
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012 4155

SDRP: A Secure and Distributed Reprogramming
Protocol for Wireless Sensor Networks

Daojing He, Student Member, IEEE, Chun Chen, Member, IEEE,
Sammy Chan, Member, IEEE, and Jiajun Bu, Member, IEEE

Abstract—Wireless reprogramming for a wireless sensor net-
work is the process of uploading new code or changing the func-
tionality of existing code. For security reasons, every code update
must be authenticated to prevent an adversary from installing
malicious code in the network. All existing reprogramming pro-
tocols are based on the centralized approach in which only the
base station has the authority to initiate reprogramming. However,
it is desirable and sometimes necessary for multiple authorized
network users to simultaneously and directly reprogram sensor
nodes without involving the base station, which is referred to as
distributed reprogramming. In this case, the network owner can
also assign different reprogramming privileges to different users.
Motivated by this consideration, we develop a secure and dis-
tributed reprogramming protocol named SDRP, which is the first
work of its kind. The protocol uses identity-based cryptography
to secure the reprogramming and to reduce the communication
and storage requirements of each node. Moreover, our theoretical
analysis demonstrates the security properties of our protocol. We
also implement SDRP in a network of resource-limited sensor
nodes to show its high efficiency in practice.

Index Terms—Authentication, reprogramming, security,
wireless sensor networks (WSNs).

I. INTRODUCTION

W IRELESS SENSOR NETWORKS (WSNs) may be
deployed for long periods of time during which the

requirements from the network owner and users or the environ-
ment in which the nodes are deployed may change. The change
may necessitate uploading a new code image or retasking the
existing code with different sets of parameters [1]–[5]. We refer
to both of these activities as reprogramming. As a WSN is usu-
ally deployed in hostile environments, secure reprogramming is
and will continue to be a major concern.

Several reprogramming protocols have been proposed to
propagate new code images1 in WSNs (e.g., [6]–[8]). Among

Manuscript received February 26, 2011; revised July 6, 2011 and
September 20, 2011; accepted November 14, 2011. Date of publication
December 6, 2011; date of current version June 19, 2012. This work was
supported in part by the National Science Foundation of China under Grant
61070155, by the Program for New Century Excellent Talents in University
under Grant NCET-09-0685, and by the Research Grants Council of Hong Kong
under Project CityU 111208.

D. He, C. Chen, and J. Bu are with the National Engineering Research
Center for Intelligent Train, College of Computer Science, Zhejiang University,
Hangzhou 310027, China (e-mail: hedaojinghit@gmail.com).

S. Chan is with the Department of Electronic Engineering, City University
of Hong Kong, Kowloon, Hong Kong (e-mail: eeschan@cityu.edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2011.2178214

1Note that “code image” and “program image” will be used interchangeably
throughout this paper.

these protocols, Deluge [7] is generally regarded as the state
of the art and included in TinyOS distributions [9]. It uses an
epidemic protocol [10] for efficient advertisement of metadata
and spatial multiplexing for efficient propagation of code im-
ages. However, since the design of Deluge did not take security
into consideration, there have been several extensions to Deluge
to provide security protection for reprogramming [11]–[17].
Among them, Seluge [17] enjoys both strong security and high
efficiency.

However, all existing reprogramming protocols [6]–[8],
[11]–[17] are based on the centralized approach in which only
the base station has the authority to reprogram the sensor nodes.
When the base station wants to disseminate a new code image
to certain sensor nodes, it transmits the signed code image to
those nodes via multihop routing, and those nodes only accept
the code image signed by it. Unfortunately, the centralized
approach is vulnerable to the single point of failure and not
reliable because reprogramming becomes impossible when the
base station fails or when some nodes lose connections to
the base station. Also, it is inefficient, weakly scalable, and
vulnerable to potential attacks along the long communication
path [18]. The base station has to be online and accessible
to any user at any time during the network operation. Even
worse, there are some WSNs that do not have any base station.
Examples of such networks include a WSN deployed along an
international border to monitor weapon smuggling and human
trafficking. Having a base station in these WSNs introduces a
very attractive attack target. Obviously, for such networks, it is
necessary to have authorized network users to be able to carry
out reprogramming in a distributed manner.

Another advantage of distributed reprogramming is that,
while multiple authorized users are supported, each user may
have a different privilege of reprogramming sensor nodes. This
is particularly important in large-scale sensor networks owned
by an owner and used by different users from both public and
private sectors. For example, some current projects, including
the Global Earth Observation System of Systems (GEOSS)
[19], the National Oceanographic Partnership Program (NOPP)
[20], and the Ocean Research Interactive Observatory Networks
(ORION) [21], are constructing large-scale sensor networks to
adaptively observe the Earth–ocean–atmosphere system. Here,
the GEOSS project involves 61 countries, and the NOPP project
involves the Defense Advanced Research Projects Agency,
the Department of State, and the Department of Homeland
Security among others. For such sensor networks, not only the
network owners but also some third parties admitted by the net-
work owners will be the users. In this case, it is expected

0278-0046/$26.00 © 2011 IEEE

4156 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

that network owners and external users should have different
reprogramming privileges.

Therefore, the distributed reprogramming approach is more
suitable for WSNs. It allows authorized network users to si-
multaneously and directly update code images on the nodes
without involving the base station. Unfortunately, to the best of
our knowledge, distributed reprogramming in WSNs has so far
received no attention, despite a rich literature on the centralized
approach.

Similar to the centralized reprogramming protocols, a secure
distributed reprogramming protocol should satisfy the follow-
ing requirements.

1) Authenticity and integrity of code images: The source
of a program image must be verified by a sensor node
prior to installation, ensuring that only a trusted source
can install a program. In addition, integrity means that an
updated program image cannot be modified undetectably.

2) Freshness: An earlier version of a program image cannot
be installed over the program with the same or greater
version number, ensuring that a node always installs the
newest version of a program image.

