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Abstract: The temperature stability of optical reference cavities is
significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In
this paper, the thermal time constant and thermal sensitivity of reference
cavities are analyzed when reference cavities respond to environmental
perturbations via heat transfer of thermal conduction and thermal radiation
separately. The analysis as well as simulation results indicate that a
reference cavity enclosed in multiple layers of thermal shields with larger
mass, higher thermal capacity and lower emissivity is found to have a
larger thermal time constant and thus a smaller sensitivity to environmental
temperature perturbations. The design of thermal shields for reference
cavities may vary according to experimentally achievable temperature
stability and the coefficient of thermal expansion of reference cavities. A
temperature fluctuation-induced length instability of reference cavities as
low as 6×10−16 on a day timescale can be achieved if a two-layer thermal
shield is inserted between a cavity with the coefficient of thermal expansion
of 1×10−10 /K and an outer vacuum chamber with temperature fluctuation
amplitude of 1 mK and period of 24 hours.
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1. Introduction

Optical reference cavities with finesse of >100,000 are widely used to stabilize the frequency
of lasers in optical atomic clocks, precision metrology, high resolution spectroscopy, tests of
fundamental physics and deep space navigation [1–7], which rely on the high frequency sta-
bility of lasers. When a laser is tightly frequency-stabilized to a reference cavity using the
Pound-Drever-Hall technique [8], the laser frequency stability is dominated by the effective
length stability of the reference cavity. To minimize the length fluctuation, reference cavi-
ties are often made of ultra-low expansion (ULE) glass or single crystal silicon, and are in-
stalled in vacuum chambers with high stability temperature stabilization for less sensitivity to
environmental temperature fluctuations via thermal expansion [9–12]. Special geometry and
mounting configurations for reference cavities have been developed for less sensitivity to en-
vironmental vibration [13–17]. When stabilized to those carefully designed reference cavi-
ties, lasers with a frequency instability at the 10−16 level at 1-10 s averaging time have been
achieved [11, 12, 14, 18, 19], approaching the thermal noise limit of reference cavities [20].

However, for the applications of ultra-stable laser systems, both the short-term stability on
a few seconds’ timescale as well as the long-term stability over a day are essential. In most of
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those ultra-stable laser systems, the laser frequency drifts linearly at tens of mHz/s to several
Hz/s on a relatively short timescale, and drifts nonlinearly on hundreds of seconds’ timescale
which is hardly compensated by applying a feed forward frequency correction. The aging of
the cavity material and optical contact between cavity mirrors and spacers leads to a fractional
length change on the order of 10−17/s to 10−16/s [21]. Therefore, temperature fluctuation of ref-
erence cavities is the key cause of laser frequency drift. Well-designed temperature controllers
can achieve sub-mK stability over several days [10,22]. When a reference cavity made of ULE
glass is temperature-stabilized at the zero-crossing thermal expansion temperature (TCTE=0)
with accuracy of 0.1 ◦C, it has a coefficient of thermal expansion (CTE) of less than 2×10−10

/K [18]. To achieve laser frequency instability of 10−16 or even lower, careful considerations of
passive thermal shielding and supporting configuration for reference cavities should be made.
For systems that can not be temperature stabilized close to TCTE=0 or that have a lower tempera-
ture stability, it is also possible to realize high length stability of reference cavities by carefully
designing their thermal shields [23].

This paper gives two models on how reference cavities respond to (1) a step environmental
temperature change and (2) a periodic temperature fluctuation through heat transfer of thermal
conduction and thermal radiation separately. The analysis shows that passive thermal shielding
configurations of reference cavities with a larger thermal time constant will be less sensitive
to environmental temperature fluctuations. All the thermal shields discussed in this paper are
passive ones without active temperature control. With additional numerical simulation results
based on finite element analysis, we will discuss the details on the design of cavity thermal
shielding configurations to make it insensitive to environmental temperature perturbations, in-
cluding material, layer numbers and aperture size of thermal shields. The number of thermal
shields has a great effect on the time constant of reference cavities. A two-layer thermal shield
will help to reduce the temperature fluctuation-induced length instability of a reference cavity
below 1×10−15 on a day timescale when the cavity has a CTE of 1×10−10 /K and is enclosed
in a vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

2. Time constant

2.1. Thermal conduction

Consider body M1 that has a length of L1, cross-section area of A1 and heat conductivity of k1,
as shown in Fig. 1(a). Another body M2 with a mass of m2 and heat capacity of C2 is on the top
of M1. Assume that M2 is in good thermal contact with M1, and both are initially in thermal
equilibrium.

