

- Introduction
- Signal, random variable, random process and spectra

• Analog modulation

- Analog to digital conversion
- Digital transmission through baseband channels
- Signal space representation
- Optimal receivers
- Digital modulation techniques
- Channel coding
- Synchronization
- Information theory

Analog modulation

• Angle modulation (phase/frequency)

Analog modulation

- What is modulation?
 - Transform a message into another signal to facilitate transmission over a communication channel
 - Generate a carrier signal at the transmitter
 - Modify some characteristics of the carrier with the information to be transmitted
 - Detect the modifications at the receiver
- Why modulation?
 - Frequency translation (antenna theory)
 - Frequency-division multiplexing (multiple users)
 - Noise performance improvement (quality)

Analog modulation

- Characteristics that can be modified in sin carrier
 - ➤ Amplitude → Amplitude modulation
 - ➤ Frequency/phase → Angle modulation

Selected from Chapter 3, 4.1-4.4, 6.1-6.3

- Double-sideband suppressed-carrier AM (DSB-SC)
 - Baseband signal(modulation wave) m(t)
 - ➤ Carrier wave

$$c(t) = A_c \cos(w_c t + \theta_0)$$

➤ Modulated wave

$$s(t) = c(t)m(t) = A_c m(t) \cos(\omega_c t + \theta_0)$$

- Double-sideband suppressed-carrier AM (DSB-SC)
 - Spectrum

Translation of the original message spectrum to carrier frequency

- Double-sideband suppressed-carrier AM (DSB-SC)
 - Bandwidth and power efficiency

- > Required channel bandwidth B=2W
- Required transmit power

$$P_{s} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} s^{2}(t) dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} A_{c}^{2} m^{2}(t) \cos^{2}(\omega_{c} t + \theta_{0}) dt$$
$$= \frac{A_{c}^{2}}{2} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} m^{2}(t) \left[1 + \cos(2\omega_{c} t + 2\theta_{0})\right] dt = \frac{A_{c}^{2}}{2} P_{m}$$

- Double-sideband suppressed-carrier AM (DSB-SC)
 - Demodulation of DSB-SC

➢ If there is a phase error φ , then $v(t) = s(t)\cos(2\pi f_c t + \phi) = A_c\cos(2\pi f_c t)\cos(2\pi f_c t + \phi)m(t)$ $= \frac{1}{2}A_c\cos(\phi)m(t) + \frac{1}{2}A_c\cos(4\pi f_c t + \phi)m(t)$ Scaled version of message signal Unwanted

- Double-sideband suppressed-carrier AM (DSB-SC)
 - Pilot-tone assisted demodulation

 Conventional AM Baseband signal (normalized) $m_n(t) = \frac{m(t)}{\max[m(t)]}$ Modulation index a \succ Carrier wave $c(t) = A_c \cos(w_c t + \theta_0)$ ➢ Modulated wave $s(t) = A_c [1 + am_n(t)] \cos(2\pi f_c t)$ $= A_c a m_n(t) \cos 2\pi f_c t$ $+A_c \cos(2\pi f_c t)$

- Conventional AM
 - ➢ Spectrum

- Conventional AM
 - Bandwidth and power efficiency
 - > Required channel bandwidth B=2W
 - Required transmit power

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} s^2(t) dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left(A_c^2 \left[1 + a m_n(t) \right]^2 \cos^2 \omega_c t \right) dt$$
$$= \frac{A_c^2}{2} + \frac{a^2 A_c^2}{2} P_m$$

carrier power message power

Modulation efficiency

$$E = \frac{\text{power in sideband}}{\text{total power}} = \frac{\frac{a^2}{2}A_c^2P_m}{\frac{A_c^2}{2} + \frac{a^2}{2}A_c^2P_m} = \frac{a^2P_m}{1 + a^2P_m}$$

• Conventional AM

Consider for example message signal

 $m(t) = 3\cos(200\pi t) + \sin(600\pi t)$

➤ Carrier

 $c(t) = \cos(2 \times 10^5 t)$

> Modulation index a = 0.85

Determine the power in the carrier component and sideband components of the modulated signal

- Conventional AM
 - Demodulation of conventional AM signals

Envelope detector

The simplicity of envelope detector has made the conventional AM a practical choice for AM-radio broadcasting.

