
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

J. Parallel Distrib. Comput. 71 (2011) 316–332

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

On-demand minimum cost benchmarking for intermediate dataset storage in
scientific cloud workflow systems
Dong Yuan ∗, Yun Yang, Xiao Liu, Jinjun Chen
Faculty of Information and Communication Technologies, Swinburne University of Technology, Hawthorn, Melbourne 3122, Victoria, Australia

a r t i c l e i n f o

Article history:
Received 23 January 2010
Received in revised form
13 August 2010
Accepted 2 September 2010
Available online 16 September 2010

Keywords:
Dataset storage
Scientific workflow
Cloud computing
Cost benchmarking

a b s t r a c t

Many scientific workflows are data intensive: large volumes of intermediate datasets are generated
during their execution. Some valuable intermediate datasets need to be stored for sharing or reuse.
Traditionally, they are selectively stored according to the system storage capacity, determined manually.
As doing science on clouds has become popular nowadays, more intermediate datasets in scientific cloud
workflows can be stored by different storage strategies based on a pay-as-you-gomodel. In this paper, we
build an intermediate data dependency graph (IDG) from the data provenances in scientific workflows.
With the IDG, deleted intermediate datasets can be regenerated, and as suchwe develop a novel algorithm
that can find a minimum cost storage strategy for the intermediate datasets in scientific cloud workflow
systems. The strategy achieves the best trade-off of computation cost and storage cost by automatically
storing the most appropriate intermediate datasets in the cloud storage. This strategy can be utilised on
demand as a minimum cost benchmark for all other intermediate dataset storage strategies in the cloud.
We utilise Amazon clouds’ cost model and apply the algorithm to general random as well as specific
astrophysics pulsar searching scientific workflows for evaluation. The results show that benchmarking
effectively demonstrates the cost effectiveness over other representative storage strategies.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Scientific applications are usually complex and data intensive.
In many fields, such as astronomy [14], high-energy physics [24]
and bioinformatics [27], scientists need to analyse terabytes of data
either from existing data resources or collected from physical de-
vices. The scientific analyses are usually computation intensive,
hence taking a long time for execution. Workflow technologies
can be facilitated to automate these scientific applications. Accord-
ingly, scientific workflows are typically very complex. They usually
have a large number of tasks and need a long time for execution.
During the execution, a large volume of new intermediate datasets
will be generated [15]. They could be even larger than the orig-
inal dataset(s) and contain some important intermediate results.
After the execution of a scientific workflow, some intermediate
datasets may need to be stored for future use because: (1) scien-
tists may need to re-analyse the results or apply new analyses on
the intermediate datasets; (2) for collaboration, the intermediate
results may need to be shared among scientists from different in-
stitutions and the intermediate datasets may need to be reused.
Storing valuable intermediate datasets can save their regeneration

∗ Corresponding author.
E-mail addresses: dyuan@swin.edu.au (D. Yuan), yyang@swin.edu.au (Y. Yang),

xliu@swin.edu.au (X. Liu), jchen@swin.edu.au (J. Chen).

cost when they are reused, not to mention the waiting time saved
by avoiding regeneration. Given the large sizes of the datasets, run-
ning scientific workflow applications usually need not only high-
performance computing resources but also massive storage [15].

Nowadays, popular scientific workflows are often deployed in
grid systems [24] because they have high performance andmassive
storage. However, building a grid system is extremely expensive
and it is normally not an option for scientists all over theworld. The
emergence of cloud computing technologies offers a new way to
develop scientific workflow systems, in which one research topic
is cost-effective strategies for storing intermediate datasets.

In late 2007, the concept of cloud computing was proposed [32]
and it is deemed thenext generation of IT platforms that candeliver
computing as a kind of utility [11]. Foster et al. made a compre-
hensive comparison of grid computing and cloud computing [17].
Cloud computing systems provide high performance and massive
storage required for scientific applications in the same way as
grid systems, but with a lower infrastructure construction cost
amongmany other features, because cloud computing systems are
composed of data centres which can be clusters of commodity
hardware [32]. Research into doing science and data-intensive ap-
plications on the cloud has already commenced [25], such as early
experiences like the Nimbus [21] and Cumulus [31] projects. The
work by Deelman et al. [16] shows that cloud computing offers a
cost-effective solution for data-intensive applications, such as sci-
entific workflows [20]. Furthermore, cloud computing systems of-
fer a newmodel: namely, that scientists fromall over theworld can

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.09.003

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 317

collaborate and conduct their research together. Cloud computing
systems are based on the Internet, and so are the scientific work-
flow systemsdeployed in the cloud. Scientists canupload their data
and launch their applications on the scientific cloud workflow sys-
tems from everywhere in the world via the Internet, and they only
need to pay for the resources that they use for their applications.
As all the data are managed in the cloud, it is easy to share data
among scientists.

Scientific cloud workflows are deployed in a cloud computing
environment, where use of all the resources need to be paid for.
For a scientific cloud workflow system, storing all the intermedi-
ated datasets generated during workflow executions may cause
a high storage cost. In contrast, if we delete all the intermediate
datasets and regenerate themevery time they are needed, the com-
putation cost of the system may well be very high too. The inter-
mediate dataset storage strategy is to reduce the total cost of the
whole system. The best way is to find a balance that selectively
stores some popular datasets and regenerates the rest of them
when needed [1,36,38]. Some strategies have already been pro-
posed to cost-effectively store the intermediate data in scientific
cloud workflow systems [36,38].

In this paper, we propose a novel algorithm that can calculate
the minimum cost for intermediate dataset storage in scientific
cloud workflow systems. The intermediate datasets in scientific
cloud workflows often have dependencies. During workflow
execution, they are generated by the tasks. A task can operate on
one or more datasets and generate new one(s). These generation
relationships are a kind of data provenance. Based on the data
provenance, we create an intermediate data dependency graph
(IDG), which records the information of all the intermediate
datasets that have ever existed in the cloud workflow system,
no matter whether they are stored or deleted. With the IDG, we
knowhow the intermediate datasets are generated and can further
calculate their generation cost. Given an intermediate dataset, we
divide its generation cost by its usage rate, so that this cost (the
generation cost per unit time) can be compared with its storage
cost per time unit, where a dataset’s usage rate is the time between
every usage of this dataset that can be obtained from the system
logs. Then we can decide whether an intermediate dataset should
be stored or deleted in order to reduce the system cost. However,
the cloud computing environment is very dynamic, and the usages
of intermediate datasets may change from time to time. Given
the historic usages of the datasets in an IDG, we propose a cost
transitive tournament shortest path (CTT-SP) based algorithm that
can find the minimum cost storage strategy of the intermediate
datasets on demand in scientific cloud workflow systems. This
minimum cost can be utilised as a benchmark to evaluate the cost
effectiveness of other intermediate dataset storage strategies.

The remainder of this paper is organised as follows. Section 2
gives a motivating example of a scientific workflow and analyses
the research problems. Section 3 introduces some important
related concepts and the cost model of intermediate dataset
storage in the cloud. Section 4 presents the detailed minimum
cost algorithms. Section 5 demonstrates the simulation results
and the evaluation. Section 6 discusses related work. Section 7
is a discussion about the data transfer cost among cloud service
providers. Section 8 addresses our conclusions and future work.

2. Motivating example and problem analysis

2.1. Motivating example

Scientific applications often need to process a large amount of
data. For example, the Swinburne Astrophysics group has been
conducting a pulsar searching survey using the observation data
from the Parkes Radio Telescope, which is one of the most famous

radio telescopes in the world [8]. Pulsar searching is a typical
scientific application. It involves complex and time-consuming
tasks and needs to process terabytes of data. Fig. 1 depicts the high-
level structure of a pulsar searching workflow, which is currently
running on the Swinburne high-performance supercomputing
facility [30].

First, raw signal data from the Parkes Radio Telescope are
recorded at a rate of one gigabyte per second by the ATNF [7]
Parkes Swinburne Recorder (APSR) [6]. Depending on the different
areas in the universe in which the scientists want to conduct the
pulsar searching survey, the observation time is normally from
4 min to 1 h. Recording from the telescope in real time, these raw
data files have data from multiple beams interleaved. For initial
preparation, different beam files are extracted from the raw data
files and compressed. They are 1–20 GB each in size, depending
on the observation time. The beam files contain the pulsar signals
which are dispersed by the interstellar medium. De-dispersion is
used to counteract this effect. Since the potential dispersion source
is unknown, a large number of de-dispersion files needs to be
generated with different dispersion trials. In the current pulsar
searching survey, 1200 is the minimum number of the dispersion
trials. Based on the size of the input beam file, this de-dispersion
step takes 1–13 h to finish, and it generates up to 90 GB of de-
dispersion files. Furthermore, for binary pulsar searching, every de-
dispersion file needs another step of processing named accelerate.
This step generates accelerated de-dispersion files with a similar
size in the last de-dispersion step. Based on the generated de-
dispersion files, different seeking algorithms can be applied to
search pulsar candidates, such as FFT Seeking, FFA Seeking, and
Single Pulse Seeking. For a large input beam file, it takes more than
one hour to seek the 1200 de-dispersion files. A candidate list of
pulsars is generated after the seeking step, which is saved in a text
file. Furthermore, by comparing the candidates generated from
different beam files in the same time session, some interferences
may be detected and some candidatesmay be eliminated.With the
final pulsar candidates, we need to go back to the de-dispersion
files to find their feature signals and fold them to XML files. Finally,
the XML files are visually displayed to the scientists, for making
decisions on whether a pulsar has been found or not.

As described above, we can see that this pulsar searching work-
flow is both computation and data intensive. It needs a long exe-
cution time, and large datasets are generated. At present, all the
generated datasets are deleted after having been used, and the sci-
entists only store the raw beam data extracted from the raw tele-
scope data. Whenever there are needs to use the deleted datasets,
the scientists will regenerate them based on the raw beam files.
The generated datasets are not stored, mainly because the super-
computer is a shared facility that cannot offer unlimited storage
capacity to hold the accumulated terabytes of data. However, it
would be better if some datasets were to be stored, for example,
the de-dispersion files, which are frequently used. Based on them,
the scientists can apply different seeking algorithms to find po-
tential pulsar candidates. Furthermore, some datasets are derived
from the de-dispersion files, such as the results of the seek algo-
rithms and the pulsar candidate list. If these datasets need to be
regenerated, the de-dispersion files will also be reused. For large
input beam files, the regeneration of the de-dispersion files will
take more than 10 h. This not only delays the scientists from con-
ducting their experiments, but also requires a lot of computation
resources. On the other hand, some datasets need not be stored, for
example, the accelerated de-dispersion files, which are generated
by the accelerate step. The accelerate step is an optional step that
is only used for binary pulsar searching. Not all pulsar searching
processes need to accelerate the de-dispersion files, so the accel-
erated de-dispersion files are not that often used. In light of this,
and given the large size of these datasets, they are not worth stor-
ing, as it would bemore cost effective to regenerate them from the
de-dispersion files whenever they are needed.