3) Node compromise tolerance: A compromised node
must be prevented from causing an uncompromised node
to violate the aforementioned security requirements.

Other than meeting the aforementioned requirements, a dis-
tributed reprogramming protocol should also have the following
properties.

1) Distributed: The authorized network users are able to
simultaneously and directly update code images on the
nodes without involving the base station. At the same
time, the protocol should prevent unauthorized users from
updating sensor nodes.

2) Supporting different user privileges: To ensure smooth
functioning for a WSN, the level of each user privilege
should be limited by the network owner. For example,
a user is only allowed to reprogram the sensor nodes
set with specified identities or/and within a particular
localized area during his subscription period.

3) Partial reprogram capability: To prevent sensor nodes
from being totally controlled by network users, the spe-
cial modules (e.g., authentication module for each new
program image) on each sensor node cannot be overwrit-
ten by anyone except the network owner.

4) User traceability: In most application scenarios,
traceability is highly desirable, particularly for
reprogramming.

5) Being efficient: Mobile devices, particularly sensor
nodes, usually have limited resources (e.g., CPU process-
ing power, memory, bandwidth, and energy). Thus, en-
ergy efficiency (with respect to both communication and
computation) and small storage overhead should be given
priority to cope with the resource-constrained nature of
WSNs.

6) Scalability: First, the protocol needs to be efficient even
in a large-scale WSN with thousands of sensor nodes,
and second, the protocol should be able to support a large
number of users.

The main contributions of this paper are as follows.

1) The need of distributed reprogramming is not com-
pletely new, but previous work did not address this need.
To set the design objectives of distributed reprogram-
ming, we study the functional requirements of distributed
reprogramming.

2) We propose the Secure and Distributed Reprogramming
Protocol (SDRP), which extends Deluge to be a secure
protocol. The main idea of SDRP is to map the iden-
tity and reprogramming privilege of an authorized user
into a public-/private-key pair. Based on the public key,
user identity and his reprogramming privilege can be
verified, and user traceability and different levels of user
authorities can be supported. Since a novel identity-based
signature scheme is employed in generating the public-/
private-key pair of each authorized user, the proposed
protocol is efficient for resource-limited sensor nodes and
mobile devices in terms of communication and storage
requirements. Furthermore, the proposed protocol can
achieve all the requirements of distributed reprogram-
ming listed earlier, while keeping the merits of Deluge
and Seluge. To the best of our knowledge, this is the
first proposed protocol for distributed reprogramming
in WSNs.

3) We also implement the proposed protocol in a network
of MicaZ motes [22]. Experimental results show its high
efficiency in practice. This is also the first implemented
secure distributed reprogramming protocol for WSNs.

The rest of this paper is organized as follows. In Section II,
background and preliminary knowledge related to the pro-
posed distributed reprogramming protocol is given. Section III
presents the design considerations of distributed reprogram-
ming. In Section IV, SDRP is described in detail. Section V pro-
vides theoretical security evaluation of SDRP, demonstrating
that the security requirements are satisfied. Section VI describes
the implementation and experimental evaluation of SDRP in a
network of MicaZ motes. Section VII concludes this paper and
points out future research direction.

II. BACKGROUND AND PRELIMINARIES

A. Network Model

As shown in the lower subfigure in Fig. 1, a WSN consists
of a large number of resource-constrained sensor nodes, many
sensor network users, and a single network owner. The network
users (e.g., soldiers) use mobile devices such as personal digital
assistants (PDAs) or laptop PCs to reprogram the sensor nodes.
The network owner can be offline, who has bootstrapped the
keying materials for the mobile devices to enforce reprogram-
ming privilege policy. It is assumed that the network owner
cannot be compromised and has unlimited computational power
compared with sensor nodes. Such sensor networks are under
construction or planning by many multisponsor programs and
projects (e.g., [19]–[21]). The sensor nodes can only perform
a limited number of asymmetric cryptographic operations, such
as signature verification, due to the large energy consumption of
these operations. We also assume that sensor nodes are able to

HE et al.: SDRP: A SECURE AND DISTRIBUTED REPROGRAMMING PROTOCOL FOR WIRELESS SENSOR NETWORKS 4157

establish pairwise keys between neighbor nodes, for example,
using the scheme in [23].

B. Trust Model

The network owner only delegates his reprogramming priv-
ilege to those network users who have registered. We assume
that the special modules (e.g., authentication module for each
new program image proposed in this paper and the user access
log module) reside in the bootloader section on each sensor
node and cannot be overwritten by anyone except the network
owner. To achieve this goal, some existing approaches can be
employed, such as hardware-based approaches (e.g., security
chips) and software-based approaches (e.g., binary translation
[24]). Additionally, we assume that the network owner does
not impersonate any network user to propagate a new program
image.

C. Threat Model

An adversary can launch a wide range of attacks against the
network, which can be divided into two kinds, namely, outside
and insider attacks. In an outside attack, the adversary does not
control any valid sensor nodes in the WSN. The adversary may
eavesdrop, modify, forge, or replay any network traffic in the
WSN. It may also inject false messages or forge nonexisting
links in the network by launching a wormhole attack (e.g.,
[25]). In an insider attack, the adversary can compromise both
network users and sensor nodes and then learn the keying
materials stored on them. However, we do assume that the
adversary cannot compromise an unlimited number of sensor
nodes.

As described in Section II-B, an authorized user cannot
totally control a sensor node. However, he may load malicious
program on some nodes. SDRP can provide user traceability,
which will be described in Section V-F. That is, a sensor node
can inform the network owner by delivering the identity of such
a malicious user.

D. Bilinear Pairing

The notations used throughout this paper are listed in Table I.
Let G be a cyclic additive group generated by P and GT be a
cyclic multiplicative group. G and GT have the same primer
order q, i.e., |G| = |GT | = q. Let ê : G × G → GT be a com-
putable bilinear map, which satisfies the following properties.