At time t = 0, the temperature at the bottom of M1 changes from Ti to Tf (ΔT1 = Tf −Ti). If
ignoring the heat absorbed by M1 itself when M1 has a much smaller mass and thermal capacity
compared with those of M2, the heat flow rate transferred between M1 and M2 is given by

dQ
dt

=
k1A1

L1
(Tf −T2), (1)

where Q is transferred heat and T2 is the temperature of M2. M2 absorbs the heat that flows
from M1, resulting in a temperature change

dT2 =
dQ

C2m2
. (2)

By solving the above equations, we obtain the temperature change of M2 over time

T2(t) = Tf −ΔT1 · e−
k1A1

C2m2L1
t
= Tf −ΔT1 · e−

t
τc1 . (3)
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Fig. 1. Thermal conduction. (a) One-layer thermal conduction. (b) Two-layer thermal con-
duction. (c) The temperature variation of different layers over time when the temperature
of M1 changes from Ti = 300 K to Tf = 350 K at t = 0.

It takes M2 time of τc1 =
C2m2L1

k1A1
(time constant of thermal conduction) to change its temperature

by (1− 1
e )ΔT1.

For the case of thermal conduction in a typical supporting configuration of reference cavities,
M1 could be supporting rods of reference cavities or supporting rods of thermal shields. To
enlarge the time constant, those supporting rods might have small thermal conductivity and
cross-section area, while thermal shields on the top of the supporting rods have a large thermal
capacity and mass. The red dashed line in Fig. 1(c) shows an illustration of the temperature
change of M2 (made of copper with m2 = 20 kg) assuming the temperature of M1 (Teflon
cylinders with L1 = 3 cm and total cross-section area A1 = 10−3 m2) changes from 300 K to
350 K. Here the time constant of thermal conduction is τc1 ≈ 256.7 h. Parameters for materials
used throughout this paper can be found in Table 1.

Table 1. Parameters of materials.
Material ρ (kg/m3) k (W/(m·K)) C (J/(kg·K)) ε∗

ULE glass 2210 1.31 767 0.85
Copper 8930 398 385 0.1

Aluminum 2700 210 900 0.2
Teflon 2200 0.25 1400 0.85
Gold 19320 301 128 0.07

∗Emissivity relies on the surface finish. Details please refer to Ref. [24].

Suppose there are other layers M3 and M4 on the top of M2, as shown in Fig. 1(b). The
temperature change of M4 is determined by

dT4

dt
=

k3A3

C4m4L3

(
Tf −ΔT1 · e−

t
τc1 −T4

)
. (4)
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Thus the temperature change of M4 which responds to the temperature variation of M1 is

T4(t) = Tf − ΔT1

τc1 − τc2

(
τc1 · e−

t
τc1 − τc2 · e−

t
τc2

)
, (5)

where τc1 =
C2m2L1

k1A1
and τc2 =

C4m4L3
k3A3

. If M3 is also Teflon rods with L3 = 3 cm and A3 = 10−3

m2, and M4 is a piece of thermal shield made of copper with m4 = 15 kg, the time constants are
τc1 ≈ 256.7 h and τc2 ≈ 192.5 h. The blue short dashed line in Fig. 1(c) shows how M4 responds
to the step temperature change of M1. It takes M4 about 480.0 h to change its temperature by
(1− 1

e )ΔT1. As it shows, in the two-layer thermal conduction the time constant is almost twice
of that in the single-layer thermal conduction.