- Single Sideband (SSB) AM
 - Common problem in DSB is the bandwidth wastage

 $H(\omega)$

SSB is very bandwidth efficient

$$m(t) = \sum_{i=1}^{n} x_i \cos(2\pi f_i t + \theta_i), \ f_i \le f_c$$

 \succ Then the USB component is

$$m_{c}(t) = \frac{A_{c}}{2} \sum_{i=1}^{n} x_{i} \cos \left[2\pi (f_{c} + f_{i})t + \theta_{i}) \right]$$

Communications Engineering

ω

- Single Sideband (SSB) AM
 - > After manipulation

Hilbert transform

$$x(t) \Leftrightarrow \hat{x}(t) \implies \hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t - \tau} d\tau = x(t) * \frac{1}{\pi t}$$
$$X(w) \leftrightarrow \hat{X}(w) \implies \hat{X}(w) = [-jsgn(w)]X(w)$$

- Single Sideband (SSB) AM
 - Generation of SSB-AM signal

- The spectral efficiency of SSB makes it suitable for voice communication over telephone channels (line/cable)
- Not suitable for signals with significant low frequency components due to the difficulty of implementing the filter.

- Amplitude modulation
- Vestigial Sideband (VSB) AM

➢ VSB is a compromise between SSB and DSB-SC

1. VSB signal

- bandwidth is B=W+fv
- 2. VSB is used in TV broadcasting and similar signals where **low frequency components are significant**

Comparison of AM techniques

DSB-SC:

more power efficient. Seldom used

Conventional AM:

simple envelop detector. AM radio broadcast

SSB:

requires minimum transmitter power and bandwidth. Suitable for point-to-point and over long distances

VSB:

bandwidth requirement between SSB and DSBSC. TV transmission

- Signal multiplexing is a technique where a number of independent signals are combined and transmitted in a common channel
- These signals are de-multiplexed at the receiver
- Two common methods for signal multiplexing
 - TDM (time-division multiplexing)
 - FDM(frequency-division multiplexing)

• FDM

LPF: ensure signal bandwidth limited to W

MOD (modulator): shift message frequency range to mutually exclusive high frequency bands

BPF: restrict the band of each modulated wave to its prescribed range

- FDM is widely used in radio and telephone communications
 - ➢ Voice signal: 300~3400Hz
 - ➤ Message is SSB modulated.
 - In 1st level FDM, 12 signals are stacked in frequency, with a freq. separation of 4 kHz between adjacent carriers.
 - A composite 48 kHz channel, called a group channel, transmits 12 voice-band signals simultaneously
 - In the next level of FDM, a number of group channels (typically 5 or 6) are stacked to form a supergroup channel
 - Higher-order FDM is obtained by combining several supergroup channels

An FDM hierarchy in telephone commun. Systems.

- Quadarture-carrier multiplexing
 - Transmit two messages on the same carrier as

 $s(t) = A_c m_1(t) \cos\left(2\pi f_c t\right) + A_c m_2(t) \sin\left(2\pi f_c t\right)$

- \succ cos() and sin() are two quadrature carriers
- Each message signal is modulated by DSB-SC
- Bandwidth-efficiency comparable to SSB AM
- > Synchronous demodulation of $m_1(t)$

$$s(t)\cos(2\pi f_{c}t) = A_{c}m_{1}(t)\cos^{2}(2\pi f_{c}t) + A_{c}m_{2}(t)\sin(2\pi f_{c}t)\cos(2\pi f_{c}t)$$
$$= \underbrace{\frac{A_{c}}{2}m_{1}(t)}_{2} + \frac{A_{c}}{2}m_{1}(t)\cos(4\pi f_{c}t) + \frac{A_{c}}{2}m_{2}(t)\sin(4\pi f_{c}t)$$
$$= \underbrace{\mathsf{LPF}}_{\mathsf{LPF}}$$

• Quadarture-carrier multiplexing

- AM radio broadcasting
 - Commercial AM radio uses conventional AM
 - Superheterodyne receiver

Every AM-radio signal is converted to a common IF frequency of 455 kHz, IF bandwidth 10 kHz, signal frequency range 535~1606 kHz

Angle modulation

- Either phase or frequency of the carrier is changed according to the message signal
- The general form

$$s(t) = A_c \cos\left[2\pi f_c t + \theta(t)\right]$$

 $\theta(t)$: the time-varying phase

instantaneous frequency of s(t): $f_i(t) = f_c + \frac{1}{2\pi} \frac{d\theta(t)}{dt}$

• Phase modulation (PM)

 $\theta(t) = k_p m(t)$ where k_p = phase deviation constant

• Frequency modulation(FM)

$$f_i(t) - f_c = k_f m(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t)$$

where k_f = frequency deviation constant/frequency sensitivity

The phase of FM is $\theta(t) = 2\pi k_f \int_0^t m(\tau) d\tau$

- Constant envelope, i.e., amplitude of s(t) is constant
- Relationship between PM and FM