Author's personal copy

318 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

Extract
Beam

Extract Compress
Trial Measure 1

Trial Measure 2

Trial Measure 1200

De-disperse

Acceleate
FFT
Seek

FFA
Seek

Pulse
Seek

Get

Make
decision

Candidates

Fold to
XML

Get
Candidates

Eliminate
Candidates

Candidates
Candidates

Record
Raw
Data Beam Beam

Beam
Beam

Fig. 1. Pulsar searching workflow.

2.2. Problem analysis

Traditionally, scientific workflows are deployed on high-
performance computing facilities, such as clusters and grids.
Scientific workflows are often complex, with huge intermediate
datasets generated during their execution. How to store these
intermediate datasets is normally decided by the scientists who
use the scientific workflows. This is because the clusters and
grids only serve certain institutions. The scientists may store the
intermediate datasets that are most valuable to them, based on
the storage capacity of the system. However, in many scientific
workflow systems, the storage capacities are limited, such as the
pulsar searchingworkflow introduced above. The scientists have to
delete all the intermediate datasets because of storage limitation.
This bottleneck of storage can be avoided if we run scientific
workflows in a cloud.

In a cloud computing environment, theoretically, the system
can offer unlimited storage resources. All the intermediate datasets
generated by scientific cloud workflows can be stored, if we are
willing to pay for the required resources. However, in scientific
cloud workflow systems, whether to store intermediate datasets
or not is no longer an easy decision, for the reasons below.

(1) All the resources in the cloud carry certain costs, so, either
storing or generating an intermediate dataset, we have to pay for
the resources used. The intermediate datasets vary in size, and
have different generation costs and usage rates. Some of themmay
be used frequently whilst some others may not. On the one hand,
it is most likely not cost effective to store all the intermediate
datasets in the cloud. On the other hand, if we delete them all,
regeneration of frequently used intermediate datasets imposes a
high computation cost. Different storage strategies can be applied
to scientific cloudworkflow systems, and theywill lead to different
costs. Traditionally, intermediate dataset storage strategies may
be developed based on different factors, such as security, users’
preference, etc., but in scientific cloud workflow systems, all the
strategies should deem system cost as an important factor. Hence
a benchmarking of theminimum system cost is needed to evaluate
the cost effectiveness of different intermediate dataset storage
strategies.

(2) Theusages of intermediate datasets are dynamic. For a single
research group, scientists can estimate the intermediate datasets’
usages, since they are the only users of the datasets. But for the
datasets that are shared among different institutions, their usages
are hard to predict. In a cloud computing environment, the users
could be anyone from the Internet, and a shared dataset may be
used by many users. Hence the datasets’ usages are dynamic in
scientific cloud workflow systems, and the minimum cost of the
system is also a dynamic value. The minimum cost benchmarking
should be based on the datasets’ usages that are determinate by all
the cloud users, and hence should be discovered and obtained from
the system logs.

Hence, we need an algorithm to find the minimum cost storage
strategy for intermediate datasets in scientific cloud workflow
systems based on the historic usages of the datasets. This strategy
can be used as a benchmark to evaluate the cost effectiveness over
other intermediate dataset storage strategies.

3. Concepts and model of cost-oriented intermediate dataset
storage in scientific cloud workflows

In this section, based on our prior work [36,38], we introduce
some important concepts, and enhance the representation of the
IDG and the dataset storage costmodel in scientific cloudworkflow
systems.

3.1. Classification of the application data in scientific cloudworkflows

In general, there are two types of data stored in cloud storage:
input data and intermediate data (includingresult data).

First, input data are the data uploaded by users, and in scientific
applications they also can be the raw data collected from the
devices. These data are the original data for processing or analysis,
which are usually the input of the applications. Themost important
feature of these data is that, if they are deleted, they cannot be
regenerated by the system.

Second, intermediate data are the data newly generated in the
cloud system while the applications run. These data save the in-
termediate computation results of the applications which will be
used in future execution. In general, the final result data of the ap-
plications are a kind of intermediate data because the result data in
one application can also be used in other applications. When fur-
ther operations apply to the result data, they become intermediate
data. Therefore, intermediate data are the data generated by com-
putations on either the input data or other intermediate data, and
their most important feature is that they can be regenerated if we
know their provenance.

For the input data, the users will decidewhether they should be
stored or deleted, since they cannot be regenerated once deleted.
For the intermediate data, their storage status can be decided by
the system, since they can be regenerated. Hence, our minimum
cost storage strategy only applies to intermediate data in scientific
cloud workflow systems. In this paper, we refer to intermediate
data as dataset(s).

3.2. Data provenance and the intermediate data dependency graph
(IDG)

Scientific workflows have many computation and data inten-
sive tasks that generate many intermediate datasets of consid-
erable size. There exist dependencies among the intermediate
datasets. Data provenance in workflows is a kind of impor-
tant metadata in which the dependencies between datasets are
recorded [29]. The dependency depicts the derivation relationship
betweenworkflow intermediate datasets. For scientificworkflows,
data provenance is especially important because, after the execu-
tion, some intermediate datasets may be deleted, but sometimes
the scientists have to regenerate them for either reuse or reanaly-
sis [10]. Data provenance records the information of how the inter-
mediate datasets were generated, which is very important for the
scientists. Furthermore, regeneration of the intermediate datasets

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 319

Fig. 2. A simple intermediate data dependency graph (IDG).

from the input data may be very time consuming, and may there-
fore carry a high cost. In contrast, with data provenance informa-
tion, the regeneration of the demanding dataset may start from
some stored intermediated datasets. In a scientific cloud workflow
system, data provenance is recorded during the workflow execu-
tion. Taking the advantage of data provenance, we can build the
IDG. For all the intermediate datasets, once generated (or modi-
fied) in the system, whether stored or deleted, their references are
recorded in the IDG as different nodes.

In the IDG, every node denotes an intermediate dataset. Fig. 2
shows us a simple IDG: dataset d1 pointing to d2 means that d1 is
used to generate d2; and d2 pointing to d3 and d5 means that d2 is
used to generate d3 and d5 based on different operations; datasets
d4 and d6 pointing to d7 means that d4 and d6 are used together to
generate d7.

The IDG is a directed acyclic graph (DAG), where no circles exist.
This is because the IDG records the provenances of how datasets
are derived in the system as time goes on. In otherwords, it depicts
the generation relationships of the datasets.

When some of the deleted intermediate datasets need to be
reused, we do not need to regenerate them from the original input
data. With the IDG, the system can find the predecessors of the
required dataset, so they can be regenerated from their nearest
stored predecessors.

We denote a dataset di in the IDG as di ∈ IDG, and a set of
datasets S = {d1, d2, . . . , dh} in the IDG as S ⊆ IDG. To better
describe the relationships of datasets in the IDG, we define two
symbols, → and =.

→ denotes that two datasets have a generation relationship,
where di → dj means that di is a predecessor dataset of dj in the
IDG. For example, in the IDG in Fig. 2, we have d1 → d2, d1 →

d4, d5 → d7, d1 → d7, etc. Furthermore, → is transitive, where

di → dj → dk ⇔ di → dj ∧ dj → dk ⇒ di → dk.

= denotes that two datasets do not have a generation relation-
ship, where di = dj means the di and dj are in different branches in
the IDG. For example, in the IDG in Fig. 2, we have d3 = d5, d3 =
d6, etc. Furthermore, = is commutative, where di = dj ⇔ dj = di.

3.3. Dataset storage cost model

With the IDG, given any intermediate dataset that ever existed
in the system, we know how to regenerate it. In this study, we aim
atminimising the total cost ofmanaging the intermediate datasets.
In a cloud computing environment, if users want to deploy and
run applications, they need to pay for the resources used. The
resources are offered by cloud service providers, who have their
cost models to charge their users. In general, there are two basic
types of resource in cloud computing: storage and computation.
Popular cloud service providers’ cost models are based on these
two types of resource [3]. For example, Amazon cloud services’
prices are as follows.

• $0.15 per Gigabyte per month for storage resources.
• $0.1 per CPU instance-hour for computation resources.

Fig. 3. A dataset’s provSets in a general IDG.

Furthermore, the cost of data transfer is also considered, such as
in Amazon clouds’ cost model. In [16], the authors state that a
cost-effective way of doing science in the cloud is to upload all
the application data to the cloud and run all the applications in
the cloud services. So we assume that the scientists upload all
the input data to the cloud to conduct their experiments. Because
transferring data within one cloud service provider’s facilities
is usually free, the data transfer cost of managing intermediate
datasets during the workflow execution is not counted. In this
paper, we define our cost model for managing the intermediate
data in a scientific cloud workflow system as follows:

Cost = C + S,

where the total cost of the system, Cost, is the sum of C , which
is the total cost of computation resources used to regenerate the
intermediate datasets, and S, which is the total cost of storage
resources used to store the intermediate datasets.

To utilise the cost model, we define some important attributes
for the intermediate datasets in the IDG. For intermediate dataset
di, its attributes are denoted as ⟨xi, yi, fi, ti, provSet i, CostRi⟩, where
the variables have the following meaning.

xi denotes the generation cost of dataset di from its direct
predecessors. To calculate this generation cost,we have tomultiply
the time to generate dataset di by the price of the computation
resources. Normally the generating time can be obtained from the
system logs.

yi denotes the cost of storing dataset di in the system per time
unit. This storage cost can be calculated by multiplying the size of
dataset di by the price of the storage resource.

fi is a flag, which denotes the status whether this dataset is
stored or deleted in the system.

ti denotes the usage rate,which is the time between every usage
of di in the system. In traditional scientific workflows, ti can be
defined by the scientists who use this workflow collaboratively.
However, a scientific cloud workflow system is based on the
Internet, with a large number of users; as we discussed before, ti
cannot be defined by the users. It is a forecasting value from the
dataset’s usage history recorded in the system logs.

provSet i denotes the set of stored provenance datasets that are
needed when regenerating dataset di; in other words, it is the set
of stored predecessor datasets that are adjacent to di in the IDG. If
we want to regenerate di, we have to find its direct predecessors,
which may also be deleted, so we have to further find the stored
predecessors of datasets di. provSet i is the set of the nearest stored
predecessors of di in the IDG. Fig. 3 shows the provSet of a dataset
in different situations.