2.2. Thermal radiation

Thermal radiation is a dominant way of heat transfer for optical reference cavities since those
cavities are usually put in vacuum chambers. Suppose there is an outer layer P1 and an inner
layer P2, as shown in Fig. 2(a). Layer P1 could be a vacuum chamber, and P2 could be a layer
of thermal shield. Initially, both of them are in thermal equilibrium. At t = 0, the temperature of
P1 changes from Ti to Tf (ΔT1 = Tf −Ti). According to ref. [25], when ignoring the geometry
of radiation bodies and distances between radiation surfaces, and supposing the view factor of
radiation surfaces is unity (Indeed, the value of view factor is less than 1, which is related to
radiation angle and relative spacing of radiation surfaces.), the rate of radiated energy absorbed
by P2 is

dQ
dt

=
σ(T 4

f −T 4
2 )

1
A1

·
(

1
ε1
−1

)
+ 1

A2
· 1

ε2

, (6)

where A1 and A2 are inner surface area of P1 and outer surface area of P2 respectively, and
σ = 5.67×10−8 W/(m2·K4) is the Stefan-Boltzmann constant. ε1 and ε2 are the emissivity of
the corresponding surfaces of P1 and P2 respectively. Since the emissivity of a material varies
as a function of temperature and surface finish, the exact emissivity of a material should be
determined with absolute measurements. All the emissivity values concerning in this paper
refer to Table 1, which are used just for reference. The temperature of P2 changes by

dT2

dt
=

σ(T 4
f −T 4

2 )

C2m2

[
1

A1
·
(

1
ε1
−1

)
+ 1

A2
· 1

ε2

] = β12(T
4
f −T 4

2 ). (7)

Using the first order approximation when ΔT1 is much smaller than Tf and Ti, the temperature
variation of P2 over time is given by

T2(t)≈ Tf −ΔT1 · e−4β12T 3
f ·t = Tf −ΔT1 · e−

t
τr1 , (8)

where τr1 = 1
4β12T 3

f
is the time constant of thermal radiation for P2 to respond to the tem-

perature change of P1. Note that in Eq. (8) τr1 depends on Tf instead of Ti due to the
approximation(ΔT1 � Ti,Tf ), while in fact τr1 has a weak dependence on Ti. This approxi-
mation gives an error of less than 5% for τr1 when ΔT1 < 10 K, Tf and Ti ≈ 300 K. The red
dashed line in Fig. 2(c) shows an illustration of the temperature change of P2 over time when
the temperature of P1 changes from 300 K to 310 K, assuming P1 is made of aluminum with
ε1 = 0.2 and A1 = 1 m2, and P2 is made of copper with m2 = 20 kg, A2 = 0.6 m2 and ε2 = 0.1.
The time constant is τr1 ≈ 6.5 h.
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Fig. 2. Thermal radiation. (a) One-layer thermal radiation. (b) Two-layer thermal radia-
tion. (c) The temperature change of different layers over time when the temperature of P1
changes from Ti = 300 K to Tf = 310 K at t = 0.

If there is another layer P3, which could be a cavity, inside P2, as shown in Fig. 2(b), the
temperature change of P3 is determined by

dT3

dt
= β23

[(
Tf −ΔT1 · e−

t
τr1

)4
−T 4

3

]
, (9)

where β23 =
σ

C3m3

[
1

A2
( 1

ε2
−1)+ 1

A3
1

ε3

] . By solving Eq. (9) to the first order approximation, we have

the temperature change of P3, which is

T3(t)≈ Tf − ΔT1

τr1 − τr2
·
[
τr1 · e−

t
τr1 − τr2 · e−

t
τr2

]
, (10)

where τr1 =
1

4β12T 3
f

and τr2 =
1

4β23T 3
f
. If P3 is made of ULE glass with A3 = 0.2 m2, m3 = 10 kg

and ε3 = 0.85, τr2 ≈ 6.6 h. The blue short dashed line in Fig. 2(c) shows the response of P3 to
the step temperature change of P1 of 10 K. It takes P3 about 14.2 h to change its temperature by(
1− 1

e

)
ΔT1. The green dash-dot line shows the response of P3 to the step temperature change

of P1 if the intermediate layer P2 is missing (τr ≈ 3.1 h). As shown, the intermediate layer P2

helps to enlarge the time constant of P3 by more than four times.

3. Thermal sensitivity

Next we will discuss the situation in which the environmental temperature fluctuates periodi-
cally, we will see how reference cavities respond to the temperature variations.

