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SUMMARY

Many scientific workflows are data intensive where large volumes of intermediate data are generated during
their execution. Some valuable intermediate data need to be stored for sharing or reuse. Traditionally, they
are selectively stored according to the system storage capacity, determined manually. As doing science
in the cloud has become popular nowadays, more intermediate data can be stored in scientific cloud
workflows based on a pay-for-use model. In this paper, we build an intermediate data dependency graph
(IDG) from the data provenance in scientific workflows. With the IDG, deleted intermediate data can
be regenerated, and as such we develop a novel intermediate data storage strategy that can reduce the
cost of scientific cloud workflow systems by automatically storing appropriate intermediate data sets with
one cloud service provider. The strategy has significant research merits, i.e. it achieves a cost-effective
trade-off of computation cost and storage cost and is not strongly impacted by the forecasting inaccuracy
of data sets’ usages. Meanwhile, the strategy also takes the users’ tolerance of data accessing delay into
consideration. We utilize Amazon’s cost model and apply the strategy to general random as well as specific
astrophysics pulsar searching scientific workflows for evaluation. The results show that our strategy can
reduce the overall cost of scientific cloud workflow execution significantly. Copyright � 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Scientific applications are usually complex and data-intensive. In many fields, such as astronomy
[1], high-energy physics [2] and bio-informatics [3], scientists need to analyze terabytes of data
either from existing data resources or collected from physical devices. The scientific analyses are
usually computation intensive, hence taking a long time for execution. Workflow technologies
can be facilitated to automate these scientific applications. Accordingly, scientific workflows are
typically very complex. They usually have a large number of tasks and need a long time for
execution. During the execution, a large volume of new intermediate data will be generated [4].
They could be even larger than the original data and contain some important intermediate results.
After the execution of a scientific workflow, some intermediate data may need to be stored for
future use because: (1) scientists may need to re-analyze the results or apply new analyses on
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the intermediate data; (2) for collaboration, the intermediate results are shared among scientists
from different institutions and the intermediate data can be reused. Storing valuable intermediate
data can save their re-generation cost when they are reused, not to mention the waiting time for
regeneration. Given the large size of the data, running scientific workflow applications usually
needs not only high-performance computing resources but also massive storage [4].

Nowadays, popular scientific workflows are often deployed in grid systems [2] because they have
high performance and massive storage. However, building a grid system is extremely expensive
and it is normally not open for scientists all over the world. The emergence of cloud computing
technologies offers a new way for developing scientific workflow systems in which one research
topic is cost-effective strategies for storing intermediate data [5, 6].

In late 2007, the concept of cloud computing was proposed [7] and it is deemed as the next
generation of IT platforms that can deliver computing as a kind of utility [8]. Foster et al. made a
comprehensive comparison of grid computing and cloud computing [9]. Cloud computing systems
provide the high performance and massive storage required for scientific applications in the same
way as grid systems, but with a lower infrastructure construction cost among many other features,
because cloud computing systems are composed of data centers which can be clusters of commodity
hardware [7]. Research into doing science and data-intensive applications in the cloud has already
commenced [10], such as early experiences of Nimbus [11] and Cumulus [12] projects. The work
by Deelman et al. [13] shows that cloud computing offers a cost-effective solution for data-intensive
applications, such as scientific workflows [14]. Furthermore, cloud computing systems offer a new
model that scientists from all over the world can collaborate and conduct their research together.
Cloud computing systems are based on the Internet, and so are the scientific workflow systems
deployed in the cloud. Scientists can upload their data and launch their applications on the scientific
cloud workflow systems from anywhere in the world via the Internet, and they only need to pay
for the resources used for their applications. As all the data are managed in the cloud, it is easy
to share data among scientists.

Scientific cloud workflows are deployed in cloud computing systems, where all the resources
need to be paid for use. For a scientific cloud workflow system, storing all the intermediated data
generated during workflow executions may cause a high storage cost. On the contrary, if we delete
all the intermediate data and regenerate them every time when ever needed, the computation cost
of the system may also be very high. The intermediate data management is to reduce the total cost
of the whole system. The best way is to find a balance that selectively stores some popular data
sets and regenerates the rest of them when needed.

In this paper, we propose a novel strategy for the intermediate data storage of scientific cloud
workflows to reduce the overall cost of the system. The intermediate data in scientific cloud
workflows often have dependencies. Along workflow execution, they are generated by the tasks.
A task can operate on one or more data sets and generate new one(s). These generation relationships
are a kind of data provenance. Based on the data provenance, we create an intermediate data
dependency graph (IDG), which records the information about all the intermediate data sets that
have ever existed in the cloud workflow system, regardless of whether they are stored or deleted.
With the IDG, the system knows how the intermediate data sets are generated and can further
calculate their generation cost. Given an intermediate data set, we divide its generation cost by its
usage rate, so that this cost (the generation cost per unit time) can be compared with its storage
cost per time unit, where a data set’s usage rate is the time between every usage of this data
set that can be obtained from the system log. Then, we can decide whether to store or delete an
intermediate data set to reduce the system cost. However, another factor that should be considered
is the computation delay when users want to access a deleted intermediate data set. Based on the
principles above, we design a cost-effective intermediated data storage strategy, which is (1) for
running scientific cloud workflows with one cloud service provider; (2) automatically deciding
whether an intermediate data set should be stored or deleted in the cloud computing system;
(3) not strongly impacted by the forecasting inaccuracy of the data sets’ usages; (4) taking the
users’ tolerance of computation delays into consideration.

This paper is the extended version of our conference paper [6]. The extension includes that
(1) address the new research issue of data accessing delay in the cloud; (2) analyze the impact
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of the data sets usages forecasting inaccuracy in our strategy; (3) conduct new experiments of
random simulations to evaluate the general cost-effectiveness of our strategy; and (4) discuss the
feasibility of running scientific workflows among different cloud service providers.

The remainder of this paper is organized as follows. Section 2 gives a motivating example
of scientific workflow and analyzes the research problems. Section 3 introduces some important
related concepts to our strategy. Section 4 presents the detailed algorithms in our strategy. Section 5
demonstrates the simulation results and evaluation. Section 6 is a discussion about the feasibility
of running scientific workflows among different cloud service providers. Section 7 discusses the
related work. Section 8 addresses our conclusions and future work.