Will discuss the properties of FM only

• Consider for example the **sinusoidal modulation**

• Consider for example the square modulation

Angle modulation

- FM by the **sinusoidal modulation**
 - \blacktriangleright Message $m(t) = A_m \cos(2\pi f_m t)$
 - Instantaneous frequency of resulting FM wave

 $f_i(t) = f_c + k_f A_m \cos(2\pi f_m t) = f_c + \Delta f \cos(2\pi f_m t)$ Frequency deviation: $\Delta f = k_f A_m$

➤ Carrier phase

$$\theta(t) = 2\pi \int_0^t \left(f_i(\tau) - f_c \right) d\tau = \frac{\Delta f}{f_m} \sin(2\pi f_m t)$$

 $=\beta\sin(2\pi f_m t)$

Modulation index: $\beta = \Delta f / f_m$

• FM by the **sinusoidal modulation**

Consider the following problem
Problem: a sinusoidal modulating wave of amplitude 5V and frequency 1kHz is applied to a frequency modulator. The frequency sensitivity is 40Hz/V. The carrier frequency is 100kHz.

Calculate (a) the frequency deviation

(b) the modulation index

- FM by the **sinusoidal modulation**
 - Consider the following problem

Problem: a sinusoidal modulating wave of amplitude 5V and frequency 1kHz is applied to a frequency modulator. The frequency sensitivity is 40Hz/V. The carrier frequency is 100kHz.

Calculate (a) the frequency deviation (b) the modulation index

Frequency deviation $\Delta f = k_f A_m = 40 \times 5 = 200 Hz$

Modulation index
$$\beta = \frac{\Delta f}{f_m} = \frac{200}{1000} = 0.2$$

Angle modulation

- FM by the **sinusoidal modulation**
 - Spectrum analysis

$$s(t) = A_c \cos[2\pi f_c t + \beta \sin(2\pi f_m t)]$$

$$= A_c \cos[\beta \sin(2\pi f_m t)] \cos(2\pi f_c t) - A_c \sin[\beta \sin(2\pi f_m t)] \sin(2\pi f_c t)$$
In-phase component
$$s_I(t) = A_c \cos[\beta \sin(2\pi f_m t)]$$
Quadrature-phase component
$$s_Q(t) = A_c \sin[\beta \sin(2\pi f_m t)]$$
Define the complex envelope of FM wave
$$\widetilde{s}(t) = s_I(t) + js_Q(t) = A_c e^{j\beta \sin(2\pi f_m t)}$$

$$\widetilde{s}(t)$$
retains complete information about s(t)
$$s(t) = \operatorname{Re}\left\{A_c e^{j[2\pi f_c t + \beta \sin(2\pi f_m t)]}\right\} = \operatorname{Re}\left[\widetilde{s}(t) e^{j2\pi f_c t}\right]$$

• FM by the sinusoidal modulation

 $\widetilde{s}(t) = A_c e^{j\beta \sin(2\pi f_m t)}$ is periodic, expanded in Fourier series as $\widetilde{s}(t) = \sum c_n e^{j 2\pi n f_m t}$ $c_n = f_m \int_{-1/(2f_m)}^{1/(2f_m)} \tilde{s}(t) e^{-j2\pi n f_m t} dt$ with $= f_m A_c \int_{-1/(2f_m)}^{1/(2f_m)} e^{j[\beta \sin(2\pi f_m t) - 2\pi n f_m t]} dt$ $x = 2\pi f_m t = \frac{A_c}{2\pi} \int_{-\infty}^{\pi} \exp\left[j(\beta \sin x - nx)\right] dx$ n-th order Bessel function of the first kind $J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left[j\left(\beta\sin x - nx\right)\right] dx$

 \blacktriangleright Hence $c_n = A_c J_n(\beta)$

Angle modulation

- FM by the **sinusoidal modulation**
 - Substituting $c_n = A_c J_n(\beta)$ into $\tilde{s}(t)$ $\tilde{s}(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \exp(j2\pi n f_m t)$

➢ FM wave in time domain

$$s(t) = A_c Re \left\{ \sum_{n=-\infty}^{\infty} J_n(\beta) \exp[j2\pi (f_c + nf_m)t] \right\}$$
$$= A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos[2\pi (f_c + nf_m)t]$$

 \succ FM wave in frequency domain

- FM by the **sinusoidal modulation**
 - Properties of Bessel function
 For small $\beta \leq 0.3$, we have
 the approximations
 $J_0(\beta) \approx 1$ $J_1(\beta) \approx \beta/2$ $J_n(\beta) \approx 0, n > 1$