3.1. Thermal conduction

In Fig. 1(a), suppose the temperature at the bottom of M1 fluctuates as T1(t) = T̄ + ΔT1 ·
sin

(
2πt
ξ

)
, in which T̄ is the mean temperature, ΔT1 and ξ are the amplitude and period of
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the temperature fluctuation respectively. Then the temperature of M2 changes periodically due
to the existence of the heat transfer between M1 and M2 via thermal conduction. We use similar
equations as Eqs. (1) and (2), and obtain the temperature of M2 as

dT2

dt
=

1
τc1

[
T̄ +ΔT1 · sin

(
2πt
ξ

)
−T2

]
. (11)

By solving the above equation, we have

T2(t) = T̄ +
ξ√

ξ 2 +4π2τ2
c1

·ΔT1 · sin
(

2πt
ξ

−φ
)
+

2πξ τc1

ξ 2 +4π2τ2
c1

·ΔT1 · e−
t

τc1 . (12)

Figure 3(a) shows the temperature change of M2 when the temperature at the bottom of M1

fluctuates as T1(t) = 300+ 10 · sin( 2πt
5×105 ). The large fluctuation period (ξ = 5× 105 s) used

here is to make the temperature fluctuation of M2 large enough to be clearly seen in the figure.
As shown, the temperature of M2 fluctuates with the same period as that of M1, but it has a

phase lag φ = arcsin

(
2πτc1√

ξ 2+4π2τ2
c1

)
. And the mean value of T2(t) does not equal to T̄ due to

the last term of Eq. (12). The temperature fluctuation amplitude of M2 is ΔT2 =
ξ ΔT1√

ξ 2+4π2τ2
c1

.

The normalized sensitivity of M2 to the temperature fluctuation of M1 can be written

S =
ΔT2

ΔT1
=

ξ√
ξ 2 +4π2τ2

c1

. (13)

As shown in Eq. (13), if the period of the temperature fluctuation is much smaller than the time
constant (ξ � τc1), S ≈ ξ

2πτc1
. In the other limit, if ξ � τc1, S ≈ 1.

If there are more layers on the top of M2, then the thermal sensitivity of Mn is

Sn =
n

∏
i=1

ξ√
ξ 2 +4π2τ2

ci

. (14)

Figure 3(b) shows the thermal sensitivity of conduction when using τc1 ≈ 256.7 h for S (the
blue solid line) and τc1 ≈ 256.7 h and τc2 ≈ 192.5 h for two-layer sensitivity S2 (the red dashed
line). As we can see in the figure, multiple-layer structure helps to make reference cavities less
sensitive to temperature fluctuations with short fluctuation periods. For example, as seen in Fig.
3(b), when the temperature perturbations have fluctuation periods of 1 s to 106 s , the two-layer
thermal sensitivity is S2 ≈ S2.

3.2. Thermal radiation

For the model shown in Fig. 2(a), if the temperature of P1 fluctuates as T1(t) = T̄ + ΔT1 ·
sin

(
2πt
ξ

)
, due to thermal radiation the temperature of the inner layer P2 varies as

dT2

dt
= β12

[(
T̄ +ΔT1 · sin

(
2πt
ξ

))4

−T 4
2

]
. (15)

When ΔT1 is small, the temperature variation of P2 is obtained to the first order approximation
as

T2(t)≈ T̄ +
ξ√

ξ 2 +4π2τ2
r1

·ΔT1 · sin(2πt
ξ

−ψ)+
2πξ τr1

ξ 2 +4π2τ2
r1

·ΔT1 · e−
t

τr1 , (16)
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Fig. 3. Thermal sensitivity. (a) The temperature change of M2 when the temperature of
M1 fluctuates as T1(t) = 300+ 10 · sin[ 2πt

5×105 ]. (b) The sensitivity of thermal conduction
as a function of temperature fluctuation period. S (S2) is the sensitivity of one (two)-layer
thermal conduction. (c) The sensitivity of thermal radiation as a function of temperature
fluctuation period. S (S2) is the sensitivity of one (two)-layer thermal radiation.

where ψ = arcsin

(
2πτr1√

ξ 2+4π2τ2
r1

)
. As we can see from the above equation, the temperature of

P2 also fluctuates with the same period as that of P1. And the normalized sensitivity of P2 to
the temperature fluctuation of P1 is given by

S =
ξ√

ξ 2 +4π2τ2
r1

. (17)

When the outer temperature fluctuation period ξ is much smaller compared to the thermal time
constant of radiation τr1, S ≈ ξ

2πτr1
. In the opposite limit, if ξ � τr1, S ≈ 1.