2. MOTIVATING EXAMPLE AND PROBLEM ANALYSIS

2.1. Motivating example

Scientific applications often need to process a large amount of data. For example, Swinburne
Astrophysics group has been conducting a pulsar searching survey using the observation data
from Parkes Radio Telescope (http://astronomy.swin.edu.au/pulsar/), which is one of the most
famous radio telescopes in the world (http://www.parkes.atnf.csiro.au). Pulsar searching is a typical
scientific application. It contains complex and time-consuming tasks and needs to process terabytes
of data. Figure 1 depicts the high-level structure of a pulsar searching workflow. In the figure, we
use the cloud symbol on the top to denote the parallel branches of the workflow.

At the beginning, raw signal data from Parkes Radio Telescope are recorded at a rate of one
gigabyte per second by the ATNF§ Parkes Swinburne Recorder (APSR). Depending on different
areas in the universe that the researchers want to conduct the pulsar searching survey, the observation
time is normally from 4min to 1 h. Recording from the telescope in real time, these raw data files
have data from multiple beams interleaved. For initial preparation, different beam files are extracted
from the raw data files and compressed. They are normally 1–20GB each in size depending on the
observation time. The beam files contain the pulsar signals which are dispersed by the interstellar
medium. De-dispersion is to counteract this effect. As the potential dispersion source is unknown,
a large number of de-dispersion files will be generated with different dispersion trials. In the
current pulsar searching survey, 1200 is the minimum number of the dispersion trials. Based on
the size of the input beam file, this de-dispersion step will take 1–13 h to finish and generate up
to 90GB of de-dispersion files. Furthermore, for binary pulsar searching, every de-dispersion file
will need another step of processing named accelerate. This step will generate the accelerated
de-dispersion files with the similar size in the previous de-dispersion step. Based on the generated
de-dispersion files, different seeking algorithms can be applied to search pulsar candidates, such
as FFT Seeking, FFA seeking, and single pulse seeking. For a large input beam file, it will take
more than 1 h to seek 1200 de-dispersion files. A candidate list of pulsars will be generated after
the seeking step which is saved in a text file. Furthermore, by comparing the candidates generated
from different beam files in a same time session, some interference may be detected and some
candidates may be eliminated. With the final pulsar candidates, we need to go back to the beam
files or the de-dispersion files to find their feature signals and fold them to XML files. Finally, the
XML files will be visually displayed to researchers for making decisions on whether a pulsar has
been found or not.

As described above, we can see that this pulsar searching workflow is both computation and
data intensive. It is currently running on the Swinburne high-performance supercomputing facility
(http://astronomy.swinburne.edu.au/supercomputing/). It needs a long execution time and a large
amount of intermediate data is generated. At present, all the intermediate data are deleted after
having been used, and the scientists only store the raw beam data, which are extracted from the
raw telescope data. Whenever there are needs for using the intermediate data, scientists have to

§ATNF refers to the Australian Telescope National Facility.
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Figure 1. Pulsar searching workflow.

regenerate them based on the raw beam files. The reason that intermediate data are not stored is
mainly because the supercomputer is a shared facility that cannot offer unlimited storage capacity
to hold the accumulated terabytes of data. However, some intermediate data are better to be
stored. For example, the de-dispersion files are frequently used intermediate data. Based on them,
scientists can apply different seeking algorithms to find potential pulsar candidates. Furthermore,
some intermediate data are derived from the de-dispersion files, such as the results of the seek
algorithms and the pulsar candidate list. If these data are reused, the de-dispersion files will also
need to be regenerated. For the large input beam files, the regeneration of the de-dispersion files
will take more than 10 h. It not only delays the scientists from conducting their experiments, but
also consumes a lot of computation resources. On the other hand, some intermediate data may
not need to be stored. For example, the accelerated de-dispersion files, which are generated by the
accelerate step. The accelerate step is an optional step that is only for the binary pulsar searching.
Not all pulsar searching processes need to accelerate the de-dispersion files, hence the accelerated
de-dispersion files are not used very often. In light of this and given the large size of these data, they
are not worth to store as it would be more cost effective to regenerate them from the de-dispersion
files whenever they are used.

2.2. Problem analysis

Traditionally, scientific workflows are deployed on the high-performance computing facilities, such
as clusters and grids. Scientific workflows are often complex with huge intermediate data generated
during their execution. How to store these intermediate data is normally decided by the scientists
who use the scientific workflows because the clusters and grids normally only serve for certain
institutions. The scientists may store the intermediate data that are most valuable to them, based
on the storage capacity of the system. However, in many scientific workflow systems, the storage
capacities are limited, such as the pulsar searching workflow we introduced. The scientists have
to delete all the intermediate data because of the storage limitation. This bottleneck of storage can
be avoided if we run scientific workflows in the cloud.

In a cloud computing system, theoretically, the system can offer unlimited storage resources.
All the intermediate data generated by scientific cloud workflows can be stored, if we are willing
to pay for the required resources. However, in scientific cloud workflow systems, whether to store
intermediate data or not is not an easy decision anymore.

(1) All the resources in the cloud carry certain costs, hence whether storing or generating an
intermediate data set, we have to pay for the resources used. The intermediate data sets
vary in size, and have different generation cost and usage rate. Some of them may often
be used whereas some others may not. On one extreme, it is most likely not cost effective
to store all the intermediate data in the cloud. On the other extreme, if we delete them all,
regeneration of frequently used intermediate data sets imposes a high computation cost. We
need a strategy to balance the regeneration cost and the storage cost of the intermediate
data, to reduce the total cost of the scientific cloud workflow systems. In this paper, given
the large capacity of data center and the consideration of cost effectiveness, we assume that

Copyright � 2010 John Wiley & Sons, Ltd.

STRATEGY FOR INTERMEDIATE DATA STORAGE

DOI: 10.1002/cpe
Concurrency Computat.: Pract. Exper. 2012; 24:956–9

959

76



all the intermediate data are stored within one data center with one cloud service provider,
therefore, data transfer cost is not considered.

(2) However, the best trade-off of regeneration cost and storage cost may not be the best strategy
for intermediate data storage. When the deleted intermediate data sets are needed, the
regeneration will not only impose computation cost, but will also cause a time delay. Based
on different time constraints of the scientific workflows [15, 16], users’ tolerance of this
accessing delay may differ dramatically. Sometimes users may want the data to be available
immediately, and sometimes they may not care about waiting for it to become available.
On the one hand, one user may have different degrees of delay tolerance for different data
sets. On the other hand, different users may also have different degrees of delay tolerance
for a particular data set. Furthermore, one user may also have different degrees of delay
tolerance for one data set in different time phases. Hence, in the strategy, we should have a
parameter to indicate users’ delay tolerance, which can be set and flexibly changed by the
system manager based on users’ preferences.