1) Bilinear: ê(aP, bQ) = ê(P,Q)ab, where P , Q ∈ G and a,
b ∈ Zq.

2) Nondegenerate: There exists P , Q ∈ G such that
ê(P,Q) �= 1GT

.
3) Computable: There exists an efficient algorithm to com-

pute ê(P,Q) for any P , Q ∈ G.
We call such a bilinear map ê an admissible pairing, and the

modified Weil [27] or Tate pairing on elliptic curves can give
a good implementation of such an admissible bilinear pairing.
The group that possesses such a map ê is called a bilinear
group, on which the decisional Diffie–Hellman problem is easy
to solve while the computational Diffie–Hellman problem is

TABLE I
NOTATIONS

believed to be hard. For example, given P , aP , bP , cP ∈ G and
any a, b, c ∈ Zq, there exists an efficient algorithm to determine

whether ab = c mod q by checking ê(aP, bP) ?= ê(P, cP),
while there exists no algorithm that can compute abP ∈ G

with nonnegligible probability within polynomial time. Note
that an open-source pairing-based cryptographic library [28]
has been given. The authors have shown that pairing-based
cryptosystems are feasible and applicable in resource-limited
WSNs.

III. DESIGN CONSIDERATIONS OF

DISTRIBUTED REPROGRAMMING

As shown in Fig. 1, a centralized reprogramming proto-
col involves only two kinds of participants, the base station
(administered by the network owner) and all sensor nodes.
Only the base station can reprogram sensor nodes. Different
from the centralized approach, a distributed reprogramming
protocol consists of three kinds of participants, the network
owner, authorized network users, and all sensor nodes. Here,
the network owner can be offline. Also, after the users register
to the owner, they can enter the WSN and then have predefined
privileges to reprogram the sensor nodes without involving the
owner.

To provide secure and distributed reprogramming, a naive
solution is to pre-equip each sensor node with multiple public-
key/reprogramming-privilege pairs, each of which corresponds
to one authorized user. This scheme allows a network user to
sign a program image with his private key such that each sensor
node can verify whether the program image originates from
an authorized user. However, this solution is not applicable to
WSNs due to the following facts. First, resource constraints on
sensor nodes often make it undesirable to implement such an
expensive algorithm. For the RSA-1024 public-key cryptosys-
tem (1024-b keys), the length of each public key is more than
1026 b. Additionally, for the ECC-160 [29] public-key cryp-
tosystem (160-b keys), the length of each public key is 1120 b.
Assuming that the length of reprogramming privilege is 32 B
and either RSA-1024 or ECC-160 is used, the length of each
public-key/reprogramming-privilege pair is more than 160 B.
This means that not too many public-key/reprogramming-
privilege pairs can be stored in a sensor node. We consider the

4158 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

Fig. 1. System overview of centralized and distributed reprogramming approaches.

commonly used MicaZ platform as an example. The 512-kB
Flash memory is not suitable for storing these parameters, since
it is much slower and more energy consuming than ROM. On
the other hand, MicaZ platform only has 128-kB ROM, while
most of ROM needs to be used for storing program. In this case,
not too many users can be supported. Second, it is clear that the
network owner has no ability to predefine the reprogramming
privileges of the new joining users before the WSN deployment.
Once a new user registers to the network owner, the owner
needs to sign a new public-key/reprogramming-privilege pair
and then broadcasts it to all sensor nodes. Obviously, this be-
havior is not efficient and weakly scalable, particularly in large-
scale WSNs. We naturally shift our attention to certificate-based
approach (CBA).

In CBA, each user is equipped with a public-/private-key
pair. Each user signs the new code image with his private
key using a digital signature scheme such as the elliptic curve
digital signature algorithm (ECDSA) [29]. To prove the user’s
ownership over his public key, the network owner is also
equipped with a public-/private-key pair and serves as the
certification authority. The owner issues each user, for example,
Uj , a public-key certificate, which, to its simplest form, con-
sists of the following contents: Certj = {UIDj , PKj , ExpT,
SIGSKowner{h(UIDj‖PKj‖ExpT)}}, where UIDj denotes
user Uj’s identity, PKj indicates Uj’s public key, ExpT de-
notes the certificate expiration time, SKowner denotes the net-
work owner’s private key, and SIGSKowner{h(UIDj‖PKj‖
ExpT)} is a signature over h(UIDj‖PKj‖ExpT) with SKowner.
Hence, a simple broadcast message is {M,SIGSKj

{h(UIDj‖
M)}, Certj}, where M denotes the updated code image and
SKj denotes the private key of user Uj . For the purpose of code
image authentication, each sensor node is preloaded with the
owner’s public key (PKowner) before the network deployment,
and code image verification on each node contains two steps:
the user certificate verification and the code image signature
verification. CBA has three main disadvantages. First and fore-
most, it is not efficient in communication, as the certificate
has to be transmitted along with the code image across every
hop as the message propagates in the WSN. A large per-
message overhead will result in more energy consumption on
each sensor node. As reported in [30], the length of {SIGSKj

{h(UIDj‖M)}, Certj} is at least 126 B, when ECDSA-160 is
used. Also, the length of {SIGSKj

{h(UIDj‖M)}, Certj} is
at least 390 B, when RSA-1024 is used. Second, to authenticate
each code image, it always takes two expensive signature
verification operations. This is because the certificate should
always be authenticated in the first place. Third, the network
owner cannot specify a reprogramming privilege for each user.

A more suitable approach is for each authorized user to
send a new program image to the nodes through a standard
group signature technique. A group signature scheme allows
one member of the group to sign a message such that any
verifier can verify that the message originated from a group
member. Thus, only the group public key is preloaded onto each
sensor node. Meanwhile, any group signature can be “opened”
by the group manager (i.e., the network owner) to reveal
unambiguously the identity of the actual signer. Unfortunately,
a group signature algorithm does not support different levels of
user authorities. That is, the network owner cannot specify a
reprogramming privilege for each user.