Formally, we can describe a dataset di’s ProvSet i as follows:

provSet i =

dj
dj ∈ IDG ∧ fj = ‘‘stored’’ ∧ dj → di

∧


¬∃dk ∈ IDG ∧ dj → dk → di


∨

∃dk ∈ IDG ∧ dj → dk → di ∧ fk = ‘‘deleted’’


.

provSet is a very important attribute of a dataset in calculating
its generation cost. When we want to regenerate a dataset in an
IDG, we have to start the computation from the dataset in its
provSet. Hence, for dataset di, its generation cost is

genCost(di) = xi +
−

{dk|dj∈provSet i∧dj→dk→di}

xk. (1)

Author's personal copy

320 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

This cost is the total cost of (1) the generation cost of dataset di
from its direct predecessor datasets and (2) the generation costs of
di’s deleted predecessors that need to be regenerated.

CostRi is di’s cost rate, which means the average cost per time
unit of the dataset di in the system. If di is a stored dataset, then
CostRi = yi. If di is a deleted dataset in the system, then, when we
need to use di, we have to regenerate it. Sowedivide the generation
cost of di by the time between its usages and use this value as the
cost rate of di in the system. CostRi = genCost(di)/ti. The storage
statuses of the datasets have strong impact on their cost rates. If di’s
storage status is changed, not only the cost rate of itself, CostRi, will
change, but also the generation cost of di’s successors will change
correspondingly.

Hence, the system cost rate of managing intermediate datasets
is the sum of CostR of all the intermediate datasets, which is∑

di∈IDG CostRi. We further define the storage strategy of an IDG
as S, where S ⊆ IDG, which means storing the datasets in S in the
cloud and deleting the others.We denote the cost rate of storing an
IDG with the storage strategy S as

∑
di∈IDG CostRi


S
. Given a time

duration, denoted as [T0, Tn], the total system cost is the integral of
the system cost rate in this duration as a function of time t , which
is

Total_Cost =

∫ Tn

t=T0

−
di∈IDG

CostRi


• dt. (2)

Based on the definition of the dataset’s cost rate, the system’s
cost rate highly depends on the storage strategy of the interme-
diate datasets. Storing different intermediate datasets will lead to
different cost rates of the system. In scientific cloud workflow sys-
tems, intermediate dataset storage strategies should try to reduce
this cost rate.

4. Minimum cost benchmarking of intermediate dataset stor-
age

The cost rate of scientific applications in the cloud is dynamic.
Based on the cost model discussed in Section 3, in scientific cloud
workflow systems, the system cost rate may differ a lot with
different intermediate dataset storage strategies. However, based
on datasets’ usage rates derived from system logs at the time,
there exists a minimum cost rate of storing them, which can be
used for on-demand benchmarking. In this section,we describe the
design of a cost transitive tournament shortest path (CTT-SP) based
algorithm that can find the minimum cost storage strategy for a
given IDG. The basic idea of the CTT-SP algorithm is to construct
a cost transitive tournament (CTT) based on the IDG. In a CTT,
we guarantee that the paths from the start dataset to the end
dataset have a one-to-one mapping to the storage strategies, and
the length of every path equals the total cost rate. Then we can
use the well-known Dijkstra algorithm to find the shortest path
in the CTT, which is also the minimum cost storage strategy. To
describe the algorithm, we start with calculation of the minimum
cost benchmark for the linear IDG, and then expand it to the general
complex IDG, followed by algorithm complexity analysis.

4.1. Minimum cost algorithm for linear IDG

A linear IDG means an IDG with no branches, where each
dataset in the IDG only has one direct predecessor and successor
except the first and last datasets.

Take a linear IDG, which has datasets d1, d2, . . . , dn. The CTT-SP
algorithm has the following four steps.

Step 1: We add two virtual datasets in the IDG, ds before d1 and
de after dn, as the start and end datasets, and set xs = ys = 0 and
xe = ye = 0.

Step 2: We add new directed edges in the IDG to construct
the transitive tournament. For every dataset in the IDG, we add
edges that start from it and point to all its successors. Formally,
for dataset di, it has out-edges to all the datasets in the set of
dj|dj ∈ IDG ∧ di → dj


, and in-edges from all the datasets in the

set of {dk|dk ∈ IDG ∧ dk → di}. Hence, for any two datasets di and
dj in the IDG, we have an edge between them, denoted as e⟨di, dj⟩.
Formally, di, dj ∈ IDG ∧ di → d ⇒ ∃e⟨di, dj⟩.

Step3:We setweights to the edges. The reasonwe call the graph
a cost transitive tournament is because the weights of its edges
are composed of the cost rates of datasets. For an edge e⟨di, dj⟩, we
denote its weight as ω⟨di, dj⟩, which is defined as the sum of cost
rates of dj and the datasets between di and dj, supposing that only
di and dj are stored and rest of the datasets between di and dj are
all deleted. Formally,

ω⟨di, dj⟩ = yj +
−

{dk|dk∈IDG∧di→dk→dj}

(genCost(dk)/tk) . (3)

Sincewe are discussing a linear IDG, for the datasets between di
and dj, di is the only dataset in their provSets. Hence we can further
get

ω⟨di, dj⟩ = yj

+

−
{dk|dk∈IDG∧di→dk→dj}


xk +

−
{dh|dh∈IDG∧di→dh→dk}

xh


tk


. (4)

In Fig. 4, we demonstrate a simple example of constructing a
CTT for an IDG that only has three datasets, where ds is the start
dataset that only has out-edges and de is the end dataset that only
has in-edges.

Step 4:We find the shortest path of the CTT. From the construc-
tion steps, we can clearly see that the CTT is an acyclic complete
oriented graph. Hence we can use the Dijkstra algorithm to find
the shortest path from ds to de. The Dijkstra algorithm is a classic
greedy algorithm to find the shortest path in graph theory. We de-
note the shortest path from ds to de as Pmin⟨ds, de⟩.

Theorem 1. Given a linear IDG with datasets {d1, d2, . . . , dn}, the
length of Pmin⟨ds, de⟩ of its CTT is the minimum cost rate of the system
to store the datasets in the IDG, and the corresponding storage strategy
is to store the datasets that Pmin⟨ds, de⟩ traverses.

Proof. First, there is a one-to-one mapping between the storage
strategies of the IDG and the paths from ds to de in the CTT. Given
any storage strategy of the IDG,we can find an order of these stored
datasets, since the IDG is linear. Then we can find the exact path in
the CTT that has traversed all these stored datasets. Similarly, given
any path from ds to de in the CTT, we can find the datasets it has
traversed, which is a storage strategy. Second, based on the setting
of weights to the edges, the length of a path from ds to de in the CTT
is equal to the total cost rate of the corresponding storage strategy.
Third, Pmin⟨ds, de⟩ is the shortest path from ds to de as found by the
Dijkstra algorithm. Hence, Theorem 1 holds. �

Corollary 1. During the process of finding the shortest path, for every
dataset df that is discovered by the Dijkstra algorithm, we have a path
Pmin⟨ds, df ⟩ from ds to df and a set of datasets Sf that Pmin⟨ds, df ⟩
traverses. Sf is the minimum cost storage strategy of the sub-IDG
di|di ∈ IDG ∧ ds → di → df


.

Proof. By apagoge.
Suppose that there exists a storage strategy S ′

f ≠ Sf , and
that S ′

f is the minimum cost storage strategy of the sub-IDG

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 321

Fig. 4. An example of constructing a CTT.

Fig. 5. Pseudo-code of the linear CTT-SP algorithm.

{di
di ∈ IDG ∧ ds → di → df }. Thenwe can get a path P ′

min⟨ds, df ⟩
from ds to df , which traverses the datasets in S ′

f . Then we have

P ′

min⟨ds, df ⟩ =

 −
di∈IDG∧ds→di→df

CostRi


S′
f

<

 −
di∈IDG∧ds→di→df

CostRi


Sf

= Pmin⟨ds, df ⟩.

This is contradictory to the known condition ‘‘Pmin⟨ds, df ⟩ is
the shortest path from ds to df ’’. Hence, Sf is the minimum cost
storage strategy of the sub-IDG


di
di ∈ IDG ∧ ds → di → df


.

Hence, Corollary 1 holds. �

Fig. 5 shows the pseudo-code of the linear CTT-SP algorithm.
To construct the CTT, we first create the cost edges (line 3),
and then calculate their weights (lines 4–11). Next, we use the
Dijkstra algorithm to find the shortest path (line 12), and return
the minimum cost storage strategy (lines 13–14).

4.2. Minimum cost algorithm for an IDG with one block

A linear IDG is a special case of general IDGs. In the real
world, intermediate datasets generated in scientific workflows
may have complex relationships, such that different datasets may
be generated from a single dataset by different operations, and
different datasets may be used together to generate one dataset.
In other words, the IDG may have branches, where the linear CTT-
SP algorithm introduced in Section 4.1 cannot be directly applied.
This is because the CTT can only be constructed on a linear IDG,
which means that the datasets in the IDG must be totally ordered.
In this section, we discuss how to find the minimum cost storage
strategy for an IDG that has a sub-branch within one block.

Fig. 6. An example of constructing the CTT for an IDG with a block.

4.2.1. Construct the CTT for an IDG with a block
First we introduce the concept of a ‘‘block’’ in an IDG. A block is

a set of sub-branches in the IDG that split from a common dataset
and merge into another common dataset. We denote the block as
B. Fig. 6 shows an IDG with a simple block B = {d3, d4, d5, d6}; we
will use it as the example to illustrate the construction of the CTT.

To construct the CTT, we need the datasets in the IDG to be
totally ordered. Hence, for an IDG with a block, we only choose
one branch to construct the CTT, as shown in Fig. 6. We call the
linear datasets which are chosen to construct the CTT the ‘‘main
branch’’, denoted as MB, and call the rest of the datasets ‘‘sub-
branches’’, denoted as SB. For example, in the IDG in Fig. 6, MB =

{d1, d2, d5, d6, d7, d8} and SB = {d3, d4}. Due to the existence of
the block, the edges can be classified into four categories. The def-
initions of this classification are as follows.

