
4638 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 9, SEPTEMBER 2013

Secure Data Discovery and Dissemination based on
Hash Tree for Wireless Sensor Networks

Daojing He∗, Sammy Chan, Shaohua Tang∗, and Mohsen Guizani

Abstract—Wireless sensor networks (WSNs) are widely ap-
plicable in monitoring and control of environment parameters.
It is sometimes necessary to disseminate data through wireless
links after they are deployed in order to adjust configuration
parameters of sensors or distribute management commands
and queries to sensors. Several approaches have been proposed
recently for data discovery and dissemination in WSNs. However,
they all focus on how to ensure reliability and usually overlook
security vulnerabilities.

This paper identifies the security vulnerabilities in data discov-
ery and dissemination when used in WSNs. Such vulnerabilities
allow an adversary to update a network with undesirable
values, erase critical variables, or launch denial-of-service (DoS)
attacks. To address these vulnerabilities, this paper presents the
design, implementation, and evaluation of a secure, lightweight,
and DoS-resistant data discovery and dissemination protocol
named SeDrip for WSNs. Our protocol takes into consideration
the limited resources of sensor nodes, packet loss and out-of-
sequence packet delivery. Also, it can provide instantaneous
authentication without packet buffering delay, and tolerate node
compromise. Besides the theoretical analysis that demonstrates
the security and performance of SeDrip, this paper also reports
the experimental evaluation of SeDrip in a network of resource-
limited sensor nodes, which shows its efficiency in practice.

Index Terms—Data discovery and dissemination, security,
wireless sensor networks, efficiency.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been attract-
ing great interest in a wide range of applications

related to monitoring and control of environmental or physical
conditions, such as industry monitoring and military oper-
ations. After a WSN is deployed in the field, it may be
necessary to update the installed programs or stored parame-
ters in sensor nodes. This can be achieved by dissemination
services which ensure new programs or parameter values
to be propagated throughout the WSN so that all nodes
have a consistent copy. Normally, a new program is of the
order of kilobytes while a parameter is just few bytes long.

Manuscript received January 13, 2013; revised May 21, 2013; accepted
July 2, 2013. The associate editor coordinating the review of this paper and
approving it for publication was N. Kato.

This work was supported by the Guangxi Key Laboratory of Trusted
Software, National Natural Science Foundation of China under Grant No.
U1135004 and 61170080 and Guangdong Province Universities and Colleges
Pearl River Scholar Funded Scheme (2011).

D. He is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou, P.R.China, and also with the
Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic
Technology, Guilin 541004, P.R. China (e-mail: hedaojinghit@gmail.com).

S. Chan is with the Department of Electronic Engineering, City University
of Hong Kong, Hong Kong SAR, P.R. China (e-mail: eeschan@cityu.edu.hk).

S. Tang is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou, P.R. China (e-mail: cssh-
tang@scut.edu.cn).

M. Guizani is with Qatar University, Qatar (e-mail: mguizani@ieee.org).
∗D. He and S. Tang are co-corresponding authors.
Digital Object Identifier 10.1109/TWC.2013.090413.130072

Due to such a vast disparity between their sizes, the design
considerations of their dissemination protocols are different.
As a result, two types of dissemination protocols are developed
in the literature. Code dissemination (also referred to as data
dissemination or reprogramming) protocols [1] are developed
to efficiently distribute long messages into a network, enabling
complete system reprogramming. On the other hand, data
discovery and dissemination protocols are used to distribute
short messages, such as several two-byte configuration param-
eters, within a WSN. Common uses of this kind of protocols
include injecting small programs, commands, queries, and
configuration parameters.

Recently, several data discovery and dissemination proto-
cols [2]–[5] have been proposed. Among them, Drip [2],
DIP [3] and DHV [4] are most well known and included
in TinyOS distributions [6]. However, to the best of our
knowledge, all existing data discovery and dissemination pro-
tocols only address reliable data transmission, but provide no
security mechanism. Certainly, this is a critical issue that needs
to be addressed. Otherwise, adversaries could, for example,
distribute viral or false data to cripple a WSN deployed in the
battlefield.

In an effort to make these protocols secure, this paper has
the following main contributions:

1) We first investigate the security issues in data discovery
and dissemination procedure of WSNs and point out
that the lack of authentication of the disseminated data
introduces a vulnerability to the update of arbitrary data
in WSNs.

2) We then develop a secure, lightweight, and Denial-of-
Service (DoS)-resistant data discovery and dissemina-
tion protocol named SeDrip for WSNs, which is a secure
extension of Drip. To achieve DoS-attack resilience and
allow immediate verification of any received packets,
SeDrip is based on a signed Merkle hash tree. This way
the base station of a WSN needs to sign only the root
of this tree. Also, SeDrip can tolerate the compromise
of some sensor nodes. To further improve the security
and efficiency, some additional mechanisms such as the
message specific puzzle approach are incorporated into
the design of SeDrip.

3) We also implement the proposed protocol in networks
of MicaZ and TelosB motes, respectively. Experimental
results demonstrate its high efficiency in practice. To the
best of our knowledge, this is also the first implemented
secure data discovery and dissemination protocol for
WSNs.

The rest of the paper is organized as follows. Section II
analyzes security vulnerabilities in data discovery and dissem-
ination. The design considerations of securing this procedure

1536-1276/13$31.00 c© 2013 IEEE

HE et al.: SECURE DATA DISCOVERY AND DISSEMINATION BASED ON HASH TREE FOR WIRELESS SENSOR NETWORKS 4639

are described in Section III. SeDrip is presented in Section IV
in detail. Some approaches to defeat DoS attacks and improve
the efficiency are suggested in Section V. Section VI provides
theoretical analysis of the security of SeDrip. Section VII
describes the implementation and experimental evaluation of
SeDrip. Section VIII concludes this paper.