≻ Then,

$$s(t) \approx A_c \cos(2\pi f_c t) + \frac{\beta A_c}{2} \cos[2\pi (f_c + f_m)t] - \frac{\beta A_c}{2} \cos[2\pi (f_c - f_m)t]$$

Approximate bandwidth = $2f_m$

$$J_{-n}(\beta) = \begin{cases} J_n(\beta), & n \text{ even} \\ -J_n(\beta), & n \text{ odd} \end{cases}$$

- FM by the sinusoidal modulation
 - For the general case, we would like to see how A_m and f_m affect the spectrum
 - Fix f_m and vary A_m , then

 $\Delta f = k_f A_m$ and $eta = \Delta f/f_m$ are varied

- FM by the sinusoidal modulation
 - Fix A_m and vary f_m , then $\Delta f = k_f A_m$ is fixed, but $\beta = \Delta f / f_m$ is varied

- FM by the **sinusoidal modulation**
 - Effective bandwidth of FM waves
 - ▷ For large β , B is only slightly greater than $2\Delta f$
 - > For small β , the spectrum is limited to $[f_c f_m, f_c + f_m]$
 - Carson's rule

$$B \approx 2\Delta f + 2f_m = 2(1+\beta)f_m$$

➢ 99% bandwidth approximation specify the separation between the two frequencies beyond which none of the side-frequencies is greater than 1% of the unmodulated carrier amplitude, i.e.,

 $B \approx 2n_{max} f_m$ where n_{max} is the max n that satisfies $|J_n(\beta)| > 0.01$

β	0.1	0.3	0.5	1.0	2.0	5.0	10	20	30
2n _{max}	2	4	4	6	8	16	28	50	70

- FM by the **sinusoidal modulation**
 - ➤ A universal curve for evaluating the 99% bandwidth

As β increases, the bandwidth occupied by the significant sidefrequencies drops toward that over which the carrier frequency actually deviates, i.e. B become less affected by β

- FM by an arbitrary message
 - Consider an arbitrary m(t) with highest freq. component W
 - **Frequency deviation** $\Delta f = k_f \max |m(t)|$
 - **> Modulation index:** $\beta = \frac{\Delta f}{W}$
 - ➤ Carson's rule applies as $B = 2(1 + \beta)W$
 - Carson's rule underestimates the FM bandwidth requirement
 - Universal curve yields a conservative result

- FM by an arbitrary message
 - ➤ Consider for example in north America, the maximum value of frequency deviation △*f* is fixed at 75 kHz for commercial FM broadcasting by radio.
 - Take W=15 kHz, typically the maximum audio frequency of interest in FM transmission, the modulation index is

$$\beta=75/15=5$$

➤ Using Carson's rule,

$$B = 2(75 + 15) = 180KHz$$

➤ Using universal curve,

 $B=3.2\Delta f=3.2\times75=240KHz$

- FM by an arbitrary message
 - > Consider the following exercise.

Assuming that $m(t) = 10 \operatorname{sinc}(10^4 t)$, determine the transmission bandwidth of an FM modulated signal with $k_f = 4000$

- FM by an arbitrary message
 - > Consider the following exercise.

Assuming that $m(t) = 10 \operatorname{sinc}(10^4 t)$, determine the transmission bandwidth of an FM modulated signal with $k_f = 4000$

By Carson's rule: B = 90 KHz

- FM radio broadcasting
 - As with standard AM radio, most FM radio receivers are of super-heterodyne type

- RF carrier range: 88~108 MHz
 Midband of IF: 10.7 MHz
- . IF bandwidth: 200 kHz
- 4. Peak freq.
 - deviation: 75 kHz

- Generation of FM waves
 - Direct approach: design an oscillator whose frequency changes with the input voltage (voltage-controlled oscillator (VCO))
 - Indirect approach: first generate a narrowband FM signal and then change it to a wideband signal (due to the similarity with the conventional AM, the generation of narrowband FM signals is straightforward)

- Generation of narrowband FM waves
 - Consider a narrow band FM wave $s_1(t) = A_1 \cos[2\pi f_1 t + \phi_1(t)]$ with $\phi_1(t) = 2\pi k_1 \int_0^t m(\tau) d\tau$ $k_1 = \text{frequency sensitivity}$

 - > Then, we can approximate $s_1(t)$ as $s_1(t) = A_1 \cos(2\pi f_1 t) - A_1 \sin(2\pi f_1 t) \phi_1(t)$ $= A_1 \cos(2\pi f_1 t) - 2\pi k_1 A_1 \sin(2\pi f_1 t) \int_0^t m(\tau) d\tau$