If there are other layers inside P2, the thermal sensitivity of the most inside layer Pn to the
temperature fluctuation of P1 is given by

Sn =
n

∏
i=1

ξ√
ξ 2 +4π2τ2

ri

. (18)
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Figure 3(c) shows the thermal sensitivity of P2 when using τr1 ≈ 6.5 h (the blue solid line) and
the thermal sensitivity of P3 with P2 as an intermediate layer using τr1 ≈ 6.5 h and τr2 ≈ 6.6 h
(the red dashed line). The green dash-dot line is the thermal sensitivity of P3 without P2 using
τr1 ≈ 3.1 h. As we can see that multiple-layer thermal radiation also helps to make reference
cavities less sensitive to temperature fluctuations with short fluctuation period.

4. Simulation results for less thermal sensitivity

In the above analysis, whenever heat transfers via thermal conduction or thermal radiation,
cavity thermal shielding configurations with a large time constant are insensitive to temperature
fluctuations. Thereby, it is significant to enlarge the time constant of reference cavities.

Considering thermal conduction in an apparatus of a reference cavity, its thermal time con-
stant (τc) is proportional to thermal capacity and mass of thermal shields and reference cavities,
and inversely proportional to thermal conductivity and cross section area of supporting rods.
To enlarge τc, material with small thermal conductivity should be chosen for supporting rods,
such as vacuum compatible ceramic or Teflon. The geometry of those supporting rods is usually
designed to be small in radius and large in length as long as it is stable enough to support.

For thermal radiation in an apparatus of a reference cavity, its thermal time constant τr is
also proportional to thermal capacity and mass of thermal shields and reference cavities. For
those reasons, the thermal shields for reference cavities are usually have a large mass. In the
case of limited weight, aluminum is a good choice since its density is nearly one-third of that
of copper while its heat capacity is three times bigger if without considering emissivity. To re-
duce thermal radiation between thermal shields and reference cavities, the emissivity of thermal
shields should be small. Even for a specified material, the emissivity varies according to its sur-
face treatment. Usually highly polished surfaces have lower emissivity, though it is technically
difficult [24].

From the estimations of time constant listed above, the time constant of thermal radiation is
more than an order of magnitude smaller than that of thermal conduction. Therefore thermal
conduction could be neglected when calculating the combined time constant of reference cav-
ities. It is also true when reference cavities are designed to be even longer in length for lower
thermal noise [18, 19, 26], which makes the geometry of thermal shields even bigger. Since the
mass as well as the radiation areas of thermal shields increase, the time constant of thermal
conduction increases more than that of thermal radiation.

In the above analysis, both time constant and thermal sensitivity of thermal radiation are
given to the first order approximation. Moreover, the geometry of radiation bodies and the dis-
tance between radiation surfaces are not taken into consideration, which affect the view factor
of radiation and thus time constant of reference cavities as well. Therefore, in the following
section, finite element analysis is performed in order to obtain a clearer and more accurate an-
swer on the design of cavity shielding configurations, aiming at making reference cavities less
sensitive to environmental temperature perturbations.

4.1. Material for thermal shields

We use ANSYS software to numerically simulate the temperature change of a reference cavity
over time. The simulation model is shown in Fig. 4. A reference cavity and thermal shields are
in the shape of cylinder. The cavity is made of ULE glass, and the outer vacuum chamber is
made of aluminum. Only one layer of thermal shield, layer B as shown in the figure, is used to
study the effect of different materials of thermal shield on the thermal time constant. The initial
temperature of the whole setup is 25 ◦C. At t = 0, the temperature of the outer vacuum chamber
raises to 30 ◦C.