II. SECURITY VULNERABILITIES IN DATA DISCOVERY

AND DISSEMINATION

A. Review on Data Discovery and Dissemination

Both Drip and DIP are based on the same algorithm -
Trickle [7]. According to the algorithm, a node periodically
broadcasts a summary of the data that it has, unless it has
recently received the same summary from other nodes. If a
node receives an old summary, it returns an update to the
source of the old summary. Once the data in all nodes are
consistent, the broadcast interval is exponentially increased to
save energy. On the other hand, if a node detects that other
nodes have new data, it starts reporting more quickly. Thus,
once new data are injected to a node by the base station, they
will be disseminated by Trickle quickly. Among the existing
data discovery and dissemination protocols, Drip is a simple
and basic implementation that establishes an independent
trickle for each data item.

In practice, each data item contains a unique key to identify
which variable it will update and a value to indicate its
freshness. For example, in Drip, DIP and DHV, each data
item is represented as a 3-tuple (key, version, data), where
key uniquely identifies the variable to be updated, version
indicates if the data item is old or new (the larger the version,
the newer the data), and data denotes the disseminated data
(e.g., parameter, command or query).

B. Security Vulnerabilities

All existing data discovery and dissemination protocols
developed for WSNs assume benign environments. However,
in hostile environments, data discovery and dissemination
would face both external and insider attacks.

External attacks include eavesdropping for sensitive in-
formation, injecting forged messages, replaying previously
intercepted messages, and impersonating valid sensor nodes.
Also, the adversary may launch wormhole attacks to fake non-
existing links, or DoS attacks by forging, for example, a lot
of signature/data packets to consume the limited resources
(e.g., battery power, memory) on selected sensor nodes. Insider
attacks can be launched by compromising some nodes to
attack the rest of the network. Insider attacks can be launched
when one or more nodes are compromised. These compro-
mised nodes are totally controlled by adversaries to attack
other nodes in the network. They are regarded as insiders
because they are still members of the network until they
are identified and excluded from the network. For example,
they may be instructed by the adversary to launch Sybil
attacks, inject false data, exploit specific weaknesses of various
protocols, or not to cooperate with other nodes.

With forged messages, an adversary can reboot the entire
network, or erase an important variable from all sensor nodes.
For example, to reboot a network with a wrong data data∗ for

the variable identified by key, the adversary simply needs to
inject a fake data item (key, version, data∗) to the network
using a data discovery and dissemination protocol, where
version is larger than all version numbers of the variable
stored on the sensor nodes. Any receiving node will update
the variable with the received data∗ due to the larger version
number. Similarly, to erase an important variable identified
by key on all sensor nodes, the adversary can simply send
a fake data item (key, version, 0) using a data discovery
and dissemination protocol, where version is a large enough
number.

III. ASSUMPTIONS AND DESIGN CONSIDERATIONS OF

SECURE DATA DISCOVERY AND DISSEMINATION

A. Assumptions

Our protocol is based on the following assumptions.
• As the source of disseminated data, the base station can-

not be compromised, and is trustworthy. In data discovery
and dissemination, the base station is the origin of all
legitimate data updates. If it were not trustworthy, nothing
else in the network could be trusted.

• The base station has unlimited computational power
compared with sensor nodes.

• Although the sensor nodes are resource constrained in
terms of memory space, computation power, bandwidth
and energy, it can perform a limited number of public
key cryptographic operations during the lifetime of its
battery.

B. Design Considerations

According to the analysis in Section II, it is vital to provide
security measures to data discovery and dissemination. The
root of the vulnerability is the lack of authentication of
incoming data items. However, providing security measures
for WSNs encounters many challenges. The primary one is the
limited computing and storage capabilities of sensor nodes.
For example, a seemingly straight forward solution is that
the base station signs each packet individually using digital
signature technique and each node verifies the signature before
processing the packet. However, this is inapplicable because
it suffers from expensive computational and communication
cost. To address this problem, TESLA and its various exten-
sions have been proposed [8], [9], which are based on the
delayed disclosure of authentication keys, i.e., the key used
to authenticate a message is disclosed in the next message.
However, these mechanisms require time synchronization for
the whole network and are vulnerable to a DoS attack due
to the authentication delay. Through a simple flooding attack,
each sensor node has to buffer all forged data items claimed
to be from the base station until it receives the disclosed key.

Therefore, our security goal is straightforward: All data
items broadcast by the base station should be authenticated
so that any bogus data item inserted by an adversary can
be efficiently rejected/filtered. Other desirable properties in-
clude energy efficiency (with respect to both communication
and computation), low storage overhead, tolerance to out-of-
sequence packet delivery, resistance against DoS attacks and
no time synchronization between the base station and sensor
nodes.

4640 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 9, SEPTEMBER 2013

TABLE I
NOTATIONS

Notation Description

SIGk(M) the signature on message M with the key k
, or ‖ concatenation operator of the two bit streams
H(.) public one-way cryptographic hash function (e.g., SHA-1)
H(M) the hash value of message M

IV. SEDRIP: THE BASIC PROTOCOL

Before giving the detailed description of SeDrip, we first
provide an overview of SeDrip.

A. Overview of SeDrip

Compared with the traditional approaches, elliptic curve
cryptography (ECC) is a better approach to public-key cryp-
tography in terms of key size, computational efficiency, and
communication efficiency. However, while ECC is feasible on
resource-limited sensor motes, heavily involving ECC-based
authentication is still not practical.

SeDrip combines ECC public key algorithm and Merkle
hash tree [10] to avoid frequent public key operations and
achieve strong robustness against various malicious attacks.
Also, SeDrip inherits robustness to packet loss from underly-
ing Trickle algorithm, because Trickle uses periodic retrans-
missions to ensure eventual delivery of the message to every
node in the network.

SeDrip consists of three phases: system initialization, packet
pre-processing, and packet verification. The system initializa-
tion phase is carried out before network deployment. In this
phase, the base station creates its public and private keys, and
loads the public parameters on each sensor node. Then, before
disseminating data, the base station executes the packet pre-
processing phase in which packets and their corresponding
Merkle hash tree are constructed from data items. Finally, in
the packet verification phase, a node verifies each received
packet. If the result is positive, it updates the data according to
the received packet. In the following, each phase is described
in detail. The notations used in the description are listed in
Table I.