(3) Scientists cannot predict the usage rate of the intermediate data anymore. For a single
research group, if the data resources of the applications are only used by its own scientists,
the scientists may predict the usage rate of the intermediate data and decide whether to
store or delete them. However, scientific cloud workflow systems are not developed for a
single scientist or institution, rather, for scientists from different institutions to collaborate
and share data resources. The users of the system could be anonymous on the Internet. We
must have a strategy for storing the intermediate data based on the needs of all the users
that can reduce the overall cost. Hence, the data sets usage rate should be discovered and
obtained from the system log, and not just manually set by the users.

Hence, for scientific cloud workflow systems, we need a strategy that can automatically select
and store the most appropriate intermediate data sets. Furthermore, this strategy should be cost
effective that can reduce the total cost of the systems.

3. COST-ORIENTED INTERMEDIATE DATA STORAGE IN SCIENTIFIC CLOUD
WORKFLOWS

3.1. Data management in scientific cloud workflows

In a cloud computing system, application data are stored in large data centers. The cloud users visit
the system via the Internet and upload the data to conduct their applications. All the application
data are stored in the cloud storage and managed by the cloud computing system independent of
users. As time goes on and the number of cloud users increases, the volume of data stored in the
cloud will become huge. This makes the data management in cloud computing systems a very
challenging job.

Scientific cloud workflow system is the workflow system for scientists to run their applications
in the cloud. As depicted in Figure 2, it runs on cloud resources, denoted as the cloud symbol
on the right, and has many differences with the traditional scientific workflow systems in data
management. The most important ones are as follows: (1) For scientific cloud workflows, all the
application data are managed in the cloud. Scientists can easily visit the cloud computing system
via a Web portal to launch their workflows. This requires data management to be automatic; (2) A
scientific cloud workflow system has a cost model. Scientists have to pay for the resources used
for conducting their applications. Hence, data management has to be cost oriented; and (3) The
scientific cloud workflow system is based on the Internet, where the application data are shared
and reused among the scientists world wide. For data reanalysis and regeneration, data provenance
is more important in scientific cloud workflows.

In general, there are two types of data stored in the cloud storage, input data and intermediate
data including result data. First, input data are the data uploaded by users, and in the scientific
applications they also can be the raw data collected from the devices. These data are the original
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Figure 2. Structure of data management in scientific cloud workflow system.

data for processing or analysis that are usually the input of the applications. The most important
feature of these data is that if they were deleted, they could not be regenerated by the system.
Second, intermediate data are the data newly generated in the cloud computing system while the
applications run. These data save the intermediate computation results of the applications that will
be used in the future execution. In general, the final result data of the applications are a kind of
intermediate data, because the result data in one application can also be used in other applications.
When further operations apply on the result data, they become intermediate data. Hence, the
intermediate data are the data generated based on either the input data or other intermediate data,
and the most important feature is that they can be regenerated if we know their provenance.

For the input data, the users can decide whether they should be stored or deleted, since
they cannot be regenerated once deleted. For the intermediate data, their storage status can be
decided by the system, since they can be regenerated. Hence, in this paper we develop a strategy
for intermediate data storage that can significantly reduce the cost of scientific cloud workflow
systems.

3.2. Data provenance and intermediate data dependency graph (IDG)

Scientific workflows have many computation and data-intensive tasks that will generate many
intermediate data sets of considerable size. There are dependencies existing among the intermediate
data sets. Data provenance in workflows is a kind of important metadata, in which the dependencies
between data sets are recorded [17]. The dependency depicts the derivation relationship between
workflow intermediate data sets. For scientific workflows, data provenance is especially important,
because after the execution, some intermediate data sets may be deleted, but sometimes the
scientists have to regenerate them for either reuse or reanalysis [18]. Data provenance records
the information about how the intermediate data sets were generated, which is very important
for scientists. Furthermore, regeneration of the intermediate data sets from the input data may
be very time consuming, and therefore carry a high cost. With data provenance information, the
regeneration of the demanding data set may start from some stored intermediated data sets instead.
In scientific cloud workflow systems, data provenance is recorded during workflow execution.
Taking advantage of data provenance, we can build an IDG based on data provenance. For all the
intermediate data sets once generated in the system, whether stored or deleted, their references are
recorded in the IDG.

IDG is a directed acyclic graph, where every node in the graph denotes an intermediate data
set. Figure 3 shows us a simple IDG, data set d1 is pointed toward d2 meaning that d1 is used to
generate d2; data set d2 and d3 are pointed toward d4 meaning that d2 and d3 are used together to
generate d4; and d5 is pointed toward d6 and d7 meaning that d5 is used to generate either d6 or d7
based on different operations. In an IDG, all the intermediate data sets’ provenances are recorded.
When some of the deleted intermediate data sets need to be reused, we do not need to regenerate
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Figure 3. A simple Intermediate data Dependency Graph (IDG).

them from the original input data. With the IDG, the system can find the predecessor data sets of the
demanding data, hence they can be regenerated from their nearest existing predecessor data sets.

3.3. Data sets storage cost model

With an IDG, given any intermediate data set that ever existed in the system, we know how to
regenerate it. However, in this paper, we aim at reducing the total cost of managing the intermediate
data. In a cloud computing system, if the users want to deploy and run applications, they need
to pay for the resources used. The resources are offered by cloud service providers, who have
their cost models to charge the users. In general, there are two basic types of resources in cloud
computing systems: storage and computation. Popular cloud services providers’ cost models are
based on these two types of resources [19]. Furthermore, the cost of data transfer is also considered,
such as in Amazon’s cost model. In [13], the authors state that a cost-effective way of doing
science in the cloud is to upload all the application data to the cloud and run all the applications
with the cloud services. Hence we assume that scientists upload all the input data to the cloud to
conduct their experiments. Because transferring data within one cloud service provider’s facilities
is usually free, the data transfer cost of managing intermediate data during workflow execution is
not counted. In this paper, we define our cost model for storing the intermediate data in a scientific
cloud workflow system as follows:

Cost=C+S,

where the total cost of the system, Cost, is the sum of C , which is the total cost of computation
resources used to regenerate the intermediate data, and S, which is the total cost of storage
resources used to store the intermediate data. For the resources, different cloud service providers
have different prices. In this paper, we use Amazon cloud services’ price as a representative, since
they are well known. The prices are as follows:

• $0.15 per Gigabyte per month for the storage resources.
• $0.1 per CPU hour for the computation resources.