The simulation results are shown in Fig. 5(a) and listed in Table 2. The thermal time constant
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Fig. 4. The simulation model. The outer layer is a vacuum chamber made of aluminum,
while the most inner layer is a reference cavity made of ULE glass. There are three layers
of thermal shields inserted between the vacuum chamber and the reference cavity, labeled
as A, B and C. All are in the shape of cylinder.

of the reference cavity is 26.3 h, 23.8 h and 11.0 h when the thermal shield with the same
size is made of gold, copper (roughly polished) and aluminum (roughly polished), respectively.
For aluminum thermal shield, if radiation surfaces are highly polished, the emissivity could be
smaller, e.g. 0.07, resulting in a thermal time constant of 26.0 h for the reference cavity. For the
copper thermal shield, if it is plated by gold, the time constant increases to 32.5 h.

When using Eq. (10), the calculated time constants are also listed in the table, which are
slightly smaller than the results based on finite element analysis since finite element analysis
takes the geometry of each part, radiation angle and relative spacing of radiation surfaces into
consideration. While in the calculation the thermal radiation is more efficient since the view
factor is assumed to be unity. However, the calculation gives an estimation.

Table 2. The thermal time constants when the material of thermal shield varies.
Material of thermal shield Time constant (hour)

Simulation Calculation
Gold 26.3 19.9 (τr1 = 15.8 h and τr2 = 3.6 h)

Copper 23.8 19.2 (τr1 = 16.1 h and τr2 = 2.8 h)
Aluminum 11.0 8.7 (τr1 = 6.5 h and τr2 = 1.9 h)

If there are three supporting rods made of Teflon with a diameter of 20 mm and length of 50
mm inserted between layers, a similar simulation is performed when considering both thermal
radiation and thermal conduction. The combined thermal time constant of the reference cavity is
31.9 h when the thermal shield is made of gold-plated copper, as shown in Fig. 5(a). Comparing
with the time constant of 32.5 h in the case that without supporting rods, it indicates that thermal
conductivity plays a less significant role.

4.2. Layers of thermal shield

To study the effect of multiple-layer thermal shields, we numerically simulated the temperature
variation of the reference cavity when the temperature of the outer vacuum chamber changes
from 25 ◦C to 30 ◦C using the same model with different layer numbers of thermal shield made
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Fig. 5. The simulation results of temperature change for the reference cavity over time when
the temperature of outer vacuum chamber is changed from 25 ◦C to 30 ◦C if (a) the material
of one-layer thermal shield varies and (b) the layer number of thermal shields varies. (c)
The simulated and calculated thermal sensitivity of a reference cavity to outer temperature
fluctuation when it is enclosed in zero to two layers thermal shields. (d) The simulated
time constant of a reference cavity when the aperture size of the three-layer thermal shield
varies.

of gold-plated copper. As shown in Fig. 5(b), the time constant of the reference cavity is 1.5 h,
32.5 h, 87.2 h and 153.8 h if there are zero to three layers of thermal shields, respectively. This
indicates that when adding one more layer, the thermal time constant of the reference cavity
increases significantly.

The thermal sensitivities of the reference cavity as a function of temperature fluctuation
period are also simulated when it is enclosed in different layers of thermal shields, as shown in
Fig. 5(c). For each data in the figure, the temperature of the outer vacuum chamber fluctuates
at a certain period with different amplitude ΔTout . By simulation, the temperature change of
the inner reference cavity ΔTcav is obtained separately and thus the thermal sensitivity S =
ΔTcav/ΔTout is obtained. In the figure, the simulation results of the sensitivities for reference
cavities with no thermal shield, one-layer thermal shield and two-layer thermal shield are shown
with dots, squares and triangles respectively, while the corresponding calculations results based
on Eq. (10) are shown with dashed lines, which agree with the simulation results quite well.

From the above analysis, we can see that when using multiple-layer thermal shield the ther-
mal time constant of reference cavities gets larger and reference cavities become less sensitive
to environmental temperature fluctuations. However, it is not necessary to use multiple-layer
thermal shields in each case. In Table 3, the temperature fluctuation-induced fractional length
instability of reference cavities (ΔL/L) are estimated according to achievable outer tempera-
ture instability and the CTE of reference cavities. For example, if an outer vacuum chamber is
temperature-stabilized with instability within 1 mK (24 hour fluctuation period) near TCTE=0,
which might have a CTE of 1×10−10/K, then the reference cavity can have a length instability
at the 10−16 level on hundreds of seconds’ timescale even without any thermal shield, assuming
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Table 3. Estimation of temperature fluctuation-induced fractional length instability based
on outer temperature variation rate, the CTE and the sensitivity of a reference cavity.