• In-block edge: e⟨di, dj⟩ is an in-block edge means that the edge
starts from di, which is a dataset outside of the block, and points
to dj, which is a dataset in the block, such as e⟨d2, d5⟩, e⟨d1, d6⟩
in Fig. 6. Formally, we define e⟨di, dj⟩ as an in-block edge, where
∃dk ∈ IDG ∧ di → dk ∧ dj = dk.

• Out-block edge: e⟨di, dj⟩ is an out-block edge means that the
edge starts from di, which is a dataset in the block, and
points to dj, which is a dataset outside of the block, such as
e⟨d6, d7⟩, e⟨d5, d8⟩ in Fig. 6. Formally, we define e⟨di, dj⟩ as an
out-block edge, where ∃dk ∈ IDG ∧ di = dk ∧ dk → dj.

• Over-block edge: e⟨di, dj⟩ is an over-block edge means that the
edge crosses over the block, where di is a dataset preceding
the block and dj is a dataset succeeding the block, such as
e⟨d2, d7⟩, e⟨d1, d8⟩ in Fig. 6. Formally, we define e⟨di, dj⟩ as an
over-block edge, where ∃dk, dh ∈ IDG ∧ dh = dk ∧ di → dh →

dj ∧ di → dk → dj.
• Ordinary edge: e⟨di, dj⟩ is an ordinary edge means that datasets

between di and dj are totally ordered, such as e⟨ds, d2⟩,

Author's personal copy

322 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

e⟨d5, d6⟩, e⟨d7, d8⟩ in Fig. 6. Formally, we define e⟨di, dj⟩ as an
ordinary edge, where

¬∃dk ∈ IDG ∧ ((di → dk ∧ dk = dj)
∨(di = dk ∧ dk → dj) ∨ (dh ∈ IDG
∧dh = dk ∧ di → dh → dj ∧ di → dk → dj)).

4.2.2. Setting weights to different types of edges
The essence of the CTT-SP algorithm is the rules of setting

weights to the cost edges. Based on the setting, we guarantee that
the paths from the start dataset ds to every dataset di in the IDG
represent the storage strategies of the datasets {dk|dk ∈ IDG ∧

ds → dk → di}, and the shortest path is the minimum cost storage
strategy. As defined in Section 4.1, the weight of edge e⟨di, dj⟩ is
the sum of the cost rates of dj and the datasets between di and dj,
supposing that only di and dj are stored and the rest of the datasets
between di and dj are all deleted. In an IDGwith one block, this rule
is still applicable to the ordinary edges and in-block edges.

However, if e⟨di, dj⟩ is an out-block edge or over-block edge,
formula (3) in Section 4.1 is not applicable for calculating itsweight
anymore, for the following reasons.

(1) Due to the existence of the block, the datasets succeeding
the block may have more than one dataset in their provSets. The
generation of these datasets needs not only di, but also the stored
provenance datasets from the other sub-branches of the block. For
example, according to formula (3) in Section 4.1, theweight of out-
block edge e⟨d5, d8⟩ in Fig. 6 is ω⟨d5, d8⟩ = y8 + genCost(d6)/t6 +

genCost(d7)/t7, where if we want to calculate genCost (d7), we
also have to know the storage statuses of d3 and d4. The same
problem also exists when calculating theweights of the over-block
edges. Hence, to calculate the weights of the out-block and over-
block edges, we have to know the storage strategies of all the sub-
branches in the block.

(2) The path from ds to dj cannot represent the storage strategy
of all the datasets


dk
dk ∈ IDG ∧ ds → dk → dj


. If we use the

same method as in Section 4.1 to set the weight of e⟨di, dj⟩, the
path that contains e⟨di, dj⟩ in the CTT can only represent the
storage strategy of datasets in the main branch, where the sub-
branches are not represented. For example, in Fig. 6, the path from
ds to d8 that contains out-block edge e⟨d5, d8⟩ does not represent
the storage statuses of datasets d3 and d4, and the length of the
path also does not contain the cost rates of d3 and d4, if we
use the method in Section 4.1 to calculate the weights of the
edges. Hence, to maintain the mapping between the paths and
the storage strategies, the weights of the out-block and over-block
edges should contain theminimum cost rates of the datasets in the
sub-branches of the block.

Based on the reasons above, we define the weight of e⟨di, dj⟩ as

ω⟨di, dj⟩ = yj +
−

{dk|dk∈MB∧di→dk→dj}

(genCost(dk)/tk)

+

 −
{dh|dh∈SB}

CostRh


Smin

. (5)

In formula (5),
∑

{dh|dh∈SB }
CostRh


Smin

means the minimum

cost rates of the datasets that are in the sub-branches of the
block. This formula guarantees that the length of the short-
est path with an out-block edge or over-block edge still equals
the minimum cost rate of the datasets, which is Pmin⟨ds, dj⟩ =∑

{dk|dk∈IDG∧ds→dk→dj }
CostRk


Smin

. Hence, to calculate theweights

of the out-block and over-block edges, we have to find the min-
imum cost storage strategy of the datasets that are in the sub-
branches of the block. For example, the weight of edge e⟨d5, d8⟩

in Fig. 6 is ω⟨d5, d8⟩ = y8 + genCost(d6)/t6 + genCost(d7)/t7 +

(CostR3 + CostR4)Smin , where we have to find the minimum cost
storage strategy of datasets d3 and d4.

However, for any sub-branches, the minimum cost storage
strategy is dependent on the storage status of the datasets preced-
ing and succeeding the block (i.e. stored adjacent predecessor and
successor of the sub-branches).

If e⟨di, dj⟩ is an over-block edge, according to its semantics, di
and dj are stored datasets, and the datasets between di and dj in the
main branch,


dk
dk ∈ MB ∧ di → dk → dj


, are deleted. Hence,

di and dj are the stored adjacent predecessor and successor of the
sub-branches. If the remaining datasets within the block form a
linear IDG, we can use the linear CTT-SP algorithm introduced in
Section 4.1 to find its minimum cost storage strategy, where in the
first step we have to use di and dj as the start and end datasets. For
example, to calculate the weight of the over-block edge e⟨d1, d8⟩
in Fig. 6, we have to find the minimum cost storage strategy of
sub-branch {d3, d4} by the linear CTT-SP algorithm, given that d1
is the start dataset and d8 is the end dataset. Otherwise, if the
remaining datasets within the block do not form a linear IDG, we
have to recursively call the CTT-SP algorithm to find the minimum
cost storage strategy of the sub-branches, whichwill be introduced
in Section 4.3. Hence, the weight of an over-block edge can be
calculated.

If e⟨di, dj⟩ is an out-block edge, we only know that the
stored adjacent successor of the sub-branches is dj. However,
the minimum cost storage strategy of the sub-branches is also
dependent on the stored adjacent predecessor, which is unknown
for an out-block edge. Hence, given different stored adjacent
predecessors, the weight of an out-block edge would be different.
For example, to calculate the weight of out-block edge e⟨d5, d8⟩ in
Fig. 6, we need to find the minimum cost storage strategy Smin of
the sub-branch {d3, d4}, where we only know the stored adjacent
successor d8. However, Smin may be different depending on the
storage statuses of d1 and d2. Hence, we have to create multiple
CTTs for an IDG that has a block, in order to calculate the weights
of the out-block edges in different situations, as detailed next.

4.2.3. Steps of finding the minimum cost storage strategy for an IDG
with one sub-branch in the block

In this section, we extend the linear CTT-SP algorithm to find
its minimum cost storage strategy for an IDG with one sub-branch
in the block. As discussed in Section 4.2.2, depending on different
stored preceding datasets of the block, the weight of an out-
block edge may be different. Hence multiple CTTs are needed to
represent these different situations, and theminimum cost storage
strategy is the shortest path among all the CTTs.

To develop the minimum cost storage strategy, we need the
following two theorems.

Theorem 2. The selection of the main branch in the IDG to construct
the CTT has no impact on finding the minimum cost storage strategy.

Proof. Assume that strategy S is the minimum cost storage strat-
egy of an IDG; the IDG has two sub-branches Br1 and Br2 in a block;
strategies S1 and S2 contain the sets of stored datasets of Br1 and Br2
in S.

If we select the main branch with the sub-branch Br1, S can be
mapped to a path in one of the created CTTs. According to Theo-
rem 1, the paths in the CTT have one-to-one mapping to the stor-
age strategies; hencewe can find a path P⟨ds, de⟩ that traverses the
stored datasets in the main branch according to S. If S1 = Ø, there
is an over-block edge in the path P⟨ds, de⟩, which contains themin-
imum cost storage strategy of Br2 according to formula (5), where
P⟨ds, de⟩ is in the initial CTT. If S1 ≠ Ø, there is an in-block edge and
anout-block edge in P⟨ds, de⟩, denoted as e⟨di, dj⟩ and e⟨dh, dk⟩. The

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 323

(a) Initial CTT for the IDG.

(b) CTT(e⟨di, dj⟩) for in-block edge e⟨di, dj⟩. (c) CTT created for the sub-branch.

Fig. 7. CTTs for an IDG with one block.

weight of e⟨dh, dk⟩ contains the minimum cost storage strategy of
Br2 according to formula (5); hence P⟨ds, de⟩ is in CTT (e⟨di, dj⟩).
Similar to Theorem 1, we can further prove that the length of
P⟨ds, de⟩ equals the total cost rate of the storage strategy S.

Similarly, if we select the main branch with the sub-branch Br2,
S can also be mapped to a path in one of the created CTTs, where
the length of the path is equal to the total cost rate of theminimum
cost storage strategy.

Therefore, nomatterwhich branchwe select as themain branch
to construct the CTT, theminimumcost storage strategy always ex-
ists in one of the created CTTs. This means that the selection of the
main branch has no impact on finding the minimum cost storage
strategy. Hence, Theorem 2 holds. �

Theorem 3. The Dijkstra algorithm is still applicable for finding the
minimum cost storage strategy of the IDG with one block.