Furthermore, we denote these two prices as CostS and CostC for the algorithms, respectively.
To utilize the data sets storage cost model, we define some important attributes for the interme-

diate data sets in an IDG. For intermediate data set di , its attributes are denoted as: < size, flag,
tp, t, k, pSet, fSet, CostR>, where

• size, denotes the size of this data set;
• flag, denotes the status whether this data set is stored or deleted in the system;
• tp, denotes the time of generating this data set from its direct predecessor data sets;
• t, denotes the usage rate, which is the time between every usage of di in the system.
In traditional scientific workflows, t can be defined by scientists, who use this workflow
collaboratively. However, a scientific cloud workflow system is based on the Internet with a
large number of users, as we discussed before, di cannot be defined by users. It is a forecasting
value from the data set’s usage history recorded in the system logs. t is a dynamic value that
changes according to di ’s real usage rate in the system.

• k, denotes users’ tolerance of di ’s accessing delay, which is a value between 0 and 1. The
value is set by the system manager based on users’ preference. The two extreme situations:
�=0 indicates that users have no tolerance of accessing delay, which means that regardless
of how large di ’s storage cost is, it has to be stored; �=1 indicates users do not care about
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Figure 4. A segment of IDG.

the accessing delay, which means that the storage status of di only depends on its generation
cost and storage cost to reduce the total system cost.

• pSet, is the set of references of all the deleted intermediate data sets in the IDG linked to
di , as shown in Figure 4. If we want to regenerate di , di .pSet contains all the data sets
that need to be regenerated beforehand. Hence, the generation cost of di can be denoted as:
genCost(di )= (di .tp+∑d j∈di .pSet d j .tp)∗CostC;

• fSet, is the set of references of all the deleted intermediate data sets in the IDG that are linked
by di , as shown in Figure 4. If di is deleted, to regenerate any data sets in di .fSet, we have
to regenerate di first. In other words, if the storage status of di has changed, the generation
cost of all the data sets in di .fSet will be affected by genCost(di );

• CostR, is di ’s cost rate, which means for the average cost per time unit of data set di in
the system, in this paper we use hour as time unit. If di is a stored data set, di.CostR=
di .size∗CostS. If di is a deleted data set in the system, when we need to use di , we have to
regenerate it. Thus we divide the generation cost of di by the time between its usages and use
this value as the cost rate of di in the system. di .CostR=genCost(di )/di .t. When the storage
status of di is changed, its CostR will change correspondingly.

Hence, the system cost rate of managing intermediate data is the sum of CostR of all the
intermediate data sets, which is

∑
di∈I DG (di .CostR). Given a time duration, denoted as [T0,Tn],

the total system cost is the integral of the system cost rate in this duration as a function of time t ,
which is:

Total_Cost=
∫ Tn

t=T0

( ∑
di∈I DG

(di .CostR)

)
• dt

The goal of our intermediate data management is to reduce this cost. In the following section,
we will introduce a dependency-based intermediate data storage strategy, which selectively stores
the intermediate data sets to reduce the total cost of the scientific cloud workflow system.

4. DEPENDENCY-BASED INTERMEDIATE DATA STORAGE STRATEGY

An IDG records the references of all the intermediate data sets and their dependencies that ever
existed in the system, some data sets may be stored in the system, and others may be deleted. Our
dependency-based intermediate data storage strategy is developed based on the IDG, and applied
at workflow runtime. During workflows execution, when new data sets are generated in the system,
their information is added to the IDG for the first time, and then when they have finished being
used, the strategy will decide whether they should be stored or deleted. For the stored intermediate
data sets, the strategy will periodically check whether they still need to be stored. For the deleted
intermediate data sets, when they are regenerated, the strategy will check whether circumstances
have changed, and decide whether they should now be stored. Deciding whether to store or delete
an intermediate data set is based on comparing its generation cost rate and storage cost rate, where
the storage cost rate have to multiply the delay tolerance parameter � beforehand, in order to

Copyright � 2010 John Wiley & Sons, Ltd.

STRATEGY FOR INTERMEDIATE DATA STORAGE

DOI: 10.1002/cpe
Concurrency Computat.: Pract. Exper. 2012; 24:956–9

963

76



reflect users’ preference of the accessing delay of that data set. Our strategy can dynamically store
the necessary intermediate data sets during workflow execution with the acceptable data accessing
delay, which means deleting any stored data sets in the system would bring an increase of system
cost. The strategy contains three algorithms described in this section. Furthermore, a data set’s
usage rate t , which is used for the calculation of data set’s generation cost rate, is obtained from
the system log. As it is an estimated value, there would be some forecasting inaccuracy in it. At
the end of this section, we will analyze forecasting inaccuracy’s impact on our strategy.

4.1. Algorithm for deciding newly generated intermediate data sets’ storage status

Suppose d0 is a newly generated intermediate data set.
First, we add its information to the IDG. We find the provenance data sets of d0 in the IDG,

and add edges pointing to d0 from these data sets. Then we initialize its attributes. As d0 does not
have a usage history yet, we use the average value in the system as the initial value of d0’s usage
rate.

Next, we check whether d0 needs to be stored or not. As d0 is newly added in the IDG, it does
not have successor data sets in the IDG, which means no intermediate data sets are derived from
d0 at this moment. For deciding whether to store or delete d0, we only compare the generation
cost rate of d0 itself and its storage cost rate multiplied by the delay tolerance parameter �,
which are genCost(d0)/d0.t and d0.size∗CostS∗d0.�. If the cost of generation is larger than the
cost of storing it, we save d0 and set d0.CostR=d0.size∗CostS, otherwise we delete d0 and set
d0.CostR=genCost(d0)/d0.t . The algorithm is shown in Figure 5.

In this algorithm, we guarantee that all the intermediate data sets chosen to be stored are
necessary, which means that deleting any one of them would increase the cost of the system, since
they all have a higher generation cost than storage cost.

4.2. Algorithm for managing stored intermediate data sets

The usage rate t of a data set is an important parameter that determines its storage status. As t is
a dynamic value that may change at any time, we have to dynamically check whether the stored
intermediate data sets in the system still need to be stored.

For an intermediate data set d0 that is stored in the system, we set a threshold time t�, where
d0.t� =genCost(d0)/(d0.size∗CostS). This threshold time indicates how long this data set can be
stored in the system with the cost of generating it. If d0 has not been used for the time of t�, we
will check whether it should be stored anymore.

If we delete stored intermediate data set d0, the system cost rate is reduced by d0’s storage cost
rate, which is d0.size∗CostS. Meanwhile, the increase of the system cost rate is the sum of the
generation cost rate of d0 itself, which is genCost(d0)/d0.t , and the increased generation cost rates
of all the data sets in d0.fSet caused by deleting d0, which is

∑
di∈d0.fSet (genCost(d0)/di .t). We

compare d0’s storage cost rate and generation cost rate to decide whether d0 should be stored or
not. The detailed algorithm is shown in Figure 6.