ΔTout /ξ dTout /dt (K/s) CTE (1/K) S = ΔTcav
ΔTout

ΔL/L
1 s 100 s 1 day

1 mK/24 hour 7.3×10−8 1×10−10 0.8 a 6×10−18 6×10−16 8×10−14

0.07 b 5×10−19 5×10−17 7×10−15

0.006 c 4×10−20 4×10−18 6×10−16

1 mK/24 hour 7.3×10−8 5×10−9 0.8 a 3×10−16 3×10−14 4×10−12

0.07 b 3×10−17 3×10−15 4×10−13

0.006 c 2×10−18 2×10−16 3×10−14

1 mK/1 hour 1.7×10−6 1×10−10 6×10−2 a 1×10−17 1×10−15 6×10−15

3×10−4 b 5×10−20 5×10−18 3×10−17

3×10−6 c 5×10−22 5×10−20 3×10−19

1 mK/1 hour 1.7×10−6 5×10−9 6×10−2 a 5×10−16 5×10−14 3×10−13

3×10−4 b 3×10−18 3×10−16 2×10−15

3×10−6 c 3×10−20 3×10−18 2×10−17

a Without thermal shield.
b One-layer thermal shield.
c Two-layer thermal shield.

the thermal noise limit of the reference cavity is below 1×10−16. If a reference cavity can not
be conveniently controlled near TCTE=0, for example, which has a CTE of 5×10−9/K (for ULE
glass, about 30 ◦C above TCTE=0), in order to achieve 10−16 length instability in an averaging
time above 100 s, it should be enclosed in thermal shields. If the temperature variation rate of
the outer vacuum chamber is large, the need for multiple-layer thermal shield becomes signif-
icant. Moreover, multiple-layer thermal shield is also important to achieve a high frequency
stability on the timescale over a day. For example, as shown in Table 3, if the environmental
temperature fluctuates with amplitude of 1 mK and period of 24 hours, a reference cavity with
a CTE of 1×10−10/K is enclosed in a two-layer thermal shield, the temperature-induced length
instability of the reference cavity can be at the 10−16 level over one day.

4.3. Aperture size of thermal shield

In the previous simulations, the thermal shields do not have any holes to let laser light access
the reference cavities. However, all designs are going to need an aperture. To study the effect of
the aperture size in the thermal shield on the thermal time constant, we numerically analyze the
thermal time constants of reference cavities when the thermal shields having optical apertures
with different diameters. In the case of one-layer thermal shield, layer B, the time constant
decreases from 31.6 h to 30.0 h (changes by 5%) if the diameter of aperture in the thermal
shield increases from 5 mm to 20 mm. If the reference cavity is enclosed in three-layer gold-
plated copper thermal shields that have optical apertures d of 5 mm to 20 mm, the time constant
decreases from 151 h to 135 h (changes by 12%), as shown in Fig. 5(d). This implies that
the aperture size of thermal shields has a relatively weak effect on the thermal time constant
compared to the material and layer numbers of thermal shields.

5. Conclusion

In this paper, thermal time constant and temperature sensitivity of reference cavities are studied
in order to describe how reference cavities respond to environmental temperature fluctuations
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via heat transfer of thermal conduction and thermal radiation. The thermal sensitivity of refer-
ence cavities is proportional to fluctuation periods of temperature perturbations, and inversely
proportional to the time constant of reference cavities. Both calculations based on equations
and numerical simulations indicate that thermal radiation plays a significant role in enlarging
the thermal time constant of reference cavities. To make reference cavities less sensitive to
temperature perturbations, they might be enclosed in multiple layers of thermal shields with
large mass, high thermal capacity and small emissivity. One choice for the material of thermal
shields is copper with low emissivity. The aperture size of thermal shields has a weak effect
on the thermal time constant of reference cavities. The layer number of thermal shields can be
chosen according to experimentally achievable temperature stability and the CTE of reference
cavities. By using multiple-layer thermal shield, the temperature fluctuation-induced fractional
length instability at the 10−16 level on a day timescale could be achieved.
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