B. System Initialization Phase

In this stage, the base station sets up an ECC by deriving
a private key SK and public parameters {PK,Q, p, q,H(.)}
by performing the following operations. It selects an elliptic
curve E over GF (p), where p is a big prime number. Here
Q denotes the base point of E while q is also a big prime
number and represents the order of Q. It then picks the private
key SK∈GF (q) and generates the public key PK = SK·Q.
Afterwards, the public parameters are pre-loaded in each node
of the network. As an illustrative example, for 160-bit ECC,
both PK and Q are 320 bits long, and both p and q are
160 bits long.

In SeDrip, we extend the 3-tuple (key, version, data) of
Drip into a 4-tuple (round, key, version, data) to represent
a data item, where round refers to which round of data
dissemination this data item belongs to (the higher the round,
the newer the data dissemination), and the other three elements

1P 2P 3P 4P

1e 2e 3e 4e

1 2e 3 4e

1 4e root

Signature

Fig. 1. Example of the Merkle hash tree.

bear the same meaning as existing protocols. Same as the Drip
implementation, key and version are 2 bytes and 4 bytes long,
respectively. For the round field, it can be just as short as 4
bits because we can allow a wrap around in the number space
to take place. This is possible based on two characteristics
of the dissemination process. First, the configuration of a
WSN is not expected to change frequently and hence the
dissemination rate would be low. Second, only a small amount
of data is disseminated in each round, so the time required to
complete one round of dissemination should be very short. As
a result, each sensor node would not experience any ambiguity
in determining which round number is the latest even if there
is a wrap around in a round number.

C. Packet Pre-processing Phase

After system initialization, if the base station wants to dis-
seminate n data items: di = {round, keyi, versioni, datai},
i = 1, 2, . . ., n, it uses the Merkle hash tree [10] method to
construct the packets of the respective data as follows.

Merkle hash tree is a tree of hashes, where the leaves in
the tree are hashes of the authentic packets Pi, i = 1, 2, . . ., n.
Here the hash function is calculated over packet header
and data item di(= {round, keyi, versioni, datai}). Nodes
further up in the tree are the hashes of their respective
children. Fig. 1 shows the construction of the Merkle hash
tree when n = 4. More exactly, the base station computes
ei = H(Pi)(i = 1, 2, 3, 4), and builds a binary tree by
computing internal nodes from adjacent children nodes. Each
internal node of the tree is the hash value of the two
children nodes. For example, in Fig. 1, e1−2 = H(e1‖e2)
and e1−4 = H(e1−2‖e3−4). Subsequently, the base station
constructs n packets based on this Merkle hash tree. For packet
Pi, it consists of the packet header, the data item di and the
values in its authentication path (i.e., the siblings of the nodes
in the path from Pi to the root) in the Merkle hash tree. For
example, packet P1 contains the header, d1, e2, and e3−4 in
Fig. 1.

In addition, the base station creates a signature packet
P0 which includes the root of the Merkle hash tree (de-
noted by root) and a signature over the root. The base
station assigns a pre-defined key to identify this signa-
ture packet. That is, packet P0 consists of the packet
header, the data item d0(= {round, key, version, root})
and the signature SIGSK(H(d0)). For example, in Fig. 1,
packet P0 consists of the packet header and the data

HE et al.: SECURE DATA DISCOVERY AND DISSEMINATION BASED ON HASH TREE FOR WIRELESS SENSOR NETWORKS 4641

< round, key, version, e1−4, SIGSK(H(d0)) >. The base
station first broadcasts the signature packet, which serves as
the advertisement of a new round. This root allows each node
to immediately verify each received packet Pi (i = 1, . . ., n)
upon its arrival, using the values in the authentication path
included in the same packet. For example, in Fig. 1, if e1−4

has been authenticated in the signature packet, upon receiving
a packet consisting d1, e2 and e3−4, a node can immediately
verify whether H(H(H(d1)‖e2)‖e3−4) = e1−4. Therefore,
SeDrip enables each node to authenticate and verify the
integrity of data packets quickly, even when the packets may
arrive out of sequence.

Here we assume that the signature packet in each round of
dissemination has been received by each sensor node before
the node receives any data packet of the same round. This
assumption can be achieved due to the following two reasons.
Firstly, no signature packet loss is ensured by Trickle because
it reliably disseminates packets to each node. Secondly, in
order to satisfy this assumption, the base station needs to
keep a long enough time interval between the signature packet
and the first data packet sent. Let Td be the maximum packet
propagation delay in the network. So, it would suffice for the
base station to set the time interval to be larger than Td.

D. Packet Verification Phase

Upon receiving a packet (from any one-hop neighboring
node or the base station), each sensor node, say Si, first checks
the key field of the packet:

1) If this is a signature packet P0, node Si runs the
following operations:
a) If this is a new round (i.e., the round included

in this packet is newer than that of its stored
< round, root >), node Si uses the public key PK
of the base station to run an ECDSA verify oper-
ation to authenticate the received signature packet.
If this verification passes, node Si accepts the root
of the Merkle hash tree and then updates its stored
< round, root > by the corresponding values in
packet P0; otherwise, node Si simply drops the
signature packet P0.

b) If node Si has recently heard an identical signature
packet (i.e., the round included in this packet is
same as that of its stored < round, root >), it in-
creases the broadcast interval of this packet through
the Trickle algorithm, thereby limiting energy costs
when a network is consistent.

c) If this is an old round (i.e., the round included
in this packet is older than that of its stored
< round, root >. That is, the signature packet
distributed by its one-hop neighboring node is old),
node Si broadcasts its stored signature packet.