Proof. In the CTTs created for an IDG with one block, every path
from ds to de contains an out-block edge or over-block edge.
According to formula (5), theminimum cost rate of the sub-branch
is contained in the weights of the out-block and over-block edges.
Hence, every path from ds to de in the CTT contains the minimum
cost storage strategy of the sub-branch. Furthermore, the CTTs are
created based on the main branch of the IDG; similar to the proof
of Theorem 1, the shortest path Pmin⟨ds, de⟩ found by the Dijkstra
algorithm contains the minimum cost storage strategy of the main
branch. This means that Pmin⟨ds, de⟩ represents the minimum cost
storage strategy of the whole IDG. Hence, Theorem 3 holds. �

The main steps of the algorithm are as follows.
Step 1: Construct the initial CTT of the IDG. According to

Theorem 2, we choose an arbitrary branch in the IDG as the main
branch and add cost edges to construct the CTT. In the CTT, for
the ordinary edges and in-block edges, we set their weights based
on formula (3) in Section 4.1. For the over-block edges, we set
their weights according to formula (5) by calling the linear CTT-
SP algorithm to find the minimum cost storage strategy of the
sub-branch, which is introduced in Section 4.2.2. For the out-block
edges, we set their weights as infinity at the initial stage. The initial
CTT is shown in Fig. 7(a).

Step 2: Based on Theorem 3, start the Dijkstra algorithm to find
the shortest path from ds to de. We use F to denote the set of
datasets discovered by the Dijkstra algorithm. When a new edge
e⟨di, dj⟩ is discovered, we first add dj to F , and then check whether
e⟨di, dj⟩ is an in-block edge or not. If not, we continue to find the

next edge by theDijkstra algorithmuntil de is reachedwhichwould
terminate the algorithm. If e⟨di, dj⟩ is an in-block edge, create a
new CTT (see Steps 2.1–2.3) because whenever an in-block edge
is discovered, a stored adjacent predecessor of the sub-branch is
identified, and this dataset will be used in calculating the weights
of the out-block edges.

Step 2.1: In the case where in-block edge e⟨di, dj⟩ is discovered,
based on the current CTT, create CTT(e⟨di, dj⟩), as shown in
Fig. 7(b). First, we copy all the information of the current CTT to
the new CTT(e⟨di, dj⟩). Second, we update the weights of all the
in-block edges in CTT(e⟨di, dj⟩) as infinity, except e⟨di, dj⟩. This
guarantees that dataset di is the stored adjacent predecessor of the
sub-branch in all the paths of CTT(e⟨di, dj⟩). Third, we update the
weights of all the out-block edges in CTT(e⟨di, dj⟩) as described in
Step 4 below.

Step 2.2: Calculate the weight of an out-block edge e⟨dh, dk⟩ in
CTT(e⟨di, dj⟩). As discussed in Section 4.2.2, to calculate the weight
of e⟨dh, dk⟩ according to formula (5), we have to find the minimum
cost storage strategy of the sub-branch in the block. From Fig. 7(b),
we can see that the sub-branch is {d′

1, d
′

2, . . . , d
′
m}, which is a linear

IDG. We can find its minimum cost storage strategy by using the
linear CTT-SP algorithm described in Section 4.1, given that di is
the start dataset and dk is the end dataset. The CTT created for the
sub-branch is depicted in Fig. 7(c).

Step 2.3: Add the new CTT(e⟨di, dj⟩) to the CTT set.

4.3. Minimum cost algorithm for a general IDG

In real-world applications, the structure of the IDG could be
complex, i.e. there may exist more than one block in an IDG.
However, to calculate the minimum cost storage strategy of a
general IDG, no matter how complex the IDG’s structure is, we
can reduce the calculation process to linear IDG situations by
recursively calling the algorithm introduced in Section 4.2. In this
section we introduce the general CTT-SP algorithm as well as the
pseudo-code for calculating theminimum cost storage strategy for
a general IDG.

4.3.1. General CTT-SP algorithm
The complex structure of an IDG canbe viewed as a combination

of many blocks. Following the algorithm steps introduced in
Section 4.2, we choose an arbitrary branch from the start dataset ds
to the end dataset de as themain branch to construct the initial CTT

Author's personal copy

324 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

Fig. 8. A sub-branch IDG has more than one stored adjacent predecessor.

Fig. 9. A sub-branch IDG also has branches.

Fig. 10. The CTT for a general IDG.

and createmultiple CTTs for the different in-block edges which are
discovered by the Dijkstra algorithm. In the process of calculating
the weights of the out-block and over-block edges, there are two
new situations for finding the minimum cost storage strategy of
the sub-branches.

(1) The sub-branches may have more than one stored adjacent
predecessors. For example, e⟨di, dj⟩ in Fig. 8 is an out-block edge of
block B1, and also an in-block edge of block B2. In the algorithm, if
edge e⟨di, dj⟩ is found by the Dijkstra algorithm, we create a new
CTT(e⟨di, dj⟩) from the current CTT, since e⟨di, dj⟩ is an in-block
edge of block B2. To calculate the weights of the out-block edges
in CTT(e⟨di, dj⟩), for example e⟨dh, dk⟩ in Fig. 8, we need to find the
minimum cost storage strategy of sub-branch {d′

1, d
′

2, . . . , d
′
m} of

block B2. However, because e⟨di, dj⟩ is also an out-block edge of B1,
di is not the only dataset in d′

1’s provSet. To calculate the generation
cost of d′

1, we need to find its stored provenance datasets from sub-
branch Br1 of block B1.

(2) The sub-branches are a general IDGwhich also has branches.
In this situation, we need to recursively call the general CTT-
SP algorithm to calculate its minimum cost storage strategy. For
example, e⟨di, dj⟩ in Fig. 9 is an in-block edge of blocks B1 and B2.
If e⟨di, dj⟩ is selected by the algorithm, we need to create a new
CTT(e⟨di, dj⟩). To calculate the weight of e⟨dh, dk⟩ in Fig. 9, which
is an out-block edge of both B1 and B2, we need to calculate the
minimum cost storage strategy of sub-branches Br1 and Br2. Hence
we have to recursively call the general CTT-SP algorithm for the
IDG Br1 ∪ Br2, given the start dataset di and the end dataset dk.

Hence, given a general IDG, its structure can be viewed as
the combination of many blocks. By recursively calling the gen-
eral CTT-SP algorithm for the sub-branches, we can eventually

find the minimum cost storage strategy of the whole IDG. Fig. 10
shows an example of a general IDG. To create CTT(e⟨di, dj⟩), we
need to calculate the weights of all the out-block edges. For
example, for out-block edge e⟨dh, dk⟩, we need to further cal-
culate the minimum cost storage strategy of the sub-branches
du
du ∈ IDG ∧ du → dk ∧ du = dj ∧ du = dh


, as shadowed in

Fig. 10, given the start dataset di and the end dataset dk.

4.3.2. Pseudo-code of the general CTT-SP algorithm
Fig. 11 shows the pseudo-code of the general CTT-SP algorithm.

First, we choose an arbitrary branch from ds to de as the main
branch to construct the initial CTT (lines 1–21), where we need
to recursively call the general CTT-SP algorithm in calculating the
weights for the over-block edges (lines 11–14). Then we start the
Dijkstra algorithm (lines 22–50). Whenever an in-block edge is
found, we construct a new CTT with the following steps. First we
create a copy of the current CTT, inwhich the in-block edge is found
(line 31). Next, we update theweights of the edges: lines 32–34 are
for updating the weights of the in-block edges and lines 35–49 are
for updating theweights of the out-block edges. If the sub-branch is
a linear IDG, we call the linear CTT-SP algorithm described in Fig. 5;
otherwise we recursively call the general CTT-SP algorithm (lines
39–42). Finally, we add the new CTT to the CTTSet (line 50) and
continue the Dijkstra algorithm to find the next edge. When the
end dataset de is reached, the algorithm ends with the minimum
cost storage strategy returned.

4.4. Complexity analysis of minimum cost algorithms

From the pseudo-code in Fig. 5, we can clearly see that, for a
linear IDGwith n datasets, we have to add amagnitude of n2 edges

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 325

Fig. 11. Pseudo-code of the general CTT-SP algorithm.

Author's personal copy

326 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

to construct the CTT (line 3with two nested loops in lines 1–2), and
for the longest edge, the time complexity of calculating its weight
is also O(n2) (lines 5–11 with two nested loops), so we have a
total of O(n4). Next, the Dijkstra algorithm (line 12) has the known
time complexity of O(n2). Hence the linear CTT-SP algorithm has
a worst-case time complexity of O(n4). Furthermore, the space
complexity of the linear CTT-SP algorithm is the space of storing
the CTT, which is O(n2).

From the pseudo-code in Fig. 11, we can see that recursive
calls (line 14 and line 42) exist in the general CTT-SP algorithm,
which makes the algorithm’s complexity highly dependent on the
structure of the IDG. Next, we analyse the worst-case scenario of
the algorithm and show that both the time and space complexities
are polynomial.

In Fig. 11, pseudo-code lines 1–21 are for constructing one CTT,
i.e. the initial CTT. From pseudo-code lines 24 to 50 of the general
CTT-SP algorithm, many CTTs are created for the IDG during the
process of the Dijkstra algorithm, which determine the algorithm’s
computation complexity. Themaximumnumber of created CTTs is
smaller than the number of datasets in themain branch,which is in
themagnitude of n. Hence, if we denote the time complexity of the
general CTT-SP algorithm as Fl(n), we have a recursive equation as
follows:
F0(n) = O(n4)

Fl(n) = n3
∗

Fl−1(n(l−1)) + n2 , l > 0.

(6)

In Eq. (6), n is the number of datasets in the IDG, n(l−1) is the
number of datasets in the sub-branches, and l is themaximum level
of the recursive calls; in particular, F0(n) denotes the situation of
a linear IDG, where the linear CTT-SP algorithm needs to be called
(i.e. pseudo-code in Fig. 5).

Intuitively, in Eq. (6), Fl(n) seems to have an exponential
complexity depending on the level of recursive calls. However, in
our scenario, Fl(n) is polynomial because the recursive call is to
find the minimum cost storage strategy of given sub-branches in
an IDG which has a limited solution space. Hence, we can use the
iterative method [26] to solve the recursive equation and derive
the computation complexity of the general CTT-SP algorithm.

If we assume that we have already found the minimum cost
storage strategies for all sub-branches, this means, without taking
the impact of recursive calls into account, that the general CTT-
SP algorithm has a time complexity of O(n5). Formally, we can
transform Eq. (6) to the following:

Fl(n) = n3
∗

O(1) + n2

+ frec

Fl−1(n(l−1))


= O(n5) + frec


Fl−1(n(l−1))


. (7)

In Eq. (7), function frec denotes the complexity of recursive calls,
i.e. calculating the minimum cost storage strategies of all sub-
branches. Next, we analyse the complexity of recursive calls.