From the aforementioned discussion, it is clear that how to
enforce secure and distributed reprogramming is an important
and challenging issue in WSNs.

IV. SDRP: THE PROTOCOL

A. Overview of SDRP

Based on the aforementioned design considerations, we pro-
pose a novel identity-based signature scheme for distributed re-
programming in WSNs. Through the proposed scheme, efforts
on certificate management and the transmission overhead can
be significantly reduced. Meanwhile, only the system public
parameters are loaded on each sensor node. Compared with
the traditional public-key cryptosystems, elliptic curve cryptog-
raphy (ECC) provides a good solution in terms of key size,
computational efficiency, and communication efficiency. For
example, a 160-b ECC key provides the same level of security
as a 1024-b RSA key. Hence, the proposed protocol is based
on ECC. In conclusion, we design the proposed protocol very
carefully so that it is efficient for resource-constrained sensor
nodes and mobile devices.

HE et al.: SDRP: A SECURE AND DISTRIBUTED REPROGRAMMING PROTOCOL FOR WIRELESS SENSOR NETWORKS 4159

Fig. 2. Example of the format of the message m of SDRP. The byte size of each field is indicated below the label.

Referring to Fig. 1, SDRP consists of three phases: system
initialization, user preprocessing, and sensor node verification.
In the system initialization phase, the network owner creates
its public and private keys and then assigns the reprogramming
privilege and the corresponding private key to the authorized
user(s). Only the system public parameters from the network
owner are loaded on each sensor node before deployment. In
the user preprocessing phase, if a network user enters the WSN
and has a new program image, he will need to construct the
reprogramming packets and then send them to the sensor nodes.
In the sensor node verification phase, if the packet verification
passes, then the nodes accept the program image. The detailed
description of each phase is as follows.

B. System Initialization

In this phase, the network owner executes the following
steps.

1) Let G be a cyclic additive group generated by P , GT be a
cyclic multiplicative group, and G and GT have the same
primer order q. Let ê : G × G → GT be a bilinear map.

2) Randomly pick a random number s ∈ Z
∗
q as the mas-

ter key, and compute the corresponding public key
PKowner = s · P .

3) Choose two secure cryptographic hash functions H1

and H2, where H1 : {0, 1}∗ → G and H2 : {0, 1}∗ →
Z
∗
q. Then, the system public parameters are params =

{G, GT , ê, q, P, PKowner,H1,H2}, which are loaded in
each sensor node before deployment.

4) Consider a user Uj with identity UIDj ∈ {0, 1}∗ who
registers to the network owner. After verifying his regis-
tration information, the network owner first sets Uj’s pub-
lic key as PKj = H1(UIDj‖Prij) ∈ G and computes
the corresponding private key SKj = s · PKj . Then,
the network owner sends {PKj , SKj , P rij} back to
Uj using a secure channel, such as the wired Transport
Layer Security protocol. Here, Prij denotes the level of
user privilege such as the sensor nodes set with specified
identities or/and within a specific region that user Uj is
allowed to reprogram, and subscription period (i.e., the
beginning time and the end time).

C. User Preprocessing

Assume that user Uj enters the WSN and has a new program
image. Uj takes the following actions.

1) Uj partitions the program image to Y fixed-size pages,
denoted as page 1 through page Y . Uj splits page i (1 ≤
i ≤ Y) into N fixed-size packets, denoted as Pkti,1
through Pkti,N . The hash value of each packet in page Y
is appended to the corresponding packet in page Y − 1.
For example, the hash value of packet PktY,1, h(PktY,1),
is included in packet PktY −1,1. Here, PktY,1 presents the

first packet of page Y . Similarly, the hash value of each
packet in page Y − 1 is included in the corresponding
packet in page Y − 2. This process continues until Uj

finishes hashing all the packets in page 2 and including
their hash values in the corresponding packets in page 1.
Then, a Merkle hash tree [31] is used to facilitate the
authentication of the hash values of the packets in page 1.
We refer to the packets related to this Merkle hash tree
collectively as page 0. The root of the Merkle hash tree,
the metadata about the code image (e.g., version number,
targeted node identity set, and program image size), and
a signature over all of them are included in a signature
message. The detailed information can be referred to [17].
Here, we assume that the message m represents the root
of the Merkle hash tree and the metadata about the code
image. An example format of the message m is shown
in Fig. 2. As the output of a one-way hash function
(e.g., SHA-1), the length of the root of the Merkle hash
tree is 20 B. Note that, in order to support a variety of
applications, the formats and lengths of the message m
and the reprogramming privilege Prij in SDRP should
be set according to the specified application scenario.
Here, the targeted node identity set field indicates the
identities of the sensor nodes which the network user
wishes to reprogram. We assume that the length of the
identity of each sensor node is 2 B, in which case
the protocol supports up to 65 535 nodes. Obviously,
the targeted node identity set field is set according to the
reprogramming privilege Prij of the user. Then, in order
to ensure the authenticity and integrity of the new code
image, Uj takes the following actions to construct the
signature message.

2) With the private key SKj , Uj can compute the signature
σj of the message m, where σj = H2(m) · SKj .

3) Uj transmits to the targeted nodes the signature message
{UIDj , P rij ,m, σj}, which serves as the notification
of the new code image. SDRP relies on the underlying
Deluge protocol to distribute packets for a given code
image.