Narrowband FM wave

- Generation of **narrowband** FM waves
 - Narrow-band frequency modulator

> Next, pass $s_1(t)$ through a frequency multiplier

- Generation of **narrowband** FM waves
 - > The input-output relationship of the non-linear device is $s_2(t) = a_1 s_1(t) + a_2 s_1^2(t) + \ldots + a_n s_1^n(t)$
 - \succ The BPF is used to pass the FM wave centered at nf_1 and with deviation $n\Delta f_1$ and suppress all other FM spectra
 - Exam: Consider for example a square-law device based frequency multiplier $s_2(t) = a_1 s_1(t) + a_2 s_1^2(t)$ with $s_1(t) = A_1 \cos\left(2\pi f_1 t + 2\pi k_1 \int_0^t m(\tau) d\tau\right)$
 - > Specify the midband freq. and bandwidth of BPF used in freq. multiplier for the resulting freq. deviation to be twice at the nonlinear device.

$$s_2(t) = a_1 A_1 \cos\left(2\pi f_1 t + 2\pi k_1 \int_0^t m(\tau) d\tau\right) + a_2 A_1^2 \cos^2\left(2\pi f_1 t + 2\pi k_1 \int_0^t m(\tau) d\tau\right)$$

$$= a_1 A_1 \cos\left(2\pi f_1 t + 2\pi k_1 \int_0^t m(\tau) d\tau\right) + \frac{a_2 A_1^2}{2} + \frac{a_2 A_1^2}{2} \cos\left(4\pi f_1 t + 4\pi k_1 \int_0^t m(\tau) d\tau\right)$$

Removed by BPF with $f_c = 2f_1$
BW > $2\Delta f = 4\Delta f_1$

Removed by BPF with

• Generation of **wideband** FM waves

- Generation of **wideband** FM waves
 - Exam: Consider the following simplified diagram of a typical FM transmitter used to transmit audio signals containing frequencies in the range 100 Hz to 15 kHz
 - → Desired FM wave: $f_c = 100MHz$, $\Delta f = 75kHz$
 - Set $\beta_1 = 0.2$ in the narrowband phase modulation to limit harmonic distortion.
 - > Specify the two-stage frequency multiplier factors n_1 and n_2

- Demodulation of FM Balanced Frequency Discriminator
 - Siven FM wave $s(t) = A_c \cos\left(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right)$ $\frac{d}{dt} s(t) = -A_c \left[2\pi f_c + 2\pi k_f m(t)\right] \sin\left[2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right]$ Hybrid-modulated wave with AM and FM
 - Differentiator + envelope detector = FM demodulator
 - Frequency discriminator: a freq. to amplitude transform device

- Demodulation of FM Balanced Frequency Discriminator
 - Circuit diagram and frequency response

- FM radio stereo multiplexing
 - Stereo multiplexing is a form of FDM designed to transmit two separate signals via the same carrier.
 - Frequency Widely used in FM doubler $\cos(2\pi f_c t)$ broadcasting to send two different elements of a program $m(t) = [m_1(t) + m_r(t)]$ (e.g., vocalist and accompanist $+ [m_1(t) - m_r(t)] \cos(4\pi f_c t)$ in an orchestra) to give a $+K\cos(2\pi f_c t)$ spatial dimension to its The sum signal is left unprocessed in its perception by a listener at the baseband form receiving end The difference signal and a 38-kHz

 $m_{i}(t)$

 $m_r(t)$

m(t)

Κ

FM radio stereo multiplexing
 FM-stereo receiver

Performance

Analog Communication Systems

- No carrier modulation
 - ≻ Ideal low-pass filter with bandwidth W.
 - > With white noise, the noise power of the output

$$P_{n_o} = \int_{-W}^{+W} \frac{N_0}{2} df$$
$$= N_0 W.$$

➤ The baseband SNR is

$$\left(\frac{S}{N}\right)_b = \frac{P_R}{N_0 W}$$

- DSB-SC AM
 - Transmitted signal

 $u(t) = A_c m(t) \cos(2\pi f_c t);$

The received signal with additive white noise is r(t) = u(t) + n(t)

 $= A_c m(t) \cos(2\pi f_c t) + n_c(t) \cos(2\pi f_c t) - n_s(t) \sin(2\pi f_c t).$

Suppose the demodulator multiplies $\cos(2\pi f_c t + \phi)$

$$r(t)\cos(2\pi f_c t + \phi) = A_c m(t)\cos(2\pi f_c t)\cos(2\pi f_c t + \phi) + n(t)\cos(2\pi f_c t + \phi)$$

$$= \frac{1}{2}A_c m(t)\cos(\phi) + \frac{1}{2}A_c m(t)\cos(4\pi f_c t + \phi)$$
$$+ \frac{1}{2}[n_c(t)\cos(\phi) + n_s(t)\sin(\phi)]$$

