
Variation-Aware Evaluation of MPSoC
Task Allocation and Scheduling using

Statistical Model Checking

Mingsong Chen1*, Daian Yue1, Xiaoke Qin3,

Xin Fu2 and Prabhat Mishra3
1Software Engineering Institute, East China Normal University, China

2ECE Department, University of Houston, USA
3CISE Department, University of Florida, USA

*Presenter

DATE 2015, Grenoble, France

2

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

3

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

4

Task Allocation & Scheduling in MPSoC

 Task allocation & scheduling is important for MPSoC Design
 Maximize the utilization of available Processing Elements (PEs)
 Satisfying various design constraints (e.g., response time, power)

1 2 3 4

6 5

7

PE A2

PE B2

MPSoC

PE A1

PE B1
Given

Determine

(A,10

)

(A,7) (B,8) (B,3)

(B,5) (A,4)

(B,6)

B2

B1

A2

A1

(T3,8)

(T4,3) (T5,5) (T7,6)

(T1,10) (T6,4)

(T2,7)

22

Power(A)=10, Power(B)=15, MaxPower(Design)=35

 TAS instance representation
 (task scheduling sequence; task-resource binding info)
 Example:(T3,T1,T2,T4,T5,T6,T7;B2,A2,A1,B1,B1,A2,B1)

5

Variations in TAS

 The control the manufacturing process in deep-submicron

technologies is becoming harder
 Increasing performance and power consumption variations across

identically designed PEs and Chips
 Up to 25% performance variation and power variation within an

experimental Intel CPU [P. Gupta et al., TCAD, 2013]

WCET methods can lead to overly pessimistic evaluation

 Variation-aware performance analysis is becoming more

and more important in system-level task allocation.
 Performance yield is proposed to define the probability of an

assigned TAS instance meeting required MPSoC design
constraints under variation [Wang et al., ICCAD, 2007]

 Various heuristic strategies have been proposed to maximize
performance yields

6

 Due to variations, it’s hard to determine which strategy can

generate TAS instances with better performance yield. E.g.,

 Limitations of previous work
 Inaccurate modeling of parallel task execution (e.g., ILP method)
 Constraint solving based approaches can only answer yes or no,

but cannot answer why the performance yield is bad
 Support limited number of distributions for TAS modeling (e.g.,

Gaussian distribution, exponential distribution)
 Focus on optimization rather than quantitative evaluation
 Lack of automated tools to enable the quantitative reasoning about

the performance yield of TAS instances

Limitations & Challenges in TAS under Variations

Challenges:

i) How to accurately model parallel task executions under various

kinds of variations?

ii) How to enable the quantitative reasoning of performance yield to

achieve better designs automatically?

B2

B1

A2

A1

(T3,8)

(T4,3) (T5,5) (T7,6)

(T1,10) (T6,4)

(T2,7)

22

B2

B1

A2

A1

(T3,8) (T4,3)

(T5,5) (T7,6)

(T1,10)

(T6,4) (T2,7)

23

7

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

8

Variation-Aware Construction of NPTA

PTA A PTA B

 NPTA - Network of Priced Timed Automata

 An NPTA instance, (A | B)

Time of reaching (A3, B3) ~ N(9,12+22).

t1 ~ N(3,12) t2 ~ N(6,22)

 A possible behavior of the NPTA (A|B)

9

Statistical Model Checking (SMC)
 Our TAS evaluation is based on SMC, which is effective for

checking large stochastic systems

Quantitative

Analysis

TAS Strategy

Design Constraints

Model

Property

SMC

Checker

Evaluation Results

 UPPAAL-SMC supported queries
 Qualitative check: Pr [time <= bound] (<> expr) >= p
 Quantitative check: Pr [time <= bound] (<> expr)
 Probability comparison:
Pr [time1 <= bound1] (<> expr1) >= Pr [time2 <= bound2] (<> expr2)

10

UPPAAL-SMC
 UPPAAL-SMC versus formal model checking

 Based on simulation, thus requiring far less memory and time
 Allow high scalable validation approximation
 Support quantitative performance analysis

 Application domains: Real-time systems, Smart building, Biology, …

11

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

12

Problem Definition

Task Graph

DAG G = (V,E)

Resources with

Variation Info

 PEs +type infor

 PE variation info

Design

Constraints

 Maximum power

 Response time

 ……

Quantitative Evaluation Framework

Performance Yield Results

TAS

Strategies

 Build in

 User specified

 ……

13

Our Framework

 Model Generation:
 TAS instances and variation information are translated into NPTA model

 Property Generation
 Design constraints are converted into propoerties to enable queires

 Analysis & Evaluation
 Conduct the automated quantitative analysis using UPPAAL-SMCs

14

NPTA Model Generation

Front-end Model for Tasks
 Task.Initial state

 The beginning of a task

 Task.Receiving state
 Tries to obtain notification

messages from all the
predecessors

 Task.Running state
 All predecessors finished
 Current task is executing

 Task.Sending state
 Notify all successive tasks

about its completion

 Task.Finish state
 The completion of a task

15

NPTA Model Generation

Front-end Model for PEs Each PE has a queue containing

ready tasks.

