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Optimal receivers

In digital communications, hypotheses are the possible 
messages and observations are the output of a channel
Based on the observed values of the channel output, we 
are interested in the best decision making rule in the sense 
of minimizing the probability of error
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Detection theory

Given M possible hypotheses Hi (signal mi) with 
probability 

where Pi represents the priori knowledge concerning the 
probability of the signal mi (priori probability)
The observation is some collection of N real values 
denoted by                                 with conditional pdf

Our goal is to find the best decision-making rule in the 
sense of minimizing the probability of error
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Detection theory

In general,      can be regarded as a point in some 
observation space
Each hypothesis Hi is associated with a decision region Di: 
If     falls into Di, the decision is Hi

Error occurs when a decision is in favor of another when 
the signal     falls outside the decision region Di

r

r

r
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Detection theory

Consider a decision rule based on the computation of the 
posterior probabilities defined as

A posterior since the decision is made after (or given) the 
observation
Different from the a priori where some information about 
the decision known before the observation
By Bayes’ Rule: 
Minimizing the probability of detection error given    is 
equivalent to maximize the probability of correct dection
Maximum a posterior (MAP) decision rule:

r
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Detection theory

If                         , i.e., the signals are equiprobable, 
finding the signal that maximizes                is equivalent to 
finding the signal that maximizes 
The conditional pdf is usually called the 
likelihood function. The decision criterion based on the 
maixmum of                 is called the maximum likelihood 
(ML) dectection
ML decision rule:
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Optimal receiver structure

Signal model
 Transmitter transmits a sequence of symbols or 

messages from a set of M symbols  
with priori probabilities

 The symbols are represented by finite energy 
waveforms                            defined in intervals [0,T]

 The signal is assumed to be corrupted by additive 
white Gaussian noise (AWGN)
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Optimal receiver structure

Signal space representation
 Signal space of {s1(t),s2(t),…,sM(t)} is assumed to be of 

dimension N (N≤M)
 for k=1,…,N will denote the orthonormal basis 

functions
 Then each transmitted signal waveform can be 

represented as

 Note that the noise nw(t) can be written as
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Optimal receiver structure

Signal space representation
 The received signal can thus be represented as

 In vector form, we have 
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Optimal receiver structure

Receiver structure
 Signal demodulator: to convert the received wave form 

r(t) into an N-dim vector 
 Detector: to decide which of the M possible signal 

waveforms was transmitted based on the observation 
vector 

 Two realizations of the signal demodulator: correlation
type and matched-filter type

r
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Matched filter

Derivation
 The matched-filter (MF) is the optimal linear filter for 

maximizing the output SNR.

 Input signal component
 Input noise component
 Output signal component 

 Sample at 
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Matched filter

Derivation
 At the sampling instance           ,
 Average power of the output noise is

 Output SNR
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Matched filter

Derivation
 Schwarz’s inequality

 Let                                  , then 
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Matched filter

Derivation
 When the max output SNR 2E/N0 is achieved, we have

 Transfer function: complex conjugate of the input 
signal spectrum

 Impulse response: time-reversal and delayed version of 
the input signal s(t)
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Matched filter

Properties
 Choice of       versus the causality 



Communications Engineering 17

Matched filter

Properties
 Equivalent form in correlator
 Let si(t) be within [0,T]

 Observe at sampling time t=T
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Matched filter

Properties
 Correlation function

 Auto-correlation function

1.

2.

3.

4.
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Matched filter

Properties
 MF output is the auto-correlation function of input 

signal

 The peak value of          happens

 is symmetric at  
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Matched filter

Properties
 MF output noise
 The statistical auto-correlation of n0(t) depends on the 

auto-correlation of si(t)

 Average power
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Matched filter

Example
 Consider a rectangular pulse s(t) 

 The impulse response of a filter 
matched to s(t) is also a 
rectangular pulse

 The output of the matched filter    
is

 The output SNR is
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Matched filter

Colored noise
 In case of colored noise, we need to preprocess the combined 

signal and noise such that the non-white noise becomes white 
noise- Whitening Process
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Matched filter

Colored noise
 We choose

 Therefore, the overall transfer function of the cascaded 
system: 
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Updates on the receiver 

We have talked about matched filter
Consider the optimal receiver structure again

 Two realizations of the signal demodulator: correlation
type and matched-filter type
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Updates on the receiver 

Correlation type demodulator 
 The received signal r(t) is passed through a parallel bank 

of N cross correlators which basically compute the 
projection of r(t) onto the N basis functions
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Updates on the receiver 

Matched filter type demodulator
 Alternatively, we may apply the received signal r(t) to a 

bank of N matched filters and sample the output of 
filters at t=T. The impulse responses of the filters are
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Updates on the receiver 

For a signal transmitted over an AWGN channel, either a 
correlation type demodulator or a matched filter type 
demodulator produces the vector 
which contains all the necessary information in r(t)
The next step is to design a signal detector that makes a 
decision of the transmitted signal in each signal interval 
based on the observation of      , such that the probability of 
error is minimized (or correct probability is maximized)
Decision rules:
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Likelihood function

Distribution of the noise vector
 Since nw(t) is a Gaussian random process, the noise 

component of output                            is Gaussian r.v.
 Mean:

 Correlation between nj and nk



Communications Engineering 29

Likelihood function

Distribution of the noise vector
 Therefore, nj and nk (j≠k) are uncorrelated Gaussian 

r.v.s, and hence independent with zero mean and 
variance N0/2

 The joint pdf of 
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Likelihood function

Conditional probability
 If mk is transmitted,

and 

and
 Therefore, the conditional pdf of 

Transmitted signal values in each dimension 
represent the mean values for each received signal
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Likelihood function