After low-pass filter $+\frac{1}{2}[n_c(t)\cos(4\pi f_c t + \phi) - n_s(t)\sin(4\pi f_c t + \phi)].$ $y(t) = \frac{1}{2}A_c m(t)\cos(\phi) + \frac{1}{2}[n_c(t)\cos(\phi) + n_s(t)\sin(\phi)].$

Performance: AM

- DSB-SC AM
 - > Assume $\phi = 0$, $y(t) = \frac{1}{2} [A_c m(t) + n_c(t)]$ > The message signal power is $P_o = \frac{A_c^2}{4} P_M$

> The noise power is
$$P_{n_o} = \frac{1}{4}P_{n_c}$$
 $S_n(f) = \begin{cases} \frac{N_0}{2} & |f - f_c| < W\\ 0 & \text{otherwise} \end{cases}$
 $= \frac{1}{4}P_n,$

 \succ Then, the output SNR is

$$\frac{S}{N}\Big|_{o} = \frac{P_{o}}{P_{n_{o}}}$$
$$= \frac{\frac{A_{c}^{2}}{4}P_{M}}{\frac{1}{4}2WN_{0}}$$
$$= \frac{A_{c}^{2}P_{M}}{2WN_{0}}.$$

- DSB-SC AM
 - > The received signal power

$$P_R = \frac{A_c^2 P_M}{2}$$

 \succ Then, we can express the output SNR as

$$\left(\frac{S}{N}\right)_{o_{\text{DSB}}} = \frac{P_R}{N_0 W}$$

No SNR improvement for DSB-SC

- SSB-SC AM
 - Transmitted signal

$$u(t) = A_c m(t) \cos(2\pi f_c t) \mp A_c \hat{m}(t) \sin(2\pi f_c t).$$

> The received signal is

 $r(t) = A_c m(t) \cos(2\pi f_c t) \mp A_c \hat{m}(t) \sin(2\pi f_c t) + n(t)$

 $= (A_c m(t) + n_c(t)) \cos(2\pi f_c t) + (\mp A_c \hat{m}(t) - n_s(t)) \sin(2\pi f_c t).$

➤ With ideal phase, after the low-pass filter

$$y(t) = \frac{A_c}{2}m(t) + \frac{1}{2}n_c(t).$$

Similar to DSB, we have

$$P_o = \frac{A_c^2}{4} P_M \quad P_{n_o} = \frac{1}{4} P_{n_c} = \frac{1}{4} P_n \quad P_n = \int_{-\infty}^{\infty} S_n(f) \, df = \frac{N_0}{2} \times 2W = W N_0.$$

> Therefore

$$\left(\frac{S}{N}\right)_o = \frac{P_o}{P_{n_o}} = \frac{A_c^2 P_M}{W N_0}.$$

- SSB-SC AM
 - \succ Now, we know that

$$P_R = P_U = A_c^2 P_M;$$

≻ Hence,

$$\left(\frac{S}{N}\right)_{o\rm SSB} = \frac{P_R}{WN_0} = \left(\frac{S}{N}\right)_{\rm b}$$

No SNR improvement for SSB

- Conventional AM
 - Transmitted signal

 $u(t) = A_c \left[1 + am(t)\right] \cos 2\pi f_c t.$

 \succ The received signal is

 $r(t) = [A_c [1 + am_n(t)] + n_c(t)] \cos 2\pi f_c t - n_s(t) \sin 2\pi f_c t,$

> With ideal mixing and low-passing filter

 $y_1(t) = \frac{1}{2} \left[A_c \left[1 + a m_n(t) \right] + n_c(t) \right]$

> DC component is removed by a DC block, so output

$$y(t) = \frac{1}{2}A_c a m_n(t) + \frac{n_c(t)}{2}$$

> Now, the received signal power

$$P_R = \frac{A_c^2}{2} \left[1 + a^2 P_{M_n} \right]$$

- Conventional AM
 - \succ The output SNR is

$$\begin{split} \left. \frac{S}{N} \right)_{o_{\text{AM}}} &= \frac{\frac{1}{4}A_c^2 a^2 P_{M_n}}{\frac{1}{4}P_{n_c}} \\ &= \frac{A_c^2 a^2 P_{M_n}}{2N_0 W} \\ &= \frac{a^2 P_{M_n}}{1 + a^2 P_{M_n}} \frac{\frac{A_c^2}{2} \left[1 + a^2 P_{M_n}\right]}{N_0 W} \\ &= \frac{a^2 P_{M_n}}{1 + a^2 P_{M_n}} \frac{P_R}{N_0 W} \\ &= \frac{a^2 P_{M_n}}{1 + a^2 P_{M_n}} \left(\frac{S}{N}\right)_b \\ &= \eta \left(\frac{S}{N}\right)_b, \end{split}$$