For a sub-branch of a general IDG, given different start dataset
and end dataset, its minimum cost storage strategy may be
different. Fig. 12 shows a sub-branch of an IDGwithw datasets.We
assume that d1’s direct predecessors and dw ’s direct successors are
all stored; then we can calculate a minimum cost storage strategy
of the sub-branch. We denote the first stored dataset as du and the
last stored dataset as dv in the strategy, which is shown in Fig. 12. If
d1’s adjacent stored predecessors are changed, the minimum cost
storage strategy may be different as well. Because the generation
cost of d1 is larger than that of storing the direct predecessors,
the first stored dataset in the new strategy must be one of the
datasets from d1 to du. Similarly, if dw ’s adjacent stored successors
are changed, the last storeddataset in thenewstrategymust be one
of the datasets from dv to dw . Hence, given different start and end
datasets, a sub-branch of the IDG has at most u ∗ (w − v) different
minimum cost storage strategies, which are of the magnitude of

Fig. 12. A sub-branch in the IDG.

w2. Similarly, we can prove that, for any sub-branches of IDG with
w datasets, there are at most w2 different minimum cost storage
strategies, given different start and end datasets. Hence, given any
sub-branches in IDG at any level of recursive calls, say level h, we
have the time complexity Fh(w) ∗ w2 of finding all the possible
minimum cost storage strategies.

If we assume that there are m different sub-branches of
recursive calls at level h for which we have to find their minimum
cost storage strategies, we have the complexity of recursive calls at
this level as follows:

frec(Fh(nh)) ≤

m−
i=1


Fh(nh,i) ∗ n2

h,i


. (8)

With formula (8), we can further transform Eq. (7) and itera-
tively derive the time complexity of the general CTT-SP algorithm.

Therefore, the entire iteration process from Eq. (6) is shown as
follows:

Fl(n) = n3
∗

Fl−1(n(l−1)) + n2

= O(n5) + frec

Fl−1(n(l−1))


// from (7)

≤ O(n5) +

ml−1−
i=1


Fl−1(n(l−1),i) ∗ n(l−1),i

2 // from (8)

= O(n5) +

ml−1−
i=1


n(l−1),i

3
∗


Fl−2(n(l−2),i)

+ n(l−1),i
2


∗ n(l−1),i
2


// recursion

≤ O(n5) +

ml−1−
i=1


O

(n(l−1),i)

5
∗ n(l−1),i

2
+

ml−2−
i=1


Fl−2(n(l−2),i) ∗ n(l−2),i

2 // from (7)(8)

≤ O(n5) +

ml−1−
i=1


O

(n(l−1),i)

5
∗ n(l−1),i

2
+ · · ·

+

m0−
i=1


F0(n0,i) ∗ n0,i

2 // iteration

= O(n5) +

1−
j=l−1

 mj−
i=1


O

(nj,i)

5
∗ nj,i

2

+

m0−
i=1


O(n0,i

4) ∗ n0,i
2 // from F0(n) = O(n4)

≤ l ∗ m ∗ O(n5) ∗ n2 //m =
j

max
i=0

(mi)

≤ O(n9) //l < n,m < n.

Hence, the worst-case time complexity of the general CTT-SP
algorithm is O(n9).

Similarly, the space complexity of the general CTT-SP algorithm
is l ∗ m ∗ n2

∗ O(n3), where the worst case is O(n7).

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 327

Fig. 13. Structure of the simulation environment.

5. Evaluation

The on-demand minimum cost benchmarking for intermediate
dataset storage strategies proposed in this paper is generic.
It can be used in any scientific workflow application. In this
section, we demonstrate the simulation results that we conduct
on the SwinCloud system [23]. We start with a description of
the simulation environment and strategies. Then we evaluate
general (random)workflows to demonstrate the comparison of our
benchmark with different storage strategies. Finally, we use our
algorithm with the specific pulsar searching workflow described
in Section 2, and use the real-world data to demonstrate how
our algorithm finds the minimum cost strategy in storing the
intermediate datasets of the pulsar searching workflow.

5.1. Simulation environment and strategies

Fig. 13 shows the structure of our simulation environment.
SwinCloud is a cloud computing simulation environment built on
the computing facilities at Swinburne University of Technology
which takes advantage of the existing SwinGrid system [35]. We
install VMWare software [33] on SwinCloud, so that it can of-
fer unified computing and storage resources. By utilising the uni-
fied resources, we set up data centres that can host applications.
In every data centre, Hadoop [19] is installed, which can facil-
itate the MapReduce computing paradigm and distributed data
management. SwinDeW-C (Swinburne Decentralised Workflow
for Cloud) [23] is a cloud workflow system developed based on
SwinDeW [34] and SwinDeW-G [35]. It runs on SwinCloud, and can
interpret and execute workflows, send and retrieve, and save and
delete datasets in the virtual data centres. Through a user interface
at the application level, which is aWebportal, we can deploywork-
flows and upload application data to the cloud. In simulations, we
facilitate our strategy in SwinDeW-C to manage the intermediate
datasets in the simulation cloud.

To evaluate the performance of our strategy, we run six simu-
lation strategies together and compare the total costs of the sys-
tem. The strategies are: (1) store all the intermediate datasets in
the system; (2) delete all the intermediate datasets, and regenerate
them whenever needed; (3) store the intermediate datasets that
have high generation cost; (4) store the intermediate datasets that
are most often used; (5) the dependency-based strategy reported

in [36,38], in which we store the datasets by comparing their gen-
eration cost rates and storage cost rates; and (6) theminimum cost
storage strategy found by the CTT-SP algorithm in our benchmark-
ing.

We have run a large number of simulations with different
parameters to evaluate the performance of our benchmark. We
evaluate some representative results in this section.

5.2. General (random) workflow simulations

To evaluate the overall performance of our strategy in a general
manner, we have run a large number of random simulations with
the six strategies introduced earlier. In general simulations, we
use randomly generated workflows to construct the IDG, and give
every intermediate dataset a random size, generation time, and
usage rate, and then run the workflows under different pricing
models. We compare the total system costs over 30 days for
different strategies, which show the cost effectiveness of the
strategies in comparison to our minimum cost benchmark.

We pick one test case as a representative. In this case, we let
the workflow randomly generate 50 intermediate datasets, each
with a random size ranging from 100 GB to 1 TB. The dataset
generation time is also random, ranging from 1 to 10 h. The usage
rate (time between every usage) is again randomly ranging from 1
day to 10 days. The prices of cloud services follow Amazon clouds’
cost model, i.e. $0.1 per CPU instance-hour for computation and
$0.15 per gigabyte per month for storage. We run our algorithm
on this IDG to calculate the minimum cost strategy, where 9 of
the 50 datasets are chosen to be stored. We use this minimum
cost strategy as the benchmark to evaluate the other five strategies
introduced in Section 5.1. More random simulation cases can be
found from the URL given in Section 5.1.

Fig. 14 shows the comparison of the minimum cost benchmark
with the strategy of storing high generation cost datasets. We
compare the total system costs over 30 days of the strategies that
store different percentages of datasets based on the generation
cost, and the minimum cost benchmark. The two extreme
strategies of storing all the datasets anddeleting all the datasets are
also included. In Fig. 14, we can clearly see the cost effectiveness of
different strategies compared with the benchmark, where storing
the top 10% generation cost datasets turns out to be the most cost-
effective strategy in this case. But the system cost is still much
higher than the minimum cost benchmark.

Then we evaluate the storing often used datasets strategy
by comparing with the benchmark. We still run simulations of
strategies that store different percentages of datasets based on
their usage rates. Fig. 15 shows the comparison of the total system
costs over 30 days, where we can clearly see the cost effectiveness
of different strategies compared with the benchmark. Also, the
strategy of storing the top 10% often used datasets turns out to
be the most cost-effective one in this case. Compared to Fig. 14,
the strategy of storing often used datasets is more cost effective
than storing high generation cost datasets, but it is again still much
higher than the minimum cost benchmark.

The intermediate dataset storage strategies reported in [36,38]
are also based on the IDG, which has considered the data de-
pendencies in calculating the datasets’ generation cost and stor-
age cost. Fig. 16 shows the comparison of the dependency-based
strategies with the minimum cost benchmark. In the dependency-
based static strategy, datasets’ storage statuses are decided when
they are first generated in the system by comparing their gener-
ation cost rates and storage cost rates, and in the dependency-
based dynamic strategy, whenever the datasets are regenerated
in the system during the runtime, their storage statuses are recal-
culated and dynamically changed, and other datasets’ storage sta-
tuses may also be adjusted accordingly. In Fig. 16, we can see that

Author's personal copy

328 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

Fig. 14. Cost effectiveness evaluation of the ‘‘store high generation cost datasets’’ strategy.

Fig. 15. Cost effectiveness evaluation of the ‘‘store often used datasets’’ strategy.

Fig. 16. Cost-effectiveness evaluation of the dependency-based strategy.

the dependency-based strategies have a good performance, which
are more cost effective than the strategies depicted in Figs. 14 and
15. In particular, for the dynamic strategy, based on the adjustment
of the datasets’ storage statuses in the runtime of the system, its
cost is close to the minimum cost benchmark that is calculated in
the build time.

5.3. Specific pulsar searching workflow simulations

The general (random) workflow simulations demonstrate how
to utilise our minimum cost benchmark to evaluate the cost

effectiveness of different intermediate dataset storage strategies.
Next we utilise it for the specific pulsar searching workflow
introduced in Section 2 and show how the benchmark works in
a real-world scientific application.

In the pulsar example, during the workflow execution, six
intermediate datasets are generated. The IDG of this pulsar search-
ing workflow is shown in Fig. 17, as well as the sizes and genera-
tion times of these intermediate datasets. The generation times are
from running this workflow on Swinburne Supercomputer [30],
and for simulations, we assume that, in the cloud system, the
generation times of these intermediate datasets are the same.

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 329

Fig. 17. IDG of the pulsar searching workflow.

Furthermore, we also assume that the prices of the cloud services
follow Amazon clouds’ cost model.

