (blue lines with circles), resonant TPI (green lines with
squares), and single-photon ionization (red lines with asterisks).
Laser parameters are given in the text.
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Thus, the results show that in a resonant transition a
significant additional time delay that depends on the XUV
pulse parameters is acquired by the electron. We assume
that this additional time delay is accumulated during the
transition to the continuum via the resonant excited state
and postulate that the retrieved streaking time delay Δts
consists of two contributions as

Δts ¼ Δtc þ Δta; ð2Þ

where Δtc is the continuum time delay, accumulated by the
photoelectron after the transition into the continuum during
its propagation in the combined Coulomb-streaking field
until the streaking pulse ceases [12,13]. Δta is the time
delay accumulated during the transition of the electron
from the initial state into the continuum, which we denote
as absorption time delay, since the transition is related to
the absorption of the photons.
It has been shown that Δtc can be well determined using

classical-trajectory calculations [12,15]. For the 1D
Coulomb potential we solve the 1D Newton’s equation
for the combined Coulomb-streaking field from an initial
position of the electron at x ¼ 0 [12]. The obtained
continuum time delays are shown as green lines with
squares in Figs. 3(a) and 3(c). For the He atom, we use
the classical-trajectory Monte Carlo method introduced in
Ref. [15], in which the initial position and momentum of
the electron are sampled using the probability distribution
of the initial eigenstate and the momentum distribution
according to the angular shape of the wave packet (either s
or d wave), respectively. The continuum time delays

obtained for the s and d wave distributions are added up
according to their respective probabilities [green lines with
squares in Figs. 3(b) and 3(d)]. Since the central energy of
the photoelectron that mainly determines the continuum
time delay barely changes with the XUV pulse duration,
the results for Δtc are almost independent of TX.
Now we are able to obtain the absorption time delays

Δta, shown as red lines with asterisks in Fig. 3, via Eq. (2).
In agreement with our qualitative expectations above, for
long XUV pulses the absorption time delays are found to be
(close to) zero in the case of nonresonant TPI. This implies
that the transition of the electron from the initial state
into the continuum occurs instantaneously without any time
delay. In contrast, we find a significant absorption time
delay for the resonant TPI processes, which changes
linearly with the XUV pulse duration, once the pulse is
long enough. Because of the large bandwidth of the pulse
and related excitations to multiple states, a deviation from
the linear and constant trends is observed for the short pulse
durations [see Figs. 3(b) and 3(d)].
In order to further support our interpretation, we show

that the retrieved absorption time delay is, indeed, related to
the energy derivative of the phase that the electron acquires
in the transition from the initial state to the continuum. On
the basis of second-order time-dependent perturbation
theory, the complex amplitude cf of the ionizing wave
packet in the continuum state jfi ionized from the initial
state jii after the XUV pulse ceases can be written as [29]

cf¼
X
m

μfmμmi

Z
T=2

−ðT=2Þ
eiΔfmtEðtÞ

�Z
t

−ðT=2Þ
eiΔmit0Eðt0Þdt0

�
dt;

ð3Þ

where T is the duration of the XUV pulse EðtÞ and μjk and
Δjk ¼ Ej − Ek are the dipole transition matrix element and
the energy difference between states jji and jki, respec-
tively. For nonresonant TPI, assuming that all intermediate
states are outside the bandwidth of the XUV pulse, we can
further simplify Eq. (3) as [30,31]

cf ∝ af ≃
Z

T=2

−ðT=2Þ
eiΔfitE2ðtÞdt; ð4Þ

where we have dropped the dipole matrix element since
the corresponding phase is related to the scattering (or
propagation) of the electron in the continuum, which is
accounted for in the continuum time delay. For resonant
TPI, we can rewrite Eq. (3) as

cf ∝af≃
Z

T=2

−ðT=2Þ
eiΔfrtEðtÞ

�Z
t

−ðT=2Þ
eiΔrit0Eðt0Þdt0

�
dt; ð5Þ

assuming that only one state jri is within the XUV pulse
bandwidth. The absorption time delay can then be related to
the phase of the complex amplitude as (e.g., Refs. [23,24])

FIG. 3 (color online). Absorption time delay (red lines with
asterisks) as a function of XUV pulse duration for nonresonant
TPI in 1D Coulomb (a) and 3D He (b) potentials and resonant TPI
in 1D Coulomb (c) and 3D He (d) potentials. Also shown are the
streaking (blue lines with circles) and the continuum time delays
(green lines with squares).
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Δta ¼
d
dE