SNR loss for conventional AM

- Exam
 - Consider for example a WSS random process M(t) with the autocorrelation function

 $R_M(\tau) = 16 \operatorname{sinc}^2(10,000\tau).$

- $ightarrow Also, \max |m(t)| = 6$
- The channel attenuation is 50 dB and the PSD of AWGN is given by $S_n(f) = \frac{N_0}{2} = 10^{-12} \text{ W/Hz}$
- ➢ If we want the output SNR of the modulator to be at least 50 dB.
- Required transmitter power and channel bandwidth for DSB, SSB and conventional AM.

Performance: AM

• Exam

 \succ The bandwidth of the message

$$\mathcal{S}_M(f) = \mathscr{F}[R_M(\tau)] = \frac{16}{10,000} \Lambda\left(\frac{f}{10,000}\right)$$

 $\gg W = 10,000$ Hz.

➢ So the baseband SNR

$$\left(\frac{S}{N}\right)_{b} = \frac{P_{R}}{N_{0}W} = \frac{P_{R}}{2 \times 10^{-12} \times 10^{4}} = \frac{10^{8} P_{R}}{2}$$

> 50 dB attenuation $P_R = 10^{-5} P_T$

$$\left(\frac{S}{N}\right)_b = \frac{10^{-5} \times 10^8 P_T}{2} = \frac{10^3 P_T}{2}.$$

- Exam
 - ➤ Bandwidth

DSB-SC and conventional AM: 20 kHz SSB: 10kHz

> Power

DSB: $\frac{10^3 P_T}{2} = 10^5 \Longrightarrow P_T = 200$ Watts SSB:

$$\left(\frac{S}{N}\right)_{o} = \left(\frac{S}{N}\right)_{b} = \frac{10^{3} P_{T}}{2} \models 10^{5} \Longrightarrow P_{T} = 200 \text{ Watts}$$

Conventional AM:

$$\left(\frac{S}{N}\right)_{o} = \eta \left(\frac{S}{N}\right)_{b} = \eta \frac{10^{3} P_{T}}{2}$$

$$\eta = \frac{a^{2} P_{M_{a}}}{1 + a^{2} P_{M_{a}}}$$

$$P_{M_{n}} = \frac{P_{M}}{(\max |m(t)|)^{2}} = \frac{P_{M}}{36}$$

$$P_{M_{n}} = \frac{P_{M}}{(\max |m(t)|)^{2}} = \frac{P_{M}}{36}$$

$$P_{M} = R_{M}(\tau)_{|\tau=0} = 16;$$

$$\eta = \frac{0.8^{2} \times \frac{4}{9}}{1 + 0.8^{2} \times \frac{4}{9}} \approx 0.22.$$

$$P_{T} \approx 909 \text{ Watts.}$$

Performance: FM

- In AM, message contained in the amplitude, and noise is directly added.
- In FM, the noise affects the zero crossings of the modulated signal.

Figure 6.1 Effect of noise in frequency modulation.

• Transmitted signal

$$u(t) = A_c \cos \left(2\pi f_c t + \phi(t)\right)$$

= $A_c \cos \left(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau\right)$

• The block diagram for the receiver

Figure 6.2 The block diagram of an angle demodulator.

• The received signal is

r(t) = u(t) + n(t)

$$= u(t) + n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t).$$

• The bandpass noise is

$$n(t) = \sqrt{n_c^2(t) + n_s^2(t)} \cos\left(2\pi f_c t + \arctan\frac{n_s(t)}{n_c(t)}\right)$$
$$= V_n(t) \cos\left(2\pi f_c t + \Phi_n(t)\right),$$

Figure 6.3 Phasor diagram of an angle-modulated signal when the signal is much stronger than the noise.

$$r(t) \approx (A_c + V_n(t)\cos(\Phi_n(t) - \phi(t)))$$

$$\times \cos\left(2\pi f_c t + \phi(t) + \arctan\frac{V_n(t)\sin(\Phi_n(t) - \phi(t))}{A_c + V_n(t)\cos(\Phi_n(t) - \phi(t))}\right)$$

$$\approx (A_c + V_n(t)\cos(\Phi_n(t) - \phi(t)))$$

$$\times \cos\left(2\pi f_c t + \phi(t) + \frac{V_n(t)}{A_c}\sin(\Phi_n(t) - \phi(t))\right).$$