2) Otherwise (i.e., it is a data packet which contains some
data item), node Si picks up the tuple < key, version >
from this packet and checks version.
a) If this is a new version, node Si picks the root

of the Merkle hash tree from its storage according
to the round included in this packet, and then
uses the root to verify this packet by performing

0K 1K
H H

1bK
H H

bK

Fig. 2. One-way key chain for puzzle keys.

hash function operation. If yes, node Si updates the
data according to the key of this packet; otherwise,
node Si simply discards this packet.

b) If node Si has recently heard an identical data
(i.e., the version included in this packet is same as
that stored in this node), it increases the broadcast
interval of this packet through the Trickle algorithm.

c) If this is an old version, node Si broadcasts its
stored data packet.

V. FURTHER IMPROVEMENTS IN SECURITY AND

EFFICIENCY

In this section, we point out further improvements to
enhance SeDrip. However, such improvements require more
changes to the basic protocol of SeDrip. For brevity, we just
present the parts that need to be changed.

A. Message Specific Puzzle Approach for Security Improve-
ment

Recall that SeDrip uses a digital signature to bootstrap the
authentication of each round of disseminated data. By flooding
the WSN with a large number of illegal signature packets,
an adversary can impose a DoS attack to the nodes because
their resources are exhausted to process the illegal signature
packets rather than the legitimate ones. To resist this attack, the
message specific puzzle approach [1] can be directly applied
in SeDrip as follows:

1) System Initialization Phase: As illustrated in Fig. 2,
the base station randomly chooses a number Kb, and then
generates a one-way key chain consisting of K0,K1, . . .,Kb,
where Kj = H(Kj+1) (j = b−1, b−2, . . ., 0). Then the base
station pre-distributes the key chain commitment K0 into each
sensor node before deployment. The keys K0,K1, . . .,Kb are
referred to as puzzle keys, and Kj is used for the j-th round
of the disseminated data items, where j > 0.

2) Packet Pre-processing Phase: To mitigate the above-
mentioned DoS attack, a weak authenticator such as a message
specific puzzle can be attached to the signature packet as
a defense. With the use of puzzle key Kj in round j, the
payload of the signature packet d0‖SIGx(H(d0)) and Kj

constitute a message specific puzzle. As shown in Fig. 3, a
valid solution Lj is a value such that, after applying the hash
function H(.) to d0‖SIGx(H(d0))‖Kj‖Lj , the first l bits of
the resulting image are all “0”. The parameter l determines
the strength of the puzzle, and the base station fixes the
value of l and then loads it into all sensor nodes before
deployment. Before transmitting the signature packet, the base
station needs to find the puzzle solution Lj first. Subsequently,
the base station broadcasts the final signature packet with
payload d0‖SIGx(H(d0))‖Kj‖Lj .

4642 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 9, SEPTEMBER 2013

0 0|| () ||SK j jd SIG H d K L

00...00 xx...xx
l bits

H(.)

Fig. 3. Message specific puzzle.

3) Packet Verification Phase:
• 1.a) If this is a new round, node Si first verifies that the

puzzle key included in the signature packet P0 is valid
using H(.) and K0 (or a previously verified puzzle key
for efficiency improvement) and that the puzzle key has
not been used along with a valid signature packet before.
Only if this verification is successful, the node goes to the
next step (i.e., ECDSA verification operation); otherwise,
node Si simply discards the packet.

It can be seen from above that, without first solving a
message specific puzzle, the adversary cannot produce any
forged packet which triggers a node to carry out the signature
verification function. The salient feature of this approach
is that, due to the one-way property of a hash function, a
puzzle can only be solved by exhaustive search, but a puzzle
solution can be efficiently verified by a hash function operation
and comparison. Therefore, heavy computational burden is
imposed on the adversary to deter it from launching the DoS
attack. Note that although it requires the same effort from
both the base station and an adversary to solve a puzzle,
the base station has the advantage that it has no tight time
limit to solve the puzzle. To generate a valid signature packet,
the base station picks the appropriate puzzle key and solves
the puzzle without a deadline as tight as the adversary. On
the other hand, the adversary has to solve the puzzle after
seeing a puzzle key but before it is invalidated by the arrival
of the signature packet at the target nodes. Therefore, with
an appropriate puzzle strength, the message specific puzzle
method substantially increases the difficulty of launching the
DoS attack against signature packets.

Another merit of the usage of message specific puzzle
method is as follows: Assume the message specific puzzle
method is not used. At step 1.a) of the packet verification
phase, when a node, say Si, receives the signature packet
of a new round, it broadcasts the signature packet using
the Trickle algorithm after performing signature verification
operation. Clearly, this will result in a large propagation
delay. More specifically, the propagation delay for all nodes to
receive the signature packet is more than T imever×Numhop,
where T imever and Numhop denote the signature verifi-
cation time on a node and the maximum hop number of
the network. To address this problem, a naive solution is to
ask a node to directly broadcast the signature packet before
the signature verification. Unfortunately, this method opens
a door to another DoS attack in which an adversary sends
a lot of bogus signature packets to force all nodes to waste
energy in broadcasting fake packets. A feasible solution is that
once the verification of the puzzle solution in the signature
packet passes, node Si broadcasts the signature packet using
the Trickle algorithm. The efficacy of this solution will be
demonstrated by the experiment of the propagation delay
described in Section VII.B.

B. Adding Salt Number as Input of a Hash Function for
Efficiency Improvement

SeDrip uses a Merkle hash tree to allow each packet to be
immediately authenticated upon receipt. However, this method
adds additional overhead due to the transmission of part of
a Merkle hash tree for each data item. For a round of n
data items, the tree has height f = log2(n), and the base
station needs to include f hash values in each packet. Despite
the logarithmic tree height, this is still too large for most
WSNs. For example, when n = 32 and SHA-1 (with 20-
byte output) is used, the overhead due to the authentication
path is 5×20 = 100 bytes. This is far too much for most
WSNs, because for sensors with IEEE 802.15.4 compliant
radios, the maximum payload size is 102 bytes. Moreover,
energy is an extremely scarce resource on sensor nodes while
radio communication consumes the most amount of energy,
thus an appropriate approach should be provided to tackle this
problem.