( ) ;..)( 0.0 CostCtdtddgenCost ppSetdd pi ∗+= ∈

λ...)( 0000 dCostSsizedtddgenCost ∗∗>

;.. 00 CostSsizedCostRd ∗=

;.)(. 000 tddgenCostCostRd =

Figure 5. Algorithm for handling newly generated data sets.
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Figure 6. Algorithm for checking stored intermediate data sets.

Lemma 1
The deletion of stored intermediate data set d0 in the IDG does not affect the stored data sets
adjacent to d0, where the stored data sets adjacent to d0 means the data sets that directly link to
d0 or d0.pSet, and the data sets that are directly linked by d0 or d0.fSet.

Proof

(1) Suppose dp is a stored data set directly linked to d0 or d0.pSet. As d0 is deleted, d0
and d0.fSet are added to dp.fSet. Thus the new generation cost rate of dp in the system
is genCost(dp)/dp.t+

∑
di∈dp .fSet∪d0∪d0.fSet (genCost(dp)/di .t), and it is larger than before,

which was genCost(dp)/dp.t+
∑

di∈dp .fSet (genCost(dp)/di .t). Hence dp still needs to be
stored.

(2) Suppose d f is a stored data set directly linked by d0 or d0.fSet. As d0 is deleted, d0
and d0.pSet are added to d f .pSet. Thus the new generation cost of d f is genCost(d f )=
(d f .tp+∑di∈d f .pSet∪d0∪d0.pSet di .tp)∗CostC, and it is larger than before, which was
genCost(d f )= (d f .tp+∑di∈d f .pSet di .tp)∗CostC. Because of the increase of genCost(d f ),
the generation cost rate of d f in the system is larger than before, which was genCost(d f )/d f .t
+∑di∈d f .fSet (genCost(d f )/di .t). Hence d f still needs to be stored. �

Because of (1) and (2), the Lemma holds.
By applying the algorithm of checking the stored intermediate data sets, we can still guarantee

that all the data sets we have kept in the system are necessary to be stored. Furthermore, when the
deleted intermediate data sets are regenerated, we also need to check whether to store or delete
them as discussed next.

4.3. Algorithm for deciding the regenerated intermediate data sets’ storage status

IDG is a dynamic graph where the information about new intermediate data sets may join at
anytime. Although the algorithms in the above two subsections can guarantee that the stored
intermediate data sets are all necessary, these stored data sets may not be the most cost effective.
Initially deleted intermediate data sets may need to be stored as an IDG expands. Suppose d0 to
be a regenerated intermediate data set in the system, which has been deleted before. After having
been used, we recalculate d0’s storage status, as well as the stored data sets adjacent to d0 in
the IDG.

Theorem
If regenerated intermediate data set d0 is stored, only the stored data sets adjacent to d0 in the IDG
may need to be deleted to reduce the system cost.
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Proof

(1) Suppose dp is a stored data set directly linked to d0 or d0.pSet. As d0 is stored, d0 and
d0.fSet need to be removed from dp.fSet. Thus the new generation cost rate of dp in the
system is genCost(dp)/dp.t+

∑
di∈dp .fSet−d0−d0.fSet

(genCost(dp)/di .t), and it is smaller than
before, which was genCost(dp)/dp.t+

∑
di∈dp.fSet (genCost(dp)/di .t). If the new generation

cost rate is smaller than the storage cost rate of dp , dp would be deleted. The remainder
of the stored intermediate data sets are not affected by the deletion of dp , because of the
Lemma introduced before.

(2) Suppose d f is a stored data set directly linked by d0 or d0.fSet. As d0 is stored, d0
and d0.pSet need to be removed from d f .pSet. Thus the new generation cost of d f is
genCost(d f )= (d f .tp+∑di∈d f .pSet−d0−d0.pSet

di .tp)∗CostC, and it is smaller than before,
which was genCost(d f )= (d f .tp+∑di∈d f .pSet di .tp)∗CostC. Because of the reduction of
genCost(d f ), the generation cost rate of d f in the system is smaller than before, which
was genCost(d f )/d f .t+

∑
di∈d f .fSet (genCost(d f )/di .t). If the new generation cost rate is

smaller than the storage cost rate of d f , d f would be deleted. The remainder of the stored
intermediate data sets are not affected by the deletion of d f , because of the Lemma intro-
duced before. �

Because of (1) and (2), the theorem holds.
If we store regenerated intermediate data set d0, the cost rate of the system increases with d0’s

storage cost rate, which is d0.size∗CostS. Meanwhile, the reduction of the system cost rate may
be resulted from three aspects: (1) the generation cost rate of d0 itself, which is genCost(d0)/d0.t ;
(2) the reduced generation cost rates of all the data sets in d0.fSet caused by storing d0, which is∑

di∈d0.fSet (genCost(d0)/di .t); and (3) as indicated in the Theorem, some stored data sets adjacent
to d0 may be deleted that reduces the cost to the system. We will compare the increase and reduction
of the system cost rate to decide whether d0 should be stored or not. The detailed algorithm is
shown in Figure 7.

Figure 7. Algorithm for checking deleted intermediate data sets.
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By applying the algorithm of checking the regenerated intermediate data sets, we can not only
guarantee that all the data sets we have kept in the system are necessary to be stored, but also that
any changes of the data sets’ storage status will reduce the total system cost.

4.4. Impact analysis of forecasting inaccuracy

As stated in Section 3, the data sets usage rate t is an estimated value that is obtained from the
system log. Hence, there might be some forecasting inaccuracy. However, how to precisely forecast
the data sets usage rate from the system log is out of this paper’s scope. Here we only analyze the
impact of the forecasting inaccuracy on our strategy.

It is logical that the performance of our strategy would be affected by the forecasting inaccuracy
of the data sets usage rate, since the storage status of the data sets may be miscalculated due to
inaccuracy. However, not all the forecasting inaccuracy will cause miscalculation of the data sets
storage status.