We have run the simulations based on the usage rates of
intermediate datasets. From the Swinburne astrophysics research
group, we understand that the ‘‘de-dispersion files’’ are the
most useful intermediate dataset. Based on these files, many
accelerating and seeking methods can be used to search for pulsar
candidates. Based on the scenario, we set the ‘‘de-dispersion files’’
to be used once every 2 days, and the rest of the intermediate
datasets to be used once every 5 days. With this setting, we run
the above-mentioned simulation strategies and calculate the total
costs of the system for one branch of the pulsar searchingworkflow
of processing one piece of observation data in 30 days, as shown in
Fig. 18.

From Fig. 18, we can see that (1) the cost increase of the ‘‘store
all’’ strategy is in a straight line, because in this strategy all the in-
termediate datasets are stored in the cloud storage that is charged
at a fixed rate, and there is no computation cost required; (2) the
cost increase of the ‘‘store none’’ strategy is in a fluctuated line, be-
cause in this strategy all the costs are computation costs of regener-
ating intermediate datasets. For the days that have fewer requests
of the data, the cost is low; otherwise, the cost is high; (3)–(4) the
costs increases of the ‘‘store high generation cost datasets’’ and
‘‘store often used datasets’’ strategies are in the middle band, and
are much lower than the costs of the ‘‘store all’’ and ‘‘store none’’
strategies. The cost lines are only a little fluctuated, because the in-
termediate datasets are partially stored; (5)–(6) the dependency-
based strategy has a good performance in this pulsar searching
workflow, which is very close to the minimum cost benchmark.

Table 1 shows how the six strategies store the intermediate
datasets in detail.

Since the intermediate datasets of this pulsar searching work-
flow are not very complicated, we can do some intuitive analyses
on how to store them. For the accelerated de-dispersion files, al-
though their generation cost is quite high, compared to the huge
size, it is not worth storing them in the cloud. However, in the
‘‘store high generation cost datasets’’ strategy, the accelerated de-
dispersion files are chosen to be stored. The final XML files are
not used very often, but given the high generation cost and small
size, they should be stored. However, in the ‘‘store often used
datasets’’ strategy, these files are not chosen to be stored. For the
de-dispersion files, by comparing their own generation cost rate
and storage cost rate, the dependency-based strategy does not
store them at the beginning, but stores them after they are used
in the regeneration of other datasets.

6. Related work

Compared to distributed computing systems like clusters and
grids, a cloud computing system has a cost benefit [4]. Assuncao
et al. [5] demonstrate that cloud computing can extend the
capacity of clusters with a cost benefit. Using Amazon clouds’
cost model and BOINC volunteer computing middleware, the
work in [22] analyses the cost benefit of cloud computing versus
grid computing. The idea of doing science on the cloud is not
new. Scientific applications have already been introduced to
cloud computing systems. The Cumulus project [31] introduces a

scientific cloud architecture for a data centre, and the Nimbus [21]
toolkit, which can directly turn a cluster into a cloud, has already
been used to build a cloud for scientific applications. In terms of the
cost benefit, the work by Deelman et al. [16] also applies Amazon
clouds’ cost model and demonstrates that cloud computing offers
a cost-effective way to deploy scientific applications. The above
worksmainly focus on the comparison of cloud computing systems
and the traditional distributed computing paradigms, and shows
that applications running on the cloudhave cost benefits. However,
our work studies how to reduce the cost if we run scientific
workflows on the cloud. In [16], Deelman et al. present that storing
some popular intermediate data can save the cost in comparison to
always regenerating them from the input data. In [1], Adams et al.
propose a model to represent the trade-off of computation cost
and storage cost, but they have not given the strategy to find this
trade-off. In [36,38], Yuan et al. propose a cost-effective strategy
for intermediate data storage in scientific cloudworkflows systems
that takes data dependency into consideration. Comparison with
the benchmark proposed in this paper indicates that the strategy
in [36,38] has a good performance, but does not achieve the
minimum cost of the system. In this paper, the minimum cost
benchmarking contains an innovative algorithm (i.e. the CTT-SP
algorithm) that can find theminimum cost strategy on demand for
storing intermediate datasets in scientific cloud workflow systems
based on the historic usage information of the datasets.

The study of data provenance is important for our work. Due to
the importance of data provenance in scientific applications, much
research about recording data provenance of the system has been
done [18,9]. Some of this work is especially for scientific workflow
systems [9]. Some popular scientific workflow systems, such as
Kepler [24], have their own system to record provenance during
the workflow execution [2]. In [28], Osterweil et al. present how
to generate a data derivation graph (DDG) for the execution of a
scientific workflow, where one DDG records the data provenance
of one execution. Similar to the DDG, our IDG is also based on the
scientificworkflowdata provenance, but it depicts the dependency
relationships of all the intermediate data in the system. With the
IDG, we know where the intermediate data are derived from and
how to regenerate them.

7. Discussion

As cloud computing is such a fast growing market, different
cloud service providers will appear. In the future, we will be able
to flexibly select service providers to conduct our applications
based on their pricing models. An intuitive idea is to incorporate
different cloud service providers in our applications, where we
can store the data with the provider who has a lower price in
storage resources, and choose the provider who has lower price
of computation resources to run the computation tasks. However,
at present, normally it is not practical to run scientific applications
among different cloud service providers, for the following reasons.

(1) The datasets in scientific applications are usually very large
in size. They are too large to be transferred efficiently via the
Internet. Due to bandwidth limitations of the Internet, in today’s
scientific projects, delivery of hard disks is a common practice to
transfer application data, and it is also considered to be the most

Author's personal copy

330 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

Fig. 18. Evaluation of strategies in storing the pulsar seeking workflow data.

Table 1
Pulsar searching workflow’s intermediate dataset storage status in the six strategies.

Strategies Datasets
Extracted
beam

De-dispersion files Accelerated de-dispersion
files

Seek
results

Pulsar
candidates

XML files

(1) Store all Stored Stored Stored Stored Stored Stored
(2) Store none Deleted Deleted Deleted Deleted Deleted Deleted
(3) Store high generation cost
datasets

Deleted Stored Stored Deleted Deleted Stored

(4) Store often used datasets Deleted Stored Deleted Deleted Deleted Deleted
(5) Dependency-based strategy Deleted Stored (deleted

initially)
Deleted Stored Deleted Stored

(6) Minimum cost benchmark Deleted Stored Deleted Stored Deleted Stored

efficient way to transfer terabytes of data [4]. Nowadays, express
delivery companies can deliver hard disks nationwide by the end of
the next day andworldwide in 2 or 3 days. In contrast, transferring
one terabyte of data via the Internet would take more than 10
days at a speed of 1 MB/s. To break the bandwidth limitation,
some institutions have set up dedicated fibres to transfer data.
For example, Swinburne University of Technology has built a
fibre to Parkes with gigabit bandwidth. However, it is mainly
used for transferring gigabytes of data. To transfer terabytes of
data, scientists would still prefer to ship hard disks. Furthermore,
building fibre connections is expensive, and they are not yetwidely
used in the Internet. Hence, transferring scientific application data
between different cloud service providers via the Internet is not
efficient.

(2) Cloud service providers place high cost on data transfer into
and out of their data centres. In contrast, data transfers within one
cloud service provider’s data centres are usually free. For example,
the data transfer price of Amazon cloud service is $0.1 per GB
of data transferred in and $0.17 per GB of data transferred out.
Compared to the storage price of $0.15 per GB per month, the
data transfer price is relatively high, such that finding a cheaper
storage cloud service provider and transferring data may not be
cost effective. The cloud service providers charge a high price for
data transfer not only because of the bandwidth limitation, but
also as a business strategy. As data are deemed as an important
resource today, cloud service providers want users to keep all the
application data in their storage cloud. For example, Amazon did a
promotion that placed a zero price on data transferred into its data
centres, until June 30, 2010, which means the users could upload
their data to Amazon’s cloud storage for free. However, the price of
data transfer out of Amazon is still the same.

Given the two reasons discussed above, the most efficient and
cost-effective way to run scientific applications in a cloud is to
keep all the data and run the applications with one cloud service
provider; a similar conclusion is also stated in [16]. Hence, in the

strategy stated in this paper, we did not take the data transfer
cost into consideration. However, some scientific applicationsmay
have to run in a distributed manner [13,12], because the required
datasets are distributed, some with fixed locations. In these cases,
data transfer is inevitable, and a data placement strategy [37]
would be needed to reduce the data transfer cost.

8. Conclusions and future work

In this paper, based on an astrophysics pulsar searching work-
flow, we have examined the unique features of intermediate
dataset storage in scientific cloud workflow systems and devel-
oped a novel algorithm that can find the minimum cost interme-
diate dataset storage strategy on demand. This strategy achieves
the best trade-off of computation cost and storage cost of the
cloud resources, which can be utilised as theminimum cost bench-
mark for evaluating the cost effectiveness of other dataset storage
strategies. Simulation results of both general (random) workflows
and the specific pulsar searching workflow demonstrate that our
benchmarking serves well for such a purpose.

Our current work is based on Amazon clouds’ cost model and
assumes that all the application data are stored with a single
cloud service provider. However, sometimes scientific workflows
have to run in a distributed manner since some application
data are distributed and may have fixed locations. In these
cases, data transfer is inevitable. In the future, we will further
develop some data placement strategies in order to reduce data
transfer among data centres. Furthermore, to widely utilise our
benchmarking, models of forecasting intermediate dataset usage
rates can be further studied. Such a model must be flexible in
order to be adapted to different scientific applications. Due to the
dynamic nature of cloud computing environments, the minimum
cost benchmarking of scientific cloud workflows needs to be
enhanced, where the minimum cost benchmark should be able to
dynamically adjust according to the change of datasets usages at
runtime.

Author's personal copy

D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332 331

Acknowledgments

The research work reported in this paper is partly supported
by Australian Research Council under Linkage Project LP0990393.
We are also grateful for the discussions with Dr. W. van Straten
and Ms. L. Levin from Swinburne Centre for Astrophysics and
Supercomputing on the pulsar searching process, as well as the
simulation work from Mr. B. Gibson.

References

[1] I. Adams, D.D.E. Long, E.L. Miller, S. Pasupathy, M.W. Storer, Maximizing
efficiency by trading storage for computation, in: Workshop on Hot Topics in
Cloud Computing, HotCloud’09, San Diego, CA, 2009, pp. 1–5.

[2] I. Altintas, O. Barney, E. Jaeger-Frank, Provenance collection support in
the Kepler scientific workflow system, in: International Provenance and
Annotation Workshop, Chicago, Illinois, USA, 2006, pp. 118–132.