Note that there are two different cases for user Uj to repro-
gram the sensor nodes. One case is that Uj wants to reprogram
one or more particular sensor nodes, for example, {S1, . . . , Sj},
with identities {ID1, . . . , IDj}. Here, j ≥ 1. We assume that
sensor nodes do not know their geographical locations. Obvi-
ously, this assumption makes SDRP more applicable in the real
world. In this case, the identities are added into the targeted
node identity set field of m. As will be proved in Section V-A,
the authenticity and integrity of the message m (including the
identities of the targeted nodes) can be ensured by identity-
based signature. Therefore, no adversary can modify the iden-
tities and then pass the verification of any sensor node. Of
course, reprogramming all sensor nodes via broadcast also

4160 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

belongs to this case. Referring to Fig. 2, by setting the targeted
node identity set field to “0,” it indicates that Uj wants to
reprogram all sensor nodes. The other case is that Uj wants
to reprogram the nodes in a specific region. We assume that the
nodes know their geographical locations. More specifically, the
nodes know which region they belong to. This can be acquired
via deployment knowledge or many existing secure localization
schemes (e.g., [25] and [32]). In this case, Uj needs to add
the information about the specific region into the targeted node
identity set field of m.

The signature of the proposed SDRP has two main merits.
On the one hand, the signature overhead is very low. ECDSA
signature technique has been widely used in many centralized
reprogramming protocols. The length of a signature in SDRP is
21 B (i.e., |σj | = 161 b2), while the ECDSA-160 [29] signature
is 40 B. Moreover, SDRP does not need any user certificate to
be sent along with the signature message due to the adoption of
identity-based cryptography; instead, only a 2-B user identity
is sent, i.e., |UIDj | = 2 B. In this case, SDRP can support
65 536 network users. Note that user identity is attached into
the signature message, which can provide user traceability. In
contrast, as described in Section III, the ECDSA technique has
to incorporate a certificate in the message, which is at least
86 B. On the other hand, from the perspective of signing
speed, the proposed protocol does not add any extra signature
generation delay compared with that in ECDSA, where both of
them take one elliptic curve point scalar multiplication (ECSM)
operation for signing.

D. Sensor Node Verification

Upon receiving a signature message {UIDj , P rij ,m, σj},
each sensor node verifies it as follows.

1) The sensor node first pays attention to the legality of
the programming privilege Prij and the message m. For
example, the node needs to check whether the identity of
itself is included in the node identity set of Prij . Only
if they are valid, the verification procedure goes to the
next step.

2) Given the system public parameters {G, GT , ê, q, P,
PKowner,H1,H2} assigned by the network owner, the
sensor node performs the following verification:

ê(σj , P) = ê (H2(m) · H1(UIDj‖Prij), PKowner) . (1)

If the equation holds, the signature σj is valid because

ê(σj , P) = ê (H2(m) · SKj , P) = ê (H2(m) · s · PKj , P)

= ê (H2(m) · PKj , s · P)

= ê (H2(m) · PKj , PKowner)

= ê (H2(m) · H1(UIDj‖Prij), PKowner) .

2It should be noted that, in order to get a short signature, an Miyaji,
Nakabayashi and Takano (MNT) curve [33] with 160-b q is employed in SDRP,
where the bilinear map ê : G1 × G2 → GT is asymmetric, G1 �= G2, and
elements in G1 are 161 b long.

3) If the aforementioned verification passes, the sensor node
believes that the message m and the privilege Prij are
from an authorized user with identity UIDj . Hence, the
sensor node accepts the root of the Merkle hash tree
constructed for page 0. Thus, the nodes can authenticate
the hash packets in page 0 once they receive such packets,
based on the security of the Merkle hash tree. The hash
packets include the hash values of the data packets in
page 1. Therefore, after verifying the hash packets, a node
can easily verify the data packets in page 1 based on
the one-way property of hash functions. Likewise, once
the data packets in page i have been verified, a sensor
node can easily authenticate the data packets in page
i + 1, where i = 1, 2, . . . , Y − 1. Only if all verification
procedures described previously pass, the sensor node
accepts the code image.

Obviously, the computation cost by each sensor node for
verifying a signature message is dominantly composed of
one MapToPoint hash, one ECSM operation, and two pairing
operations.

V. SECURITY ANALYSIS OF SDRP

In this section, we analyze the security of SDRP to verify that
the security requirements mentioned in Section I are satisfied.

A. Authenticity and Integrity of Code Images

In SDRP, the signature σj = H2(m) · SKj is actually an
identity-based signature. Without knowing the private key SKj ,
it is infeasible to forge a valid signature. Because of the
non-deterministic polynomial-time (NP)-hard computation
complexity of the Diffie–Hellman problem in G, it is difficult
to derive the private SKj by way of UIDj , PKj , P , H1, H2,
and PKowner. Therefore, the message m (as well as the root of
the Merkle hash tree in page 0) is unforgeable. Thus, the nodes
can authenticate each hash packet in page 0 once they receive
such packets, based on the security of the Merkle hash tree.
The hash packets include the hash values of the data packets
in page 1. Therefore, after verifying the hash packets, a node
can easily verify the data packets in page 1 based on the one-
way property of hash functions. Likewise, once the data packets
in page i are verified, a sensor node can easily authenticate
the data packets in page i + 1, where i = 1, 2, . . . , Y − 1. In
summary, if an adversary injects a forged modified program
image, each receiving node can detect it easily because of the
(immediate) authentication of reprogramming packets.

B. Ensurance of Freshness

Obviously, there are two cases for the network users to
administrate the program update of a WSN. In the first case,
each network user has the privilege to reprogram the sensor
nodes in different zones (or different sets of sensor nodes
according to their identities), and there exists no sensor node
which is allowed to be reprogrammed by two network users. In
step 1) of the sensor node verification phase, a sensor node first
checks whether the version number from the received message

HE et al.: SDRP: A SECURE AND DISTRIBUTED REPROGRAMMING PROTOCOL FOR WIRELESS SENSOR NETWORKS 4161

m is valid. Only if it is valid, the verification procedure goes to
the next step. Therefore, the use of the version number of the
updated program image can ensure the freshness of SDRP. The
other case is that a sensor node may be assigned to multiple
network users by the network owner. A feasible approach for
achieving the freshness is that a timestamp is used instead of
the version number of the updated code image. In step 1) of
the sensor node verification phase, a sensor node first checks
whether the timestamp included in the message m is fresh. This
can ensure that a node always installs the most recent version
of a program. In this case, we assume that the WSN is loosely
synchronized via some existing efficient time synchronization
mechanism (e.g., [34]).