Suppose d0 is a data set that should be deleted in the system, which means d0’s generation cost
rate is smaller than its storage cost rate, i.e.

genCost(d0)/d0.t+
∑

di∈d0.fSet
(genCost(d0)/di .t)<d0.size∗CostS∗d0.�

If d0 has a negative forecasting inaccuracy of usage rate, which means the forecasted usage
rate te is longer than the real usage rate t , the calculation of storage status will not be affected by
the forecasting inaccuracy. This is because with a negative forecasting inaccuracy, the inaccurate
generation cost rate calculated is smaller than the real one, and also smaller than the storage cost
rate. If we want d0’s storage status miscalculated such that it will be stored, d0 must have a positive
forecasting inaccuracy of usage rate, and furthermore guarantee that d0’s generation cost rate is
larger than its storage cost rate, i.e.

d0.size∗CostS∗d0.�<genCost(d0)/d0.te+
∑

di∈d0.fSet
(genCost(d0)/di .t)

Hence, the chance that forecasting inaccuracy would impact the storage status of data sets is
less than 50%. This is because:

(1) If d0 is a data set that should be deleted in the system, only the positive forecasting inaccuracy
of its usage rate will affect its storage status, and this inaccurate usage rate must further
satisfy the following condition:

te<genCost(d0)/(d0.size∗CostS∗d0.�− ∑
di∈d0.fSet

(genCost(d0)/di .t))

(2) Similarly, if d0 is a data set that should be stored in the system, only the negative forecasting
inaccuracy of its usage rate will affect its storage status, and this inaccurate usage rate must
further satisfy the following condition:

te>genCost(d0)/(d0.size∗CostS∗d0.�− ∑
di∈d0.fSet

(genCost(d0)/di .t)).

In the following section, we will use simulation results to further illustrate the impact of the data
sets usages forecasting inaccuracy in our strategy from where no significant impact is observed.

5. EVALUATION

The intermediate data storage strategy proposed in this paper is generic. It can be used in any
scientific workflow applications. In this section, we demonstrate the simulation results that we
conduct on the SwinCloud system [20]. In the beginning, we use random workflows and data sets
to demonstrate the general performance of our strategy. Then we deploy the strategy to the pulsar
searching workflow described in Section 2, and use the real-world statistics to demonstrate how
our strategy works in storing the intermediate data sets of the pulsar searching workflow.
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Figure 8. Structure of simulation environment.

5.1. Simulation environment and strategies

Figure 8 shows the structure of our simulation environment. SwinCloud is a cloud computing
simulation environment built on the computing facilities in Swinburne University of Tech-
nology and takes advantage of the existing SwinGrid system [21]. We install VMWare software
(http://www.vmware.com/) on SwinGrid, so that it can offer unified computing and storage
resources. By utilizing the unified resources, we set up data centers that can host applications. In
the data centers, Hadoop (http://hadoop.apache.org/) is installed that can facilitate the Map-Reduce
computing paradigm and distributed data management. SwinDeW-C (Swinburne Decentralized
Workflow for Cloud) [20] is a cloud workflow system developed based on SwinDeW [22] and
SwinDeW-G [21]. It is currently running on SwinCloud that can interpret and execute workflows,
send and retrieve, save and delete data in the virtual data centers. Through a user interface at the
application level, which is a Web portal, we can deploy workflows and upload application data to
the cloud. In the simulation, we facilitate our strategy in SwinDeW-C to manage the intermediate
data sets in the simulation cloud.

To evaluate the performance of our strategy, we run five simulation strategies together and
compare the total cost of the system. The strategies are: (1) store all the intermediate data sets
in the system; (2) delete all the intermediate data sets, and regenerate them whenever needed;
(3) store the data sets that have high generation cost; (4) store the data sets that are most often
used; and (5) our strategy to dynamically decide whether a data set should be stored or deleted.

We have run a large number of simulations with different parameters to evaluate the performance
of our strategy. Owing to space limits, we only evaluate some representative results here.

5.2. Random simulations and results

To evaluate the overall performance of our strategy, we run a large number of random simulations
with the five strategies introduced above. In the random simulations, we use randomly generated
workflows to construct the IDG, and give every intermediate data set random size, generation time,
usage rate, delay tolerance, and then run the workflows. We compare the total system cost over
50 days of the five strategies, which shows the reduction of the total system cost of our strategy.

We pick one representative test case. In this case, we let the workflow randomly generate 20
intermediate data sets, each with a random size from 1–100GB. The generation time is also random,
from 1min to 60mins. The usage rate is again random ranging from 1–10 days. We further assume
that users are tolerant with the computation delay. The prices of cloud services follow Amazon’s
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cost model which can be viewed as a specific case of our cost model presented in Section 3, i.e.
$0.1 per CPU hour for computation and $0.15 per gigabyte per month for storage. Figure 9 shows
the total cost of the system over the 50 days.

As indicated in Figure 9, we can draw the conclusion that (1) neither storing all the intermediate
data sets nor deleting them all is a cost-effective method of intermediate data storage; (2) the two
static strategies of ‘store high generation cost data sets’ and ‘store often used data sets’ are in
the middle band in reducing the total system cost; (3) our dependency-based strategy performs as
the most cost effective method for storing the intermediate data sets. It reduces the system cost
by 75.9% in comparison to the ‘store all’ strategy; 78.2% to the ‘store none’ strategy; 57.1% to
the ‘store high generation cost data sets’ strategy; and 63.0% to the ‘store often used data sets’
strategy, respectively.

As in our strategy, the intermediate data set’s usage rate is a forecast value based on the system
log. There may well exist some inaccuracies in this value. The simulation taking this into account
demonstrates the impact of forecast inaccuracy on our strategy. We set 20% positive and negative
forecast inaccuracy to the usage rates of the intermediate data sets and conduct another two sets
of simulation, the results of which are shown in Figure 10. We can clearly see that the costs with
the ‘store none’ strategy have shifted about 20% compared to the result in Figure 9. However the
‘store all’ strategy is not influenced by the forecast inaccuracies. The forecast inaccuracy has little
impact on our strategy, where it is still the most cost-effective one among the five strategies.
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Figure 9. Total system cost of random simulation case with Amazon’s cost model.
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Figure 10. System cost with forecasting inaccuracy in data sets usage rate: (a) Usage rate 20% higher
than forecasted and (b) usage rate 20% lower than forecasted.
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Next, we add the delay tolerance parameter in our simulation. We set �=70% and run the
simulation with the same settings as that in Figure 9. The results are demonstrated in Figure 11.
We can see that with the users’ preference of less delay tolerance, the system cost increases. This
is because our strategy has chosen more data sets to store in the system.

5.3. Pulsar case simulations and results

The random simulations demonstrate the general performance of our strategy. Next we utilize it
for the pulsar searching workflow introduced in Section 2 and show how the strategy works in a
specific real scientific application.

In the pulsar example, during the workflow execution, six intermediate data sets are generated.
The IDG of this pulsar searching workflow is shown in Figure 12, as well as the sizes and generation
times of these intermediate data sets. The generation times of the data sets are from running this
workflow on Swinburne supercomputer, and for simulation, we assume that in the cloud computing
system, the generation times of these intermediate data sets are the same. Furthermore, we assume
that the prices of cloud services follow Amazon’s cost model.