In order to reduce the transmission overhead, often it is
suggested that only the hash function with truncated output
(say, 4, 6, or 8 bytes) is used to reduce the hash overhead [11].
However, the suggested size of 4 bytes is too small to
defeat DoS attacks, because an adversary may use a pre-built
dictionary of 232 packets covering all possible 4-byte hash
values. The required storage for the dictionary is 192 GB for
48-byte packets, which is readily available on PCs. A well-
known mechanism to resist such off-line dictionary attacks
without increasing the hash size is as follows.

1) Packet Pre-processing Phase: The base station
chooses a random 8-byte number salt (called salt
number) for each round of data dissemination, and
add salt into the data d0 of the signature packet,
that is, d0 = {round, key, version, root, salt}.
Similarly, instead of {round, key, version, root},
{round, key, version, root, salt} will be the input of the
ECC signature generating operation. Also, for the construction
of the leaves of Merkle hash tree, the base station uses salt as
part of the input in the hash operation, i.e., ei = H(Pi‖salt).

2) Packet Verification Phase:

• 1.a) After node Si ensures that a signature packet
P0 is authentic, the node updates its stored
< round, salt, root > by the corresponding values
in packet P0.

• 2.a) Node Si picks < round, salt, root > from its
storage according to the round included in this packet,
and then uses the root and salt number to verify this
packet by performing hash function operation.

VI. SECURITY AND EFFICIENCY ANALYSIS

A. Security Analysis

Integrity of Data Items: In SeDrip, the base station
is trustworthy. It signs the root of the Merkle hash tree
constructed from all data items with the private key, which
is obviously only known to itself. Since all the sensor nodes
know the public key of the base station and it is assumed that
the adversary cannot compromise the base station, it is certain
that the sensor nodes can authenticate the signature packet and
the root of the Merkle hash tree carried by the packet. This

HE et al.: SECURE DATA DISCOVERY AND DISSEMINATION BASED ON HASH TREE FOR WIRELESS SENSOR NETWORKS 4643

means that all the nodes can authenticate the data packets upon
receiving them, based on the security of Merkle hash tree.

Resistance to DoS Attacks: As discussed above, there
are three types of DoS attacks against basic SeDrip: (1)
DoS attacks exploiting authentication delays, (2) DoS attacks
exploiting the expensive signature verifications, and (3) DoS
attacks exploiting the Trickle algorithm.

SeDrip is resistant to all three types of DoS attacks. Due
to the use of Merkle hash tree, upon receiving a data packet,
each node can immediately authenticate it through performing
a few efficient hash function operations, and successfully
defeat DoS attacks exploiting authentication delays. Further,
because of the use of message specific puzzles, each node
can efficiently detect fake signature packets. Thus, SeDrip
provides resistance to DoS attacks that send fake signature
packets. Finally, SeDrip can ensure the authentication of the
disseminated data items on each node. As a result, an external
attacker cannot convince regular nodes to misuse the Trickle
mechanism.

SeDrip can successfully defeat all three types of DoS
attacks even if there are compromised nodes. Indeed, without
the private key and the unreleased puzzle keys on the base
station, even an inside attacker cannot forge any signature/data
packets.

B. Efficiency Analysis

Only if the verification of the puzzle key included in the sig-
nature packet is successful, each node executes the signature
verification operation. Also, only one signature packet is sent
in each round of data dissemination no matter how many data
packets are disseminated. Thus, the computation complexity
of the proposed system on each node only involves one ECC
public key verification operation on a small size value (H(d0))
in each round, independent of how many data packets are
disseminated in a round or how big the sizes of data packets
are. Here, the computational complexity of a hash function
is omitted since this operation is very fast on sensor nodes.
Thus, our protocol incurs very little overhead of computing.
Also, a node only needs to save a 2-tuple < round, root >
in RAM to verify the integrity of each data packet. So, the
protocol is memory-efficient as well.

VII. IMPLEMENTATION AND PERFORMANCE EVALUATION

We evaluate SeDrip by implementing all its components in
an experimental test-bed. Also, we choose Drip for perfor-
mance comparison.

A. Implementation and Experimental Setup

Our implementation has the base station and sensor node
side programs. The base station side programs are C programs
using OpenSSL [12] and running on laptop PCs (with 2 GB
RAM and the Ubuntu 11.04 operating system) with different
processor speeds. Also, the sensor node side programs are
written in nesC and run on resource-limited motes (MicaZ
and TelosB). The MicaZ mote has an 8-bit 8-MHz Atmel
microcontroller, 128-kB ROM and 4-kB RAM. Also, the
TelosB mote has an 8-MHz CPU, 10-kB RAM, 48-kB ROM,

1MB of flash memory, and an 802.15.4/ZigBee radio. Our
motes run TinyOS [6] 2.x. Additionally, the key size of ECC
is set to 160 bits and SHA-1 is used. Throughout this paper,
unless otherwise stated, all experiments on PCs (resp., sensor
nodes) were repeated one million times (resp., one thousand
times) for each measurement in order to obtain accurate
average results.

To implement SeDrip, we add the following functionalities
in the C tools on the base station side: construction of Merkle
hash tree of all data items, generation of the signature packet
(from the root of the Merkle hash tree) and all data packets
(attached with the authentication path of the Merkle tree). To
obtain version of each data item, we modify DisseminatorC
and DisseminatorP modules of Drip nesC library to provide
an interface named DisseminatorVersion. Also, we have imple-
mented two versions of SeDrip, i.e., SeDrip1 (forwarding the
signature packet when the signature verification passes), and
SeDrip2 (forwarding the signature packet when the message
specific puzzle verification passes). In the implementation of
Drip, when a packet with a new version number is received,
a node first stores the packet and then resets the Trickle
timer. For the two versions of SeDrip, we modify the above
procedure as follows. In SeDrip1, when a signature/data packet
with a new version number is received, a node stores the
packet and then authenticates it. If the result is positive, the
node resets the Trickle timer; otherwise, the node simply
discards the packet. In SeDrip2, when a signature packet with
a new version number is received, a node first checks the
puzzle solution in the packet. If the result is positive, the node
broadcasts the signature packet to its one-hop neighboring
nodes, and then stores the packet and resets the Trickle timer;
otherwise, the node simply discards it.