C. Resistance to Node- and User-Compromised Attacks

As described in Section IV-B, only the system public parame-
ters params = {G, GT , ê, q, P, PKowner,H1,H2} are pre-
loaded on every sensor node. Thus, no matter how many sensor
nodes are compromised, the adversary just obtains params.
Obviously, the adversary cannot impersonate any authorized
network user by compromising sensor nodes. In other words,
no matter how many sensor nodes are compromised, a benign
sensor node will not grant the adversary any reprogramming
privilege. Also, as described in Section IV, even if some
network users are compromised, a benign node will not grant
the adversary any reprogramming privilege that is beyond the
privileges of the compromised users.

D. Distributed

Here, it is demonstrated that the network owner can enforce
strict reprogramming so that the reprogramming privilege is
only accessible to users willing to register. As described in
Section IV-B–D, in order to pass the signature verification
of sensor nodes, each user has to obtain a private key from
the network owner. In addition, it is clear that the authorized
users are able to carry out reprogramming in a distributed
manner.

E. Supporting Different User Privileges

The network owner can restrict user Uj’s activities by defin-
ing the reprogramming privilege Prij , which records the levels
of user privileges. Since Uj’s public/private key is generated
with Prij as input, nobody except the network owner can
modify Prij contained in the signature message and then pass
the verification from the sensor nodes.

F. User Traceability

In many application scenarios, traceability is highly de-
sirable, particularly for reprogramming, where it is used for
collecting the network users’ activities for some purposes. For
instance, with the knowledge of the network users’ reprogram-
ming history, the network owner is able to find out which
nodes are frequently reprogrammed, and then can improve the
network deployment. In this case, the sensor nodes should have
the ability to inform the network owner by delivering the user’s
identity.

In SDRP, a sensor node obtains the identity of a network
user (UIDj) from the signature message. Since every private
key is generated based on the corresponding user identity,
nobody except the network owner can modify the identity of
the network user included in the signature message and then
pass the signature verification from the sensor nodes. Therefore,
SDRP can provide user traceability.

VI. IMPLEMENTATION AND PERFORMANCE EVALUATION

In addition to the security evaluation of SDRP given in
Section V, we further evaluate SDRP by implementing all
components on an experimental test bed. Since it has been
demonstrated that Seluge [17] exceeds the security and effi-
ciencies of other centralized reprogramming techniques, here,
we choose Seluge for performance comparison.

A. Implementation and Experimental Setup

Our implementation has the network owner, sensor network
user, and sensor node side programs. The network owner side
programs are C programs using OpenSSL [35] running on a
3.2-GHz desktop PC. The sensor network user side programs
are C programs using OpenSSL running on a 1.6-GHz laptop
PC. In addition, the sensor node side programs are written in
nesC [36] and run on MicaZ motes. The MicaZ mote features an
8-b 8-MHz Atmel microcontroller with 4-kB RAM and 128-kB
ROM. Our MicaZ motes run TinyOS [9] v1.x. We use an indoor
test bed consisting of MicaZ motes to evaluate the efficiency of
SDRP. In addition, the key size of ECC is set to 160 b. Note that
the 160-b ECC key length is considered secure enough for now
and immediate future.

We add the following functionalities in the Java tools on the
sensor network user side: computation of the hash values of
the data packets from the last to the first page, construction of
page 0 (i.e., the Merkle hash tree) and hashing packets from
the hash values of page 1, and construction of the signature
message from the root of the Merkle hash tree and the metadata
of the program image.

We modify the PacketVerifier module of the Seluge nesC
library to perform verification of signature messages, hash
packets, and data packets. The system public parameters are
generated by OpenSSL [35] and then predistributed to all sensor
nodes. The pairwise keys used to distribute cluster keys are also
predistributed to all nodes. The pairing operation of pairing-
based cryptographic library [28] and the ECSM operation of
William&Mary (WM)-ECC library [37] are optimized and then
employed in SDRP.

B. Evaluation Results

We use the following five metrics to evaluate SDRP, namely,
memory overhead, signature message overhead, execution time,
propagation delay, and energy overhead. The execution time
measures the time duration for each operation of SDRP (i.e.,
system initialization, user public-/private-key generation, user
signing, and signature verification). The propagation delay is
the time required to finish disseminating a code image to all the
nodes in the network.

4162 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

TABLE II
WHOLE CODE SIZE ON MICAZ

TABLE III
EXECUTION TIME FOR EACH PHASE OF SDRP

First, the implementation of signature verification in SDRP
on a MicaZ mote uses only 172 B of RAM and 16 220 B
of ROM, respectively. This implementation mainly involves
PairingC, PointArithM, and NNM components of the pairing-
based cryptographic library. The resulting size of our imple-
mentation corresponds to only 4.2% and 12.4% of the RAM
and ROM capacities of MicaZ, respectively. Table II shows
the ROM and RAM usages of SDRP on MicaZ motes. The
code sizes of Deluge and Seluge are also included for reference
purposes. It is clear that SDRP takes less ROM and RAM than
Seluge.