We run the simulations based on the estimated usage rate of every intermediate data set. From
Swinburne astrophysics research group, we understand that the ‘de-dispersion files’ are the most
useful intermediate data set. Based on these files, many accelerating and seeking methods can
be used to search pulsar candidates. Hence, we set the ‘de-dispersion files’ to be used once in
every 4 days, and the remainder of the intermediate data sets to be used once in every 10 days.
Based on this setting, we run the abovementioned five simulation strategies and calculate the total
costs of the system for ONE branch of the pulsar searching workflow of processing ONE piece of
observation data in 50 days as shown in Figure 13.

From Figure 13 we can see that (1) the cost of the ‘store all’ strategy is a straight line, because
in this strategy, all the intermediate data sets are stored in the cloud storage that is charged at
a fixed rate, and there is no computation cost required; (2) the cost of the ‘store none’ strategy
is a fluctuated line because in this strategy all the costs are computation costs of regenerating
intermediate data sets. For the days that have fewer requests of the data, the cost is lower, otherwise,
the cost is higher; (3–5) in the remaining three strategies, the cost lines are only a little fluctuated
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Figure 12. IDG of pulsar searching workflow.
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Figure 13. Total cost of pulsar searching workflow with Amazon’s cost model.

Table I. Pulsar searching workflow’s intermediate data sets storage status in five strategies.

Data sets

Extracted De-dispersion Accelerated Seek Pulsar XML files
Strategies beam files de-dispersion files results candidates XML files

Store all Stored Stored Stored Stored Stored Stored
Store none Deleted Deleted Deleted Deleted Deleted Deleted
Store high
generation cost
data sets

Deleted Stored Stored Deleted Deleted Stored

Store often used
data sets

Deleted Stored Deleted Deleted Deleted Deleted

Dependency based
strategy

Deleted Stored (was
deleted initially)

Deleted Stored Deleted Stored

and the cost is much lower than the ‘store all’ and ‘store none’ strategies in the long term. This
is because the intermediate data sets are partially stored.

As indicated in Figure 13 we can draw the same conclusions as we did for the random simulations,
that (1) neither storing all the intermediate data sets nor deleting them all is a cost-effective way
for intermediate data storage; (2) our dependency-based strategy performs the most cost effective
to store the intermediate data sets in the long term.

Furthermore, back to the pulsar searching workflow example, Table I shows how the five
strategies store the intermediate data sets in detail.

As the intermediate data sets of this pulsar searching workflow are not complicated, we can do
some intuitive analyses on how to store them. For the accelerated de-dispersion files, although its
generation cost is quite high, comparing to its huge size, it is not worth to store them in the cloud.
However, in the strategy of ‘store high generation cost data sets’, the accelerated de-dispersion
files are chosen to be stored. Furthermore, for the final XML files, they are not used very often,
but compared to the high generation cost and small size, they should be stored. However, in the
strategy of ‘store often used data sets’, these files are not chosen to be stored. Generally speaking,
our dependency-based strategy is the most appropriate strategy for the intermediate data storage
which is also dynamic. From Table I we can see that our strategy did not store the de-dispersion
files at the beginning, but stored them after their regeneration. In our strategy, every storage status
change of the data sets would reduce the total system cost rate, where the cost can be gradually
close to the minimum cost of system.

One important factor that affects our dependency-based strategy is the usage rate of the inter-
mediate data sets. In a system, if the usage rage of the intermediate data sets is very high, the
generation cost of the data sets is very high, correspondingly these intermediate data sets tend
more to be stored. On the contrary, in a very low intermediate data sets usage rate system, all
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Figure 14. Cost of pulsar searching workflow with different intermediate data sets usage rates: (a) High
intermediate datasets usage rate and (b) Low intermediate datasets usage rates.

the data sets tend to be deleted. The simulation of Figure 13, we set the data sets usage rate on
the borderline that makes the total cost equivalent to the strategies of ‘store all’ and ‘store none’.
Under this condition, the intermediate data sets have no tendency to be stored or deleted, which
can objectively demonstrate our strategy’s effectiveness on reducing the system cost. Next we will
also demonstrate the performance of our strategy in situations under different usage rates of the
intermediate data sets.

Figure 14(a) shows the cost of the system with the usage rate of every data set doubled in the
pulsar workflow. From the figure we can see that, when the data sets usage rates are high, the
strategy of ‘store none’ becomes highly cost ineffective, because the frequent regeneration of
the intermediate data sets causes a very high cost to the system. In contrast, our strategy is still
the most cost-effective one where the total system cost increases only slightly. It is not very much
influenced by the data sets usage rates. For the ‘store all’ strategy, although it is not influenced by
the usage rate, its cost is still very high. The remaining two strategies are in the midband. They
are influenced by the data sets usage rates more, and their total costs are higher than our strategy.

Figure 14(b) shows the cost of the system with the usage rate of every data set halved in the pulsar
workflow. From this figure we can see that, in the systemwith a low intermediate data sets usage rate,
the ‘store all’ strategybecomeshighly cost ineffective, and the ‘store none’ strategybecomes relatively
cost effective. Again, our strategy is still the most cost-effective one among the five strategies.

The more intermediate data sets are stored in the system, the less the cost of the system is
influenced by the data sets usage rate. As in our strategy, the intermediate data sets usage rate
is a forecast value based on the system log. There may well be some inaccuracy existing. The
simulations taking this into account demonstrate the influence of forecast inaccuracy on our strategy.
We set 20% positive and negative forecast inaccuracy the usage rates of the intermediate data sets
and conduct another two sets of simulations. The results are depicted in Figure 15. We can clearly
see that the costs in the ‘store none’ strategy have shifted about 20% compared to the result in
Figure 13. However the ‘store all’ strategy is not influenced by the forecast inaccuracy. For the
remaining three strategies, the forecast inaccuracy has little impact on them, whereas our strategy
is still the most cost-effective one among the five strategies.

From all the simulations we have done on the pulsar searching workflow, we find that depending
on different intermediate data sets usage rates, our strategy can reduce the system cost by
46.3–74.7% in comparison to the ‘store all’ strategy; 45.2–76.3% to the ‘store none’ strategy;
23.9–58.9% to the ‘store high generation cost data sets’ strategy; and 32.2–54.7% ‘store often
used data sets’ strategy, respectively.

Based on the simulation results demonstrated in this section, we can reach the conclusion
that our intermediate data storage strategy has a good performance. By automatically selecting
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Figure 15. Cost of pulsar searching workflow with forecast inaccuracy in intermediate data sets usage rates:
(a) Usage rate 20% higher than forecasted and (b) Usage rate 20% lower than forecasted.

the valuable data sets to store, our strategy can significantly reduce the total cost of the pulsar
searching workflow.