Following the design of SeDrip described above, we employ
the ECDSA verify and SHA-1 hash operations of TinyECC
2.0 library [13] to add the verification function of signature
packet and data packets into the Drip nesC library. In our
implementation, the base station (i.e., a laptop PC) first sends
the signature and data packets through a serial port to a
particular sensor node which is referred to as retransmitter.
Then, the retransmitter disseminates these packets by Drip or
SeDrip on behalf of the base station.

Similar to [14], we have built a circuit as shown in Fig. 4
to measure the power consumption in resource-limited sensor
nodes when they execute various cryptographic operations
considered in this paper. The Tektronix TDS 3034C digital
oscilloscope is used to accurately measure the voltage Vr

across the 20.36 Ω resistor. Given that the voltage of the
batteries is Vb, the voltage Vm across the mote is given by
Vb −Vr. In our experiments, Vb=3.0 V. The current I through
the circuit can simply be obtained by applying Ohm’s law to
the resistor. The power P consumed by the sensor node is
then given by Vm×I . Also, we have measured the execution
times of the operations. Finally, the energy consumption of
each operation is given by the product of power and execution
time.

B. Evaluation Results

We use the following four metrics to evaluate SeDrip,
namely, execution time, memory overhead, propagation delay,

4644 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 9, SEPTEMBER 2013

Tektronix TDS 3034C
oscilloscope20.36

Fig. 4. Experimental setup for investigating the energy consumption.

TABLE II
RUNNING TIME FOR EACH PHASE OF THE BASIC PROTOCOL OF SEDRIP

(EXCEPT THE SENSOR NODE VERIFICATION PHASE).

System Signing an Signing a
Initialization 8-byte data 20-byte data

Time (1.6 GHz) (µs) 1805.0 707.3 704.6
Time (2 GHz) (µs) 1446.4 565.0 565.2

Time (2.4 GHz) (µs) 1205.6 473.2 475.6
Time (3.1 GHz) (µs) 931.1 368.4 372.3

and energy overhead. The execution time measures the time
duration for each operation of SeDrip. The memory overhead
measures the exact amount of data space required in the
real implementation. Also, the propagation delay is the time
required to finish disseminating a round of data items to all
the nodes in the network.

Table II gives the execution times of some major operations
in the basic protocol of SeDrip. For example, the execution
times for the system initialization phase and signing a random
20-byte message (i.e., the output of SHA-1 function) are
1.446 ms and 0.565 ms on a 2-GHz Laptop PC, respectively.
Fig. 5 shows the execution times of SHA-1 hash function
(extracted from TinyECC 2.0 [13]) on MicaZ and TelosB
motes. The inputs to the hash function are randomly generated
numbers with length varying from 20 bytes to 140 bytes in
increments of 2 bytes. We perform the same experiment ten
thousand times and take an average over them. For example,
the execution times on a MicaZ mote for inputs of 54 bytes,
56 bytes, 118 bytes, and 120 bytes are 9.6788 ms, 18.4678 ms,
18.9767 ms, and 27.7641 ms, respectively. Also, the execution
times on a TelosB mote for inputs of 54 bytes, 56 bytes,
and 120 bytes are 5.7263 ms, 10.3161 ms, and 15.3941 ms,
respectively. From Fig. 5, it can be seen that the execution
time remains very stable when the byte length of the input
falls in the interval [0, 55], [56, 119], or [120, 140]. Thus, it
is suggested that in the application of SeDrip, the length of
the input of a hash function should be chosen according to
the above intervals to achieve low computation complexity on
sensor nodes.

To compare with the efficiency of public key cryptography,
we have implemented the 160-bit ECC algorithm of TinyECC
2.0 library [13] on MicaZ and TelosB motes, it is measured
that the signature verification (with a random 20-byte number
as the output) times are 2.436 seconds and 3.968 seconds,
which are 131 and 692 times longer than SHA-1 hash op-
eration with a 56-byte random number as input on MicaZ
and TelosB motes, respectively. It is demonstrated that packet
authentication based on the use of Merkle hash tree is much
more efficient than that based on verifying the digital signature
of each packet. Thus, SeDrip is suitable for resource-limited
sensor nodes.

Next, the energy consumption of ECC verification and
SHA-1 hash function operations are investigated (when the

24 32 40 48 56 64 72 80 88 96 104 112 120 128 136

4

6

8

10

12

14

16

18

20

22

24

26

28

30

E
xe

cu
tio

n
tim

e
of

 S
H

A
-1

 fu
nc

tio
n

(m
s)

Length of the input (byte)

 MicaZ
 TelosB

Fig. 5. The execution times of SHA-1 hash function on MicaZ and TelosB
motes.

TABLE III
THE EXECUTION TIMES FOR SOLVING MESSAGE SPECIFIC PUZZLE IN

SEDRIP.

Value of l 20 22 24 26
Time (CPU = 1.6 GHz) (ms) 489 1882 7919 32825
Time (CPU = 2.4 GHz) (ms) 318 1283 4945 20759
Time (CPU = 3.1 GHz) (ms) 246 1000 3986 16028

radio of the mote is off). When a MicaZ mote is used in
the circuit, Vr = 138 mV, I = 6.7779 mA, Vm = 2.8620 V,
P = 19.3983 mW. When a TelosB mote is used, Vr = 38 mV,
I = 1.8664 mA, Vm = 2.9620 V, P = 5.5283 mW. During the
whole procedure of the small data dissemination, each sensor
node’s radio is always on. That is, the RF transceiver of each
sensor node is either in receive/listen mode or transmit mode.
From the TelosB datasheet, the current is 23 mA when the
node is in receive/listen mode while the current is 17.4 mA
when the node is in transmit mode (this measurement is
obtained when the voltage across the mote is 3 V and the
mote does not carry out any computations’ operations). Thus,
the powers consumed by each TelosB mote are 69 mW and
52.2 mW when a TelosB mote is in receive/listen mode and
in transmit mode, respectively. Hence, the impact on energy
consumption from cryptographic computation operation is
very low. By multiplying the power with the execution time
obtained from Fig. 5, we can determine the total energy
consumption of SHA-1 operation on the motes. For example,
the energy consumption of SHA-1 operation with a random
56-byte number as input on MicaZ and TelosB motes are
0.3582 mJ and 0.0317 mJ, respectively. Also, the energy
consumption of ECC signature verification operation on Mi-
caZ and TelosB motes are 2835.2555 mJ and 1316.1777 mJ,
respectively.