Here, we consider the signature message overhead of SDRP
without considering packet headers. The overhead is |UIDj | +
|Prij | + |m| + |σj | = 2 + 16 + 29 + 21 = 68 B. Obviously,
the transmission overhead of SDRP is very low, which is very
suitable for low-bandwidth WSNs. Table III gives the execution
time of each operation in SDRP. Here, system initialization
indicates the generation of the network owner’s public key
and private key. As shown in Table III, the time for user
signing on a 1.6-GHz laptop PC is 1.8 ms. Considering that
the clock frequency of a typical PDA is more than 800 MHz,
our protocol is efficient for most of mobile devices (e.g., laptop
PCs or PDAs). Note that, for the cryptographic operations on
desktop PC and laptop PC, we perform the same operation
1000 times and take an average over them. Our experiments
show that the time for signature verification on a MicaZ mote
is 8 s. Note that the proportion of this signature verification
time in the total reprogramming time is very small. Considering
Seluge as an example, the total reprogramming time for a
40-kB program image is longer than 380 s in a WSN consisting
of 65 MicaZ nodes. Furthermore, the signature verification
time of SDRP takes less than 2.1% of the total dissemination
time. Considering the benefits that SDRP provides, this time
consumption is acceptable.

To further investigate the impact of signature verification
on the propagation delay of reprogramming in multihop net-
works, a multihop experiment was conducted. In this distrib-
uted reprogramming experiment, an authorized network user
directly reprogrammed six MicaZ motes without involving the
network owner. The motes were deployed in a line with the
same intervals, where a code image is propagated from one
side to the other side. Fig. 3 shows the propagation delays of
Deluge, Seluge, and SDRP measured from the experiment. As
the code image size increases, the propagation delays of all
schemes increase almost linearly. From Fig. 3, it is concluded

Fig. 3. Propagation delay comparison of three protocols.

that the signature verification by sensor nodes in SDRP only
has low impact on the propagation delay of reprogramming.
For example, when the code size of a program is 20 kB, the
propagation delay of SDRP is only 4.5% more than that of
Deluge. This is because, upon receiving the signature packet,
each sensor node forwards the signature packet to the next-
hop node. Subsequently, it can start to check the validity of the
signature packet. Only the signature verification time of the first
node has impact on the propagation delay. Further speaking,
the increased propagation delay due to signature verification
is constant, which is independent against the code size or the
number (or deployment) of the targeted nodes.

When a sensor node’s radio is always on during the repro-
gramming process, the energy consumption of the node de-
pends chiefly on the completion time (i.e., propagation delay).
The aforementioned experiment shows that the energy overhead
of SDRP is similar to that of Deluge or Seluge.

VII. CONCLUSION AND FUTURE WORK

In the literature, a number of secure reprogramming proto-
cols have been proposed, but none of these approaches support
distributed operation. Therefore, in this paper, a secure distrib-
uted reprogramming protocol named SDRP has been proposed.
In addition to analyzing the security of SDRP, this paper has
also reported the evaluation results of SDRP in an experimental
network of resource-limited sensor nodes, which shows that
SDRP is feasible in practice. To the best of our knowledge, until
now, our protocol is the only one that allows authorized users
to reprogram sensor nodes in a distributed manner.

In some applications, data are also required to be kept
confidential due to the possibility of message interception. In
future work, we will study how to support confidentiality in
distributed reprogramming.

REFERENCES

[1] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE Trans.
Ind. Electron., vol. 56, no. 10, pp. 4258–4265, Oct. 2009.

[2] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges
of wireless sensor networks in smart grid,” IEEE Trans. Ind. Electron.,
vol. 57, no. 10, pp. 3557–3564, Oct. 2010.

HE et al.: SDRP: A SECURE AND DISTRIBUTED REPROGRAMMING PROTOCOL FOR WIRELESS SENSOR NETWORKS 4163

[3] J. Chen, X. Cao, P. Cheng, Y. Xiao, and Y. Sun, “Distributed collabora-
tive control for industrial automation with wireless sensor and actuator
networks,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4219–4230,
Dec. 2010.

[4] X. Cao, J. Chen, Y. Xiao, and Y. Sun, “Building-environment control with
wireless sensor and actuator networks: Centralized versus distributed,”
IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3596–3605, Nov. 2010.

[5] J. Carmo, P. Mendes, C. Couto, and J. Correia, “A 2.4-GHz CMOS short-
range wireless-sensor-network interface for automotive applications,”
IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1764–1771, May 2010.

[6] Crossbow Technology Inc., Milpitas, CA, Mote In-Network Program-
ming User Reference, 2003.

[7] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proc. ACM SenSys, 2004,
pp. 81–94.

[8] V. Naik, A. Arora, P. Sinha, and H. Zhang, “Sprinkler: A reliable and
energy efficient data dissemination service for extreme scale wireless
networks of embedded devices,” IEEE Trans. Mobile Comput., vol. 6,
no. 7, pp. 777–789, Jul. 2007.

[9] TinyOS: An open-source OS for the networked sensor regime. [Online].
Available: http://www.tinyos.net/

[10] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor net-
works,” in Proc. NSDI, 2004, p. 2.

[11] J. Deng, R. Han, and S. Mishra, “Secure code distribution in dynamically
programmable wireless sensor networks,” in Proc. ACM/IEEE IPSN,
2006, pp. 292–300.

[12] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, “Securing the
deluge network programming system,” in Proc. ACM/IEEE IPSN, 2006,
pp. 326–333.

[13] P. E. Lanigan, R. Gandhi, and P. Narasimhan, “Sluice: Secure dissemina-
tion of code updates in sensor networks,” in Proc. ICDCS, 2006, p. 53.

[14] Y. Law, Y. Zhang, J. Jin, M. Palaniswami, and P. Havinga, “Secure rate-
less deluge: Pollution-resistant reprogramming and data dissemination
for wireless sensor networks,” EURASIP J. Wireless Commun. Netw.,
vol. 2011, pp. 1–21, 2010.

[15] C. Parra and J. Macias, “A protocol for secure and energy-aware repro-
gramming in WSN,” in Proc. IWCMC, 2009, pp. 292–297.