6. DISCUSSION

As cloud computing is such a fast growing market, different cloud service providers will be avail-
able. In the future, we will be able to flexibly select service providers to conduct our applications
based on their pricing models. An intuitive idea is to incorporate different cloud service providers
in our applications, where we can store the data with the provider who has a lower price in
storage resources, and choose the provider who has lower price of computation resources to run the
computation tasks. However, at present, it is not practical to run scientific workflow applications
among different cloud service providers, because of the following reasons:

(1) The application data in scientific workflows are usually very large in size. They are too
large to be transferred efficiently via the Internet. Owing to bandwidth limitations of the
Internet, in today’s scientific projects, delivery of hard disks is a very common way to
transfer application data, and it is also considered to be the most efficient way to transfer
terabytes of data [23]. Nowadays, express mail delivery companies can deliver the hard
disks nationwide by the end of the next day and world wide in 2 or 3 days, by contrast,
transferring one terabyte data via Internet will take more than 10 days at a speed of 1MB/s.
To break the bandwidth limitation, some institutions set up dedicated fibers to transfer data.
For example, Swinburne University of Technology has built a fiber to Parkes with gigabit
bandwidth. However, it is mainly used for transferring gigabytes of data. To transfer terabytes
of data, scientists still prefer to ship hard disks. Furthermore, building fiber connections is
still expensive, and they are not wildly used in the Internet. Hence, transferring scientific
application data between different cloud service providers via Internet is not efficient.

(2) Cloud service providers place high cost on data transfer in and out of their data centers,
in contrast, data transfer within a cloud service provider’s data centers is usually free.
For example, the data transfer price of Amazon cloud service is: $0.1 per GB of data
transferred in and $0.17 per GB of data transferred out. Compared to the storage price of
$0.15 per GB per month, the data transfer price is relatively high, such that finding a cheaper
storage cloud service provider and transferring data out may not be cost effective. In cloud
service providers’ position, they charge a high price on data transfer not only because of the
bandwidth limitation, but also as a business strategy. As data are deemed as an important
resource today, cloud service providers want users to keep all the application data in their
storage cloud. For example, Amazon made a promotion that places a zero price on data
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transferred into its data centers, until June 30. 2010. This means that users can upload their
data to Amazon’s cloud storage for free. However, the price of data transfer out of Amazon
is still the same.

Given the two points discussed above, the most efficient and cost-effective way to run scientific
applications in the cloud is to keep all the application data and run the workflows with one cloud
service provider, where the similar conclusion is also stated in [13]. Hence, in the strategy stated
in this paper, we did not take data transfer cost into consideration. However, some scientific
applications have to run in a distributed manner [24, 25], because the required data sets are
distributed and have fixed locations. In these cases, data transfer is inevitable, and data placement
strategy [26] would be needed to reduce the data transfer cost.

7. RELATED WORKS

In the grid era, research of economics-based resource management had already emerged [27].
Comparing to the distributed computing systems like cluster and grid, a cloud computing system
has a cost benefit [23]. Assunção et al. [28] demonstrate that cloud computing can extend the
capacity of clusters with a cost benefit. Using Amazon clouds’ cost model and BOINC volunteer
computing middleware, the work in [29] analyzes the cost benefit of cloud computing versus grid
computing. The idea of doing science in the cloud is not new. Scientific applications have already
been introduced to cloud computing systems. The Cumulus project [12] introduces a scientific
cloud architecture for a data center, and the Nimbus [11] toolkit can directly turn a cluster into
a cloud which has already been used to build a cloud for scientific applications. In terms of
the cost benefit, the work by Deelman et al. [13] also apply Amazon clouds’ cost model and
demonstrate that cloud computing offers a cost-effective way to deploy scientific applications.
The above works mainly focus on the comparison of cloud computing systems and the traditional
distributed computing paradigms, which shows that applications running in the cloud have cost
benefits. However, our work investigates how to reduce the cost if we run scientific workflows in
the cloud. In [13], Deelman et al. present that storing some popular intermediate data can save
the cost in comparison to always regenerating them from the input data. In [5], Adams et al.
propose a model to represent the trade-off of computation cost and storage cost, but have not given
any strategy to find this trade-off. In our paper, an innovative intermediate data storage strategy
is developed to reduce the total cost of scientific cloud workflow systems by finding the trade-
off of computation cost and storage cost. This strategy is based on the dependency of workflow
intermediate data, and can automatically select the appropriate intermediate data sets to store by
comparing their generation cost rate and storage cost rate. Furthermore, the strategy also takes
the users’ tolerance of computation delays into consideration and is not strongly impacted by the
forecasting inaccuracy of data sets’ usages.

The study of data provenance is important in our work. Owing to the importance of data prove-
nance in scientific applications, much research about recording data provenance of the system has
been done [30, 31]. Some of them are especially for scientific workflow systems [30]. Some popular
scientific workflow systems, such as Kepler [2], have their own system to record provenance during
the workflow execution [32]. In [33], Osterweil et al. present how to generate a Data Derivation
Graph (DDG) for the execution of a scientific workflow, where one DDG records the data prove-
nance of one execution. Similar to the DDG, our IDG is also based on the scientific workflow data
provenance, but it depicts the dependency relationships of all the intermediate data in the system.
With the IDG, we know where the intermediate data are derived from and how to regenerate them.

8. CONCLUSIONS AND FUTURE WORK

In this paper, based on an astrophysics pulsar searching workflow, we examined the unique features
of intermediate data management in scientific cloud workflow systems and developed a novel
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cost-effective strategy that can automatically and dynamically select the appropriate intermediate
data sets of a scientific workflow to store or delete in the cloud. The selection also takes users’
tolerance of data accessing delay into consideration. The strategy can guarantee that the stored
intermediate data sets in the system are all necessary, and can dynamically check whether the
regenerated data sets need to be stored, and if so, adjust the storage strategy accordingly. The
simulation results of utilizing this strategy in both general random workflows and the specific real
world pulsar searching workflow indicate that our strategy can significantly reduce the total cost
of the scientific cloud workflow systems.

Our current work assumes that all the application data are stored with one cloud service provider
as discussed in Section 6. However, sometimes scientific workflows have to run in a distributed
manner, since some application data are distributed and may have fixed locations. In these cases,
data transfer is inevitable. In the future, we will further develop some data placement strategies to
reduce data transfer among data centers. In addition, models of estimating data sets usage rates
need to be studied, so that the cost calculated by our data sets storage cost model can be more
accurate to the real cost in the cloud.
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