Table III gives the time required to solve the message-
specific puzzles in OpenSSL implementation on laptop PCs.
In each experiment, the parameters d0, SIGx(H(d0)) and Kj

are randomly generated for five thousand times, where the
byte lengths of these three parameters are 27, 40, and 20,
respectively. Also, the length of Lj is set to 4 bytes. For
example, the time required to solve a puzzle on a 2.4-GHz
laptop PC is 4.945 seconds when the parameter l is set to
24. Since, as described in Section V.A, the puzzle imposes

HE et al.: SECURE DATA DISCOVERY AND DISSEMINATION BASED ON HASH TREE FOR WIRELESS SENSOR NETWORKS 4645

Fig. 6. The testbed (24 TelosB motes)

4 8 12 16 20
0

2

4

6

8

10

12

14

16

18

20

22

24

26

P
ro

pa
ga

tio
n

D
el

ay
 (s

ec
on

d)

Number of Data Items

 Drip
 SeDrip1
 SeDrip2

Fig. 7. Propagation delay comparison of three protocols.

a very tight time constraint for adversaries to obtain the
puzzle solution, this time consumption is enough to defeat
DoS attacks.

To further investigate the impact of security protection
mechanisms on the propagation delay of dissemination in
multi-hop networks, we perform experiments in an indoor
testbed (as shown in Fig. 6) comprising of 24 TelosB motes
in a 4×6 grid. The inter-node spacing is about 35 cm and the
transmission power of each node is configured to the lowest
power level in order to simulate the multi-hop behavior. The
retransmitter is performed by a TelosB node which is located
at the vertex of the grid.

In this experiment, the base station disseminates data items
to the TelosB motes in the grid. The packet delivery rate at the
base station is 5 packets/s. Fig. 7 shows the propagation delays
of Drip, SeDrip1, and SeDrip2 measured from the experiment.
The propagation delay of SeDrip is the time from construction
of Merkle hash tree, until the corresponding variables on all
sensor nodes are updated. In our implementation, the lengths
of round and data in each data item are 4 bits and 2 bytes,
respectively. In the construction of a Merkle hash tree, only the
hash function with 8-byte truncated output is used. The byte
length of ECC-160 signature is 40. In order to obtain accurate
average results, for each experiment, we have executed each
dissemination operation for 20 times and taken an average over
them. As the number of data items increases, the propagation
delays of all protocols increase almost linearly. For example,
when the number of data items is 12 (resp. 20), the propa-

gation delays of Drip, SeDrip1, and SeDrip2 are 6.413 sec-
onds (resp. 9.334 seconds), 20.218 seconds (resp. 25.195 sec-
onds), and 9.096 seconds (resp. 13.133 seconds), respectively.
Comparing the propagation delays of Drip and SeDrip2, it
is concluded that the signature verification by sensor nodes
in SeDrip2 has low impact on the propagation delay of
dissemination. It is clear that the increase in propagation delay
is mainly due to the ECC signature verification operations on
the nodes. This is because, upon receiving a new signature
packet, each sensor node broadcasts the signature packet to its
one-hop neighboring nodes after the message specific puzzle
verification passes. Subsequently, it starts to check the validity
of the signature packet by performing signature verification
operation. Only the signature verification time of the one-hop
neighboring nodes of the base station has impact on the prop-
agation delay. Furthermore, the increased propagation delay
due to signature verification is constant, which is independent
of the number of the disseminated data items of each round.
Statistically, SeDrip2 is just about 4 seconds more than that
of Drip.

Table IV shows the ROM and RAM usage of SeDrip (with
4 data items) on MicaZ and TelosB motes. The code sizes
of Drip (with 4 data items) and the verification function of
TinyECC (a set of implementations in various elliptic curve
domains according to the Standards for Efficient Cryptography
Group, e.g., secp128r1, secp160r1 and secp192r1) are also
included for reference purposes. For example, the implemen-
tation of SeDrip (with secp160r1) on a TelosB mote uses
2,637 bytes of RAM and 28,050 bytes of ROM, respectively.
The resulting size of our implementation corresponds to
25.75% and 57.07% of the RAM and ROM capacities of
TelosB, respectively.

VIII. CONCLUSION

In this paper, we have identified the security vulnerabilities
in data discovery and dissemination of WSNs. We then
developed a lightweight protocol named SeDrip to allow
efficient authentication of the disseminated data items by
taking advantage of efficient Merkle tree algorithm. SeDrip is
designed to work within the computation, memory and energy
limits of inexpensive sensor motes. In addition to analyzing the
security of SeDrip, this paper has also reported the evaluation
results of SeDrip in an experimental network of resource-
limited sensor nodes, which show that SeDrip is efficient and
feasible in practice.

REFERENCES

[1] D. He, C. Chen, S. Chan, and J. Bu, “DiCode: DoS-resistant and
distributed code dissemination in wireless sensor networks,” IEEE Trans.
Wireless Commun., vol. 11, no. 5, pp. 1946–1956, May 2012.

[2] G. Tolle and D. Culler, “Design of an application-cooperative manage-
ment system for wireless sensor networks,” in Proc. EWSN, pp. 121–
132, 2005.