½argðafÞ�: ð6Þ

For a cos2 XUV profile considered in our simulations,
Eq. (6) can be evaluated numerically and Δta is found (not
shown) to be equal to zero in the nonresonant case, while it
changes linearly with the pulse duration in the resonant
case, in agreement with our findings from the streaking
calculations.
Our analytical evaluation of the absorption time delay

does not account for any influence of the streaking pulse
on the resonant structure of the atom. Previous studies of
two-color resonant two-photon ionization have, however,
shown that the effect is not negligible [32]. From our
numerical results, we can quantify it by comparing the
results for the absorption time delays, extracted from the
numerical streaking calculations, for the 1D model poten-
tial and the 3D He atom potential in Fig. 4. Two linear fits
to the results in the regime of large pulse durations are
shown as solid (for the He atom case) and dashed (for the
1D model potential) lines, respectively. We may stress that
the obtained absorption time delays for resonant TPI in the
case of the 1D model potential are found to be independent
of the parameters of the streaking pulse, as shown in
Table I. In contrast, the streaking time delays (and the
continuum time delays) vary with the wavelength and
intensity of the streaking pulse. This shows that, as
expected, the deeply bound first excited state of the 1D
model potential is not influenced by the streaking field.
Consequently, in this case the linear fit (dashed line) for the
absorption time delay extends to zero when the XUV pulse
duration approaches zero, as predicted by our theoretical
analysis above. However, the results for Δta in the case of
the 3D He atom potential show a constant offset that can be

read from the intersection of the linear fit (solid line) at zero
XUV pulse duration (in the present case, 178 as). We
interpret this as a quantification of the influence of the
streaking field on the resonant 2p state.
In summary, we have studied time delays in the photo-

absorption of nonresonant and resonant TPI using the
attosecond streaking technique. By accounting for the
continuum time delay, we find that the absorption time delay
is zero for nonresonant TPI, while for resonant TPI it is
nonzero and changes linearly with the duration of the
ionizing XUV pulse. The absorption time delays can be
understood by analyzing the phase in the two-photon
absorption process using second-order perturbation theory.
For the experimental realization, we propose to compare
streaking traces for resonant (nonresonant) TPI from an
inner-valence shell orbital of an atom (e.g., the 2s orbital in
Ne) with the streaking trace for SPI from the outermost
orbital of the same atom (e.g., the 2p orbital in Ne) induced
by an isolated attosecond pulse. According to our results, for
a given pulse duration, the comparison with the SPI trace
should reveal a substantial difference in the streaking delays
for resonant vs nonresonant TPI. The difference in the
absorption delays can then be extracted from the streaking
time delays using the well-known theoretical approaches
[12,20] to account for the continuum time delays. If,
furthermore, a variation of the XUV pulse duration is
possible, the linear dependence of the streaking delay for
resonant TPI (as compared to the nearly constant reference
streaking delay for SPI) should become observable. The
required pulse lengths should be available using the tech-
nique of isolation ofXUVpulses via phasematching in high-
order harmonic generation atmidinfrared driverwavelengths
[4]. Laser pulses at infrared wavelengths, which are used
for strong-field ionization [33] and higher-order harmonic
generation [34] already, are in the present approach needed
for the streaking field as well. The energy range of the
XUV pulses corresponds to below-threshold harmonics that
recently attracted attention in the experiment [35,36].

We thank Phil Bucksbaum for stimulating discussions.
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the U.S. Department of Energy, Division of Chemical
Sciences, Atomic, Molecular and Optical Sciences

FIG. 4 (color online). Comparison of absorption time delays
extracted from streaking experiments for resonant TPI in the 1D
model potential (blue diamonds) and the 3D He potential (red
circles). Two fits Δta ¼ 110.6T − 2.175 (1D case, dashed line)
and Δta ¼ 110.6T − 178.0 (3D case, solid line) account for the
predicted linear trend of the delay as a function of the XUV pulse
duration.

TABLE I. Time delays for different parameters of the streaking
field. We consider resonant TPI in the 1D Coulomb potential
streaked by a three-cycle laser pulse. XUV laser parameters
are ωX ¼ 81.81 eV, NX ¼ 45, IX ¼ 1.0 × 1013 W=cm2, and
ϕX ¼ −π=2.

λs (nm) Is (W=cm2) Δts (a.u.) Δta (a.u.)

2400 1.0 × 1011 5.65 10.34
3200 1.0 × 1011 5.15 10.34
4800 1.0 × 1011 4.41 10.33
4800 1.0 × 1010 4.45 10.36
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