Log-likelihood function
 To simplify the computation, we take the natural 

logarithm of                , which is a monotonic function. 
Thus,

 Let

denote the Euclidean distance between     and     in the 
N-dim signal space. It is also called the distance metric.
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Likelihood function

Optimal detector
 MAP rule:

 ML rule:
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Likelihood function

Optimal receiver structure
 With the above expression, we can develop a receiver 

structure using the following derivation

with  
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Likelihood function

Optimal receiver structure
 Hence, we have 

 The diagram of MAP receiver can be (Method 1) 
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Likelihood function

Optimal receiver structure
 The diagram of MAP receiver can also be (Method 2)

 The structures are general and can be simplified in 
certain cases. 
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Likelihood function

Optimal receiver structure
 Both receivers perform identically
 Choice depends on circumstances
 For instance, if N<M and            are easier to generate 

than           , then the choice is obvious

 Consider for example the following signal set
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Likelihood function

Optimal receiver structure
 Suppose that we use the following basis functions

 Since the energy is the same for all four signals, we can 
drop the energy term, and hence 
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Likelihood function

Optimal receiver structure
 Suppose that we use the following basis functions

 Since the energy is the same for all four signals, we can 
drop the energy term, and hence 
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Likelihood function

Optimal receiver structure
 We have (Method 1)
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Likelihood function

Optimal receiver structure

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Likelihood function

Optimal receiver structure
 Exercise: In an additive white Gaussian noise channel 

with a noise power-spectral density of N0/2, two 
equiprobable messages are transmitted by

 Determine the optimal receiver structure.
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Decision regions

Graphical interpretation
 Signal space can be divided into M disjoint decision 

regions R1, R2, …, RM.

 Select the decision regions so that Pe is minimized
 Recall that the optimal receiver sets                iff

is minimized
 For simplicity, if one assumes pk = 1/M for all k, then 

the optimal receiver sets                iff is 
minimized
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Decision regions

Graphical interpretation
 Geometrically, we take projection of r(t) in the signal 

space (i.e.,     ). Then, decision is made in favor of signal 
that is the closest to     in the sense of minimum 
Euclidean distance. 

 Specifically, the observations with                            for 
all          should be assigned to decision region Rk

 Consider for example the binary data transmission over 
AWGN channel with PSD Sn(f)=N0/2 using

 Assume P(m1) ≠P(m2). Determine the optimal receiver 
and the optimal decision regions.
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Decision regions

Graphical interpretation
 For the above example, the optimal decision making

 Let                         and 
 Equivalently,

 Therefore 
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Decision regions

Graphical interpretation
 Now consider the example with    on the decision 

boundary      
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Decision regions

Graphical interpretation
 In general, boundaries of decision regions are 

perpendicular bisectors of the lines joining the original 
transmitted signals

 Example: three equiprobable 2-dim signals



Communications Engineering 47

Decision regions

Graphical interpretation
 Now consider for example the decision regions for 

QPSK
 Assume all signals are equally likely and all 4 signals 

could be written as the linear combination of two basis 
functions 

 Constellations of 4 signals
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Decision regions

Graphical interpretation
 Exercise: Three equally probable messages m1, m2, and 

m3 are to be transmitted over an AWGN channel with 
noise power-spectral density N0/2. The messages are

 What is the dimensionality of the signal space?
 Find an appropriate basis for the signal space (Hint: you 

donot need to perform Gram-Schmidt procedure.)
 Draw the signal constellation for this problem.
 Sketch the optimal decisions R1, R2, and R3.
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Error probability analysis

Probability of error
 Suppose        is transmitted and      is received
 Correct decision is made when             with probability

 Averaging over all possible transmitted symbols, we 
obtain the average probability of making correct 
decision

 Average probability of error
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Error probability analysis

Probability of error
 Consider for example the binary data transmission

 Given m1 is transmitted, then

 Sin n is Gaussian with variance N0/2
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Error probability analysis

Probability of error
 Similarly, we have

 Thus,  

where 
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Error probability analysis

Probability of error
 Note that when 

 This shows us that:

1. When optimal receiver is used, Pe does not depend on the 
specific waveform used.

2. Pe depends only on their geometrical representation in 
signal space

3. In particular, Pe depends on signal waveforms only through 
their energies (distance)
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Error probability analysis

Graphical interpretation
 Exercise: Three equally probable messages m1, m2, and 

m3 are to be transmitted over an AWGN channel with 
noise power-spectral density N0/2. The messages are

 Which of the three messages is more vulnerable to 
errors and why? In other words, which of the probability 
of error                                   is larger?
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Error probability analysis

General expression
 Average probability of symbol error

 Since 

 Thus, we can rewrite Pe in terms of likelihood functions, 
assuming that symbols are equally likely to be sent

 Multi-dimension integrals are quite difficult to evaluate. 
To overcome the difficulty, we resort to the use of 
bounds. Then, we can obtain a simple and yet useful 
bound of Pe, called union bound.



Communications Engineering 55

Error probability analysis

General expression
 Let        denote the event that     is closer to     than to      

in the signal space when              is sent
 Conditional probability of symbol error when       is sent

 Note that 
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Error probability analysis

General expression
 Consider for example
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Error probability analysis

General expression
 Define the pair-wise error probability as

 It is equivalent to the probability of deciding in favor of     
when     was sent in a simplified binary system that 
involves the use of two equally likely messages     and 

 Then

where                           is the Euclidean distance between 
and

 Therefore the conditional error probability
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Error probability analysis

General expression
 Finally, with M equally likely messages, the average 

probability of symbol error is upperbounded by

 Let         denote the minimum distance, i.e., 

 Since Q-function is a monotone decreasing function
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Error probability analysis

General expression
 Consequently, we may simplify the union bound as

 Think about: What is the design criterion of a good 
signal set?
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