[3] K. Lin and P. Levis, “Data discovery and dissemination with DIP,” in
Proc. 2008 ACM/IEEE IPSN, pp. 433–444.

[4] T. Dang, N. Bulusu, W. Feng, and S. Park, “DHV: a code consistency
maintenance protocol for multi-hop wireless sensor networks,” in Proc.
2009 EWSN, pp. 327–342.

[5] R. Panta, M. Vintila, and S. Bagchi, “Fixed cost maintenance for
information dissemination in wireless sensor networks,” in Proc. 2010
IEEE SRDS, pp. 54–63.

4646 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 9, SEPTEMBER 2013

TABLE IV
CODE SIZES (BYTES) ON MICAZ AND TELOSB MOTES.

Drip SeDrip TinyECC in SeDrip
secp128r1 secp160r1 secp192r1 secp128r1 secp160r1 secp192r1

MicaZ ROM 14,756 31,930 32,834 32,232 16,986 17,950 17,370
RAM 423 2,212 2,512 2,812 1,370 1,670 1,970

TelosB ROM 14,808 28,002 28,050 28,096 13,908 13,992 14,062
RAM 453 2,337 2,637 2,937 1,467 1,767 2,067

[6] “TinyOS: an open-source OS for the networked sensor regime.” Avail-
able: http://www.tinyos.net/

[7] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-regulating
algorithm for code maintenance and propagation in wireless sensor
networks,” in Proc. 2004 NSDI, pp. 15–28.

[8] A. Perrig, R. Canetti, D. Song, and J. Tygar, “Effcient and secure source
authentication for multicast,” in Proc. 2001 NDSS, pp. 35–46.

[9] Y. Chen, I. Lin, C. Lei, and Y. Liao, “Broadcast authentication in sensor
networks using compressed bloom filters,” in Proc. 2008 IEEE DCOSS,
pp. 99–111.

[10] R. Merkle, “Protocols for public key cryptosystems,” in Proc. 1980 IEEE
S&P, pp. 122–134.

[11] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: secure and DoS-
resistant code dissemination in wireless sensor networks,” in Proc. 2008
ACM/IEEE IPSN, pp. 445–456.

[12] “OpenSSL.” Available: http://www.openssl.org
[13] A. Liu and P. Ning, “TinyECC: a configurable library for elliptic curve

cryptography in wireless sensor networks,” in Proc. 2008 ACM/IEEE
IPSN, pp. 245–256.

[14] J. Lee, K. Kapitanova, and S. Son, “The price of security in wireless
sensor networks,” Comput. Netw., vol. 54, no. 17, pp. 2967–2978,
Dec. 2010.

Daojing He is currently an Associate Professor,
South China University of Technology, China. He
received the B.Eng.(2007) and M. Eng. (2009) de-
grees from Harbin Institute of Technology (China)
and the Ph.D. degree (2012) from Zhejiang Univer-
sity (China), all in Computer Science. His research
interests include network and systems security. He
is an associate editor or on the editorial board of
some international journals such as Springer Journal
of Wireless Networks, Wiley’s Wireless Commu-
nications and Mobile Computing Journal, Wiley’s

Security and Communication Networks Journal, and KSII Transactions on
Internet and Information Systems. He has been serving as a TPC member for
leading conferences including IEEE WCNC, GLOBECOM, and ICC.

Sammy Chan received his B.E. and M.Eng.Sc.
degrees in electrical engineering from the Univer-
sity of Melbourne, Australia, in 1988 and 1990,
respectively, and a Ph.D. degree in communication
engineering from the Royal Melbourne Institute of
Technology, Australia, in 1995. From 1989 to 1994,
he was with Telecom Australia Research Labora-
tories, first as a research engineer, and between
1992 and 1994 as a senior research engineer and
project leader. Since December 1994, he has been
with the Department of Electronic Engineering, City

University of Hong Kong, where he is currently an associate professor.

Shaohua Tang received the B.Sc. and M.Sc. degrees
in applied mathematics from South China University
of Technology, China, in 1991 and 1994, respec-
tively, and the Ph.D. degree in communication and
information system from South China University
of Technology, in 1998. He was a visiting scholar
with North Carolina State University, USA, 2001-
2002, and a visiting professor with University of
Cincinnati, USA, 2009-2010. He has been a full
professor with the School of Computer Science and
Engineering, South China University of Technology

since 2004. His current research interests are in information security and
networking. He is a member of the IEEE and the IEEE Computer Society.

Mohsen Guizani (S’85-M’89-SM’99-F’09) is cur-
rently a Professor and the Associate Vice President
for Graduate Studies at Qatar University, Doha,
Qatar. He was the Chair of the Computer Sci-
ence Department at Western Michigan University
from 2002 to 2006 and Chair of the Computer
Science Department at University of West Florida
from 1999 to 2002. He also served in academic
positions at the University of Missouri-Kansas City,
University of Colorado-Boulder, Syracuse Univer-
sity and Kuwait University. He received his B.S.

(with distinction) and M.S. degrees in Electrical Engineering; M.S. and
Ph.D. degrees in Computer Engineering in 1984, 1986, 1987, and 1990,
respectively, from Syracuse University, Syracuse, New York. His research
interests include Computer Networks, Wireless Communications and Mobile
Computing, and Optical Networking. He currently serves on the editorial
boards of six technical Journals and the Founder and EIC of Wireless
Communications and Mobile Computing Journal published by John Wiley
(http://www.interscience.wiley.com/jpages/1530-8669/). He is the author of
eight books and more than 300 publications in refereed journals and con-
ferences. He guest edited a number of special issues in IEEE Journals and
Magazines. He also served as member, Chair, and General Chair of a number
of conferences. Dr. Guizani served as the Chair of IEEE Communications
Society Wireless Technical Committee (WTC) and Chair of TAOS Technical
Committee. He was an IEEE Computer Society Distinguished Lecturer from
2003 to 2005. Dr. Guizani is an IEEE Fellow and a Senior member of ACM.