Front-end Model for

Power Monitor

 PE.Waiting state
 Waiting for ready tasks assigned to

this PE

 PE.Running state
 Executing the task at the head of the

queue with a specified time

 PE.Finish state
 The completion of a task execution

 Power.Handling state
 Registration of a task running on

some PE with a specified power

 Power.Finish state
 Release the task on the PE together

with its power requirement

16

Back-end Configuration describes both concurrent behaviors

of tasks and variation information.

NPTA Model Generation

 Task precedence configuration
 To use a matrix PM to indicate task precedence relation
 PM[i][j]=1  the ith tasks finishes before jth task starts

 Variation configuration
 Describe the time and power distributions of services
 tvar[N+1][2] denotes the time variation
 pvar[N+1][2] denotes the power variation

 Different TAS instance will have different above

configurations

17

Our approach uses broadcast channels to synchronize PTAs.

Assume that there are T tasks and P PEs.

NPTA Model Generation

 Communication from tasks to PEs (many to many)

Sender idtask

e= idtask×(T +1)+idpe idpe= e%(T + 1)

Receiver idpe

Channel assign_proc[(T+1)*P]

 Communication from PEs to tasks (many to 1)

Sender idpe

e= idtask idtask= e

Receiver idtask

Channel pt_notify[(T+1)]

Private channel from all the Pes to task with ID idtask

18

Property Generation

“What is the performance yield that the task graph can

be completed under the time constraint of x and power

constraint of y?”

Pr [<= x] (<> Task(0).finish && max_power<= y)

 [<= x] indicates the time constraint of t

 <>p checks whether customer requirement p can be fulfilled

eventually.

 Task(0).finish indicates the completion of all the tasks

max_power<= y denotes that the maximum power of the task

execution cannot be larger than y

19

TAS Instance Generation

List Scheduling
 Can quickly achieve near-optimal TAS instances

BULB Approach
 Can explore all the search space to get optimal TAS

instances in a branch-and-bound manner

Our framework incorporates two built-in power-constrained

time-minimization TAS methods. Other TAS approaches

can be easily integrated in our framework.

By tuning the operation enumeration order, we can obtain

different TAS instances using the same above TAS

approach.

20

Parameter Tuning

Power constraint tuning
 Iteratively reduce the power constraint until

 Either achieve a satisfying performance yield,

 or the time constraint is violated

Architectural configuration exploration

 Explore and evaluate all possible MPSoC designs
with different PE combinations to achieve a required
performance yield

When the generated TAS instances cannot meet the

specified performance yield, our framework allows the

tuning of design constraint or architecture parameters to

explore better instances.

21

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

22

Each task is assigned with a

the information of the target

PE type and mean execution

time.

Case Study

 We use TGFF to generate a 22-node synthetic task graph (max

input-degree equals 3 and max output-degree equals 2).

 We adopt UPPAAL-SMC as the engine of our framework with

parameters ε=0.05 , α= 0.05.

 All the experimental results were obtained on a Ubuntu Linux

desktop with 4.0 GHz AMD CPU and 8GB RAM.

23

Case Study

 There are three types of PEs in the MPSoC design and the task

execution time and power follow the Gaussian distribution on

these PEs [Sarangi et al., IEEE TSM, 2008].

 In table 1, x represents the mean execution time. For example,

if the mean execution time of a task is 10, its execution time on

PE A follows the Gaussian distribution N(10,0.52).

 In the experiment, we apply four TAS strategies: two list

scheduling variants (i.e., List 1 and List 2), and two BULB

variants (i.e., BULB 1 and BULB 2).

Table 1: Power Variation for MPSoC PEs

24

MPSoC Design and Constraint

Although BULB is optimal

without considering

variations, List 1 achieves

the best result.

None of the generated

TAS instances is selected!

 Assume that the MPSoC design consists of 8 PEs (including 3

PEs of type A, 3 PEs of type B, and 2 PEs of type C) and the

design is fixed before TAS.

 Design constraint: The performance yield cannot be smaller

than 90% within 190 time units and 65 power units.

The reason of low performance yield is mainly due to the power variation, because the

increase of response time cannot improve the performance yield after time 175.

Fig 1. Power Constraint = 65

25

Tuning of Power Constraint

Fig 2. Power Constraint = 60 Fig 3. Power Constraint = 55 Fig 4. Power Constraint = 50

 Tune the power constraint with an interval of 5 units

 Significant increase of performance yield in Fig. 2 