[3] Amazon Cloud Services. http://aws.amazon.com/ (accessed on 12.08.10).
[4] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A.

Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the clouds: a Berkeley view
of cloud computing, Technical Report UCB/EECS-2009-28, University of Cali-
fornia at Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.pdf (accessed on 12.08.10).

[5] M.D.d. Assuncao, A.d. Costanzo, R. Buyya, Evaluating the cost-benefit of using
cloud computing to extend the capacity of clusters, in: 18th ACM International
Symposium on High Performance Distributed Computing, HPDC’09, Garching,
Germany, 2009, pp. 1–10.

[6] ATNF Parkes Swinburne Recorder.http://astronomy.swin.edu.au/pulsar/?
topic=apsr (accessed on 12.08.10).

[7] Australia Telescope National Facility. http://www.atnf.csiro.au/ (accessed on
12.08.10).

[8] Australia Telescope, ParkesObservatory. http://www.parkes.atnf.csiro.au/ (ac-
cessed on 12.08.10).

[9] Z. Bao, S. Cohen-Boulakia, S.B. Davidson, A. Eyal, S. Khanna, Differencing
provenance in scientific workflows, in: 25th IEEE International Conference on
Data Engineering, ICDE’09, Shanghai, China, 2009, pp. 808–819.

[10] R. Bose, J. Frew, Lineage retrieval for scientific data processing: a survey, ACM
Computing Surveys 37 (2005) 1–28.

[11] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems 25 (2009) 599–616.

[12] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,
C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger, K.
Stockinger, B. Tierney, Giggle: a framework for constructing scalable replica
location services, in: ACM/IEEE Conference on Supercomputing, SC’02,
Baltimore, Maryland, 2002, pp. 1–17.

[13] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. Bharathi, G. Mehta,
K. Vahi, Data placement for scientific applications in distributed environments,
in: 8th Grid Computing Conference, Austin, Texas, USA, 2007, pp. 267–274.

[14] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
M. Livny, Pegasus: mapping scientific workflows onto the grid, in: European
Across Grids Conference, Nicosia, Cyprus, 2004, pp. 11–20.

[15] E. Deelman, A. Chervenak, Data management challenges of data-intensive
scientific workflows, in: IEEE International Symposium on Cluster Computing
and the Grid, CCGrid’08, Lyon, France, 2008, pp. 687–692.

[16] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing
science on the cloud: the montage example, in: ACM/IEEE Conference on
Supercomputing, SC’08, Austin, Texas, 2008, pp. 1–12.

[17] I. Foster, Z. Yong, I. Raicu, S. Lu, Cloud computing and grid computing
360-degree compared, in: Grid Computing Environments Workshop, GCE’08,
Austin, Texas, USA, 2008, pp. 1–10.

[18] P. Groth, L. Moreau, Recording process documentation for provenance, IEEE
Transactions on Parallel and Distributed Systems 20 (2009) 1246–1259.

[19] Hadoop. http://hadoop.apache.org/ (accessed on 12.08.10).
[20] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, J. Good, On

the use of cloud computing for scientific workflows, in: 4th IEEE International
Conference on e-Science, Indianapolis, Indiana, USA, 2008, pp. 640–645.

[21] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, M. Tsugawa, Science clouds:
early experiences in cloud computing for scientific applications, in: First
Workshop on Cloud Computing and its Applications, CCA’08, Chicago, Illinois,
USA, 2008, pp. 1–6.

[22] D. Kondo, B. Javadi, P.Malecot, F. Cappello, D.P. Anderson, Cost-benefit analysis
of cloud computing versus desktop grids, in: IEEE International Symposium on
Parallel & Distributed Processing, IPDPS’09, Rome, Italy, 2009, pp. 1–12.

[23] X. Liu, D. Yuan, G. Zhang, J. Chen, Y. Yang, SwinDeW-C: a peer-to-peer
based cloud workflow system for managing instance intensive applica-
tions, in: Handbook of Cloud Computing, Springer, 2010, pp. 309–332.
http://www.ict.swin.edu.au/personal/xliu/papers/SwinDeW-C.pdf.

[24] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee,
Scientific workflow management and the Kepler system, Concurrency and
Computation: Practice and Experience (2005) 1039–1065.

[25] C. Moretti, J. Bulosan, D. Thain, P.J. Flynn, All-Pairs: an abstraction for data-
intensive cloud computing, in: IEEE International Parallel & Distributed
Processing Symposium, IPDPS’08, Miami, Florida, USA, 2008, pp. 1–11.

[26] P. Odifreddi, Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers, vol. 125, Elsevier, 1992, pp. ii-xi, 1–668.

[27] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K.
Glover, M.R. Pocock, A. Wipat, P. Li, Taverna: a tool for the composition and
enactment of bioinformatics workflows, Bioinformatics 20 (2004) 3045–3054.

[28] L.J. Osterweil, L.A. Clarke, A.M. Ellison, R. Podorozhny, A. Wise, E. Boose, J.
Hadley, Experience in using a process language to define scientific workflow
and generate dataset provenance, in: 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Atlanta, Georgia, 2008,
pp. 319–329.

[29] Y.L. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-science,
SIGMOD Record 34 (2005) 31–36.

[30] Swinburne high performance supercomputing facility. http://astronomy.swin.
edu.au/supercomputing/ (accessed on 12.08.10).

[31] L. Wang, J. Tao, M. Kunze, A.C. Castellanos, D. Kramer, W. Karl, Scientific
cloud computing: early definition and experience, in: 10th IEEE International
Conference on High Performance Computing and Communications, HPCC’08,
Dalin, China, 2008, pp. 825–830.

[32] A. Weiss, Computing in the cloud, ACM Networker 11 (2007) 18–25.
[33] VMware. http://www.vmware.com/ (accessed on 12.08.10).
[34] J. Yan, Y. Yang, G.K. Raikundalia, SwinDeW—a P2P-based decentralized

workflow management system, IEEE Transactions on Systems, Man and
Cybernetics, Part A 36 (2006) 922–935.

[35] Y. Yang, K. Liu, J. Chen, J. Lignier, H. Jin, Peer-to-Peer based grid workflow
runtime environment of SwinDeW-G, in: IEEE International Conference on e-
Science and Grid Computing, Bangalore, India, 2007, pp. 51–58.

[36] D. Yuan, Y. Yang, X. Liu, J. Chen, A cost-effective strategy for intermediate data
storage in scientific cloud workflows, in: 24th IEEE International Parallel &
Distributed Processing Symposium, IPDPS’10, Atlanta, Georgia, USA, 2010, pp.
1–12.

[37] D. Yuan, Y. Yang, X. Liu, J. Chen, A data placement strategy in scientific cloud
workflows, Future Generation Computer Systems 26 (2010) 1200–1214.

[38] D. Yuan, Y. Yang, X. Liu, G. Zhang, J. Chen, A data dependency based
strategy for intermediate data storage in scientific cloud workflow sys-
tems, Concurrency and Computation: Practice and Experience (2010)
(http://dx.doi.org/10.1002/cpe.1636).

DongYuanwas born in Jinan, China. He received his B.Eng.
degree in 2005 andM.Eng. degree in 2008, both fromShan-
dong University, Jinan, China, in computer science.

He is currently a Ph.D. student in the Faculty of In-
formation and Communication Technologies at Swinburne
University of Technology, Melbourne, Victoria, Australia.
His research interests include data management in work-
flow systems, scheduling and resource management, grid
and cloud computing.

Yun Yang was born in Shanghai, China. He received his
B.S. degree from Anhui University, Hefei, China, in 1984,
hisM.Eng. degree from the University of Science and Tech-
nology of China, Hefei, China, in 1987, and his Ph.D. degree
from the University of Queensland, Brisbane, Australia, in
1992, all in computer science.

He is currently a Full Professor in the Faculty of In-
formation andCommunication Technologies at Swinburne
University of Technology, Melbourne, Victoria, Australia.
Prior to joining Swinburne as an Associate Professor, he
was a Lecturer and Senior Lecturer at Deakin University

during th period 1996–1999. Before that, he was a (Senior) Research Scientist at
DSTC Cooperative Research Centre for Distributed Systems Technology during the
period 1993–1996. He also worked at the Beijing University of Aeronautics and
Astronautics during the period 1987–1988. He has co-edited two books and pub-
lished more than 170 papers in journals and refereed conference proceedings. His
current research interests include software technologies, p2p/grid/cloud workflow
systems, service-oriented computing, cloud computing, and e-learning.

Xiao Liu received his master’s degree in management sci-
ence and engineering fromHefei University of Technology,
Hefei, China, 2007. He is currently a Ph.D. student at the
Centre for Complex Software Systems and Services in the
Faculty of Information and Communication Technologies
at Swinburne University of Technology, Melbourne, Vic-
toria, Australia. His research interests include workflow
management systems, scientific workflow, business pro-
cess management and data mining.

Author's personal copy

332 D. Yuan et al. / J. Parallel Distrib. Comput. 71 (2011) 316–332

Jinjun Chen received his Ph.D. degree from Swinburne
University of Technology, Melbourne, Victoria, Australia.
His thesis was granted a Research Thesis Excellence
Award. He received the Swinburne Vice Chancellor’s
research award in 2008. He is a core executive
member of the IEEE Technical Committee of Scalable
Computing and the coordinator of the IEEE TCSC tech-
nical area of Workflow Management in Scalable Com-
puting Environments. He is the Editor-in-Chief of the
Springer book series on Advances in Business Process
and Workflow Management (http://www.swinflow.

org/books/springer/SpringerBook.htm) and Editor-in-Chief of the Nova book se-
ries on Process and Workflow Management and Applications (http://www.

swinflow.org/books/nova/NovaBook.htm). He has guest edited or is editing sev-
eral special issues in quality journals such as in IEEE Transactions on Automa-
tion Science and Engineering. He has been involved in the organization of
many conferences, and was awarded the IEEE Computer Society Service Award
(2007).

He has published more than 50 papers in journals and conference proceed-
ings such as those of ICSE2008 and ACM TAAS. His research interests include
scientific workflowmanagement and applications, workflowmanagement and ap-
plications in Web service or SOC environments, workflow management and appli-
cations in grid (service)/cloud computing environments, software verification and
validation in workflow systems, QoS and resource scheduling in distributed com-
puting systems such as cloud computing, and service-oriented computing (SLA and
composition).