Communications I

• After angular demodulator,

$$y(t) = \frac{1}{2\pi} \frac{d}{dt} \left(\phi(t) + \frac{V_n(t)}{A_c} \sin(\Phi_n(t) - \phi(t)) \right)$$
$$= k_f m(t) + \frac{1}{2\pi} \frac{d}{dt} \frac{V_n(t)}{A_c} \sin(\Phi_n(t) - \phi(t))$$
$$= k_f m(t) + \frac{1}{2\pi} \frac{d}{dt} \frac{V_n(t)}{A_c}$$

where

$$Y_n(t) \stackrel{\text{def}}{=} \frac{V_n(t)}{A_c} \sin \left(\Phi_n(t) - \phi(t) \right).$$

Higher signal level decreases the noise level, as a stark difference with AM.

• Next,

$$Y_n(t) = \frac{V_n(t)}{A_c} \sin \left(\Phi_n(t) - \phi(t)\right)$$

= $\frac{1}{A_c} \left[V_n(t) \sin \Phi_n(t) \cos \phi(t) - V_n(t) \cos \Phi_n(t) \sin \phi(t) \right]$
= $\frac{1}{A_c} \left[n_s(t) \cos \phi(t) - n_c(t) \sin \phi(t) \right].$

- Bandwidth of the noise (1/2 the modulated signal) is much larger than that of the message signal.
- Then,

$$Y_n(t) = \frac{1}{A_c} \left[n_s(t) \cos \phi - n_c(t) \sin \phi \right].$$

Filter response is
symmetric at carrier
$$S_{Y_n}(f) = (a^2 + b^2)S_{n_c}(f) = \frac{S_{n_c}(f)}{A_c^2}$$

Communications Engineering

$$S_{Y_n}(f) = \begin{cases} \frac{N_0}{A_c^2} & |f| \le \frac{B_c}{2} \\ 0 & \text{otherwise} \end{cases}$$

• Then the PSD of $\frac{1}{2\pi} \frac{d}{dt} Y_n(t)$ becomes

$$\frac{4\pi^2 f^2}{4\pi^2} S_{Y_n}(f) = f^2 S_{Y_n}(f) = \begin{cases} \frac{N_0}{A_c^2} f^2 & |f| \le \frac{B_c}{2} \\ 0 & \text{otherwise} \end{cases}$$

• The noise PSD

$$S_{n_o}(f) = \begin{cases} \frac{N_0}{A_c^2} & \text{PM} \\ \frac{N_0}{A_c^2} f^2 & \text{FM} \end{cases}.$$

Communications Engineering

Performance: FM

• The noise power is

$$P_{n_o} = \int_{-W}^{+W} S_{n_o}(f) \, df = \frac{2N_0 W^3}{3A_c^2}$$

- The output signal power is $P_{s_0} = k_f^2 P_M$
- The output SNR

$$\left(\frac{S}{N}\right)_{o} = \frac{3k_{f}^{2}A_{c}^{2}}{2W^{2}}\frac{P_{M}}{N_{0}W}$$

$$= 3P_{R}\left(\frac{\beta_{f}}{\max|m(t)|}\right)^{2}\frac{P_{M}}{N_{0}W} \qquad \beta_{f} = \frac{k_{f}\max|m(t)|}{W}$$

$$= 3\frac{P_{M}\beta_{f}^{2}}{(\max|m(t|)^{2}}\left(\frac{S}{N}\right)_{b}$$

Communications Engineering

• The output SNR

output SNR

$$\left(\frac{S}{N}\right)_{o} = 3\frac{P_{M}\beta_{f}^{2}}{(\max|m(t|)^{2}}\left(\frac{S}{N}\right)_{b} = 3P_{M}\left(\frac{\frac{\Omega}{2}}{\max|m(t)|}\right)^{2}\left(\frac{S}{N}\right)_{b}$$

- 1. SNR is proportional to modulation index, albeit larger β_1 results in larger bandwidth such that the assumption may not hold. **Threshold effect**
- 2. Increase in the received SNR is at the cost of bandwidth, where the quadrature tradeoff is far from optimal one, i.e., exponential.
- 3. Increase transmitter power decreases the receiver noise power, instead of message power (AM).
- 4. Noise is higher at higher frequencies.

def Bc

Performance

- AM and FM Comparison
 - Compared with AM, FM requires a higher implementation complexity and a higher bandwidth occupancy. What is the advantage of FM then?
 - Why AM radio is mostly for news broadcasting while FM is mostly for music program?

Analog modulation

- Suggested reading
 - ≻ Chapter 3, Chapter 4.1-4.4, Chapter 6.1-6.3

≻ HW2