[16] N. Bui, O. Ugus, M. Dissegna, M. Rossi, and M. Zorzi, “An integrated
system for secure code distribution in wireless sensor networks,” in Proc.
IEEE PERCOM Workshops, 2010, pp. 575–581.

[17] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and dos-resistant
code dissemination in wireless sensor networks,” in Proc. ACM/IEEE
IPSN, 2008, pp. 445–456.

[18] R. Zhang, Y. Zhang, and K. Ren, “DP2AC: Distributed privacy-preserving
access control in sensor networks,” in Proc. IEEE INFOCOM, 2009,
pp. 1251–1259.

[19] Geoss. [Online]. Available: http://www.epa.gov/geoss/
[20] NOPP. [Online]. Available: http://www.nopp.org/
[21] ORION. [Online]. Available: http://www.oceanleadership.org/2004/

ocean-research-interactive-observatory-networks-project-office-manager-
selected/

[22] Crossbow Technology, Inc., Wireless sensor networks. [Online].
Available: http://www.xbow.com/Products/Wireless_Sensor_Networks.
htm

[23] W. Du, J. Deng, Y. Han, P. Varshney, J. Katz, and A. Khalili, “A pairwise
key predistribution scheme for wireless sensor networks,” ACM Trans. Inf.
Syst. Security, vol. 8, no. 2, pp. 228–258, May 2005.

[24] L. Gu and J. A. Stankovic, “t-kernel: Providing reliable OS support for
wireless sensor networks,” in Proc. ACM SenSys, 2006, pp. 1–14.

[25] D. He, L. Cui, H. Huang, and M. Ma, “Design and verification of en-
hanced secure localization scheme in wireless sensor networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 20, no. 7, pp. 1050–1058, Jul. 2009.

[26] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Proc. Asiacrypt, 2001, vol. 2248, pp. 514–532.

[27] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Proc. Crypto, vol. 2139, LNCS, 2001, pp. 213–229.

[28] X. Xiong, D. S. Wong, and X. Deng, “TinyPairing: A fast and light-
weight pairing-based cryptographic library for wireless sensor networks,”
in Proc. IEEE WCNC, 2010, pp. 1–6.

[29] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. New York: Springer-Verlag, 2004.

[30] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Chang, “Energy analysis
for public-key cryptography for wireless sensor networks,” in Proc. IEEE
PERCOM, 2005, pp. 324–328.

[31] R. Merkle, “Protocols for public key cryptosystems,” in Proc. IEEE S&P,
1980, pp. 122–133.

[32] H. Guo, K.-S. Low, and H.-A. Nguyen, “Optimizing the localization of a
wireless sensor network in real time based on a low-cost microcontroller,”
IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 741–749, Mar. 2011.

[33] A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions
of elliptic curve traces for FR-reduction,” IEICE Trans. Fundam.,
vol. E84-A, no. 5, pp. 1234–1243, 2001.

[34] Z. An, H. Zhu, X. Li, C. Xu, Y. Xu, and X. Li, “Non-identical linear
pulse-coupled oscillators model with application to time synchronization
in wireless sensor networks,” IEEE Trans. Ind. Electron., vol. 58, no. 6,
pp. 2205–2215, Jun. 2011.

[35] OpenSSL. [Online]. Available: http://www.openssl.org
[36] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler, “The

nesC language: A holistic approach to networked embedded systems,” in
Proc. ACM SIGPLAN, 2003, pp. 1–11.

[37] H. Wang, B. Sheng, C. C. Tan, and Q. Li, “WM-ECC: An elliptic curve
cryptography suite on sensor motes,” College of William and Mary, Com-
puter Science, Williamsburg, VA, Tech. Rep. WM-CS-2007-11, 2007.

Daojing He (S’09) received the B.Eng. and M.Eng.
degrees in computer science from Harbin Institute of
Technology, Harbin, China, in 2007 and 2009, re-
spectively. He is currently working toward the Ph.D.
degree at Zhejiang University, Hangzhou, China.

His research interests include network and system
security with focuses on wireless security.

Mr. He serves as Technical Program Committee
member for IEEE Globecom 2011, IEEE Sympo-
sium on Personal, Indoor, Mobile, and Radio Com-
munications 2011, IEEE International Conference on

Communications 2012, and IEEE Wireless Communications and Networking
Conference 2012.

Chun Chen (M’06) received the B.S. degree
in mathematics from Xiamen University, Xiamen,
China, in 1981 and the M.S. and Ph.D. degrees
in computer science from Zhejiang University,
Hangzhou, China, in 1984 and 1990, respectively.

He is currently a Professor with the College of
Computer Science, Zhejiang University, where he is
also the Director of the Institute of Computer Soft-
ware. His research activity is in image processing,
computer vision, and embedded system.

Sammy Chan (S’87–M’90) received the B.E. and
M.Eng.Sc. degrees in electrical engineering from
The University of Melbourne, Melbourne, Australia,
in 1988 and 1990, respectively, and the Ph.D. de-
gree in communication engineering from the Royal
Melbourne Institute of Technology, Melbourne,
in 1995.

From 1989 to 1994, he was with Telecom
Australia Research Laboratories, where he was first
a Research Engineer and, between 1992 and 1994,
a Senior Research Engineer and a Project Leader.

Since December 1994, he has been with the Department of Electronic Engi-
neering, City University of Hong Kong, Kowloon, Hong Kong, where he is
currently an Associate Professor.

Jiajun Bu (M’06) received the B.S. and Ph.D. de-
grees in computer science from Zhejiang University,
Hangzhou, China, in 1995 and 2000, respectively.

He is currently a Professor with the College of
Computer Science, Zhejiang University, where he is
also the Deputy Dean of the Department of Digital
Media and Network Technology. His research inter-
ests include embedded system, mobile multimedia,
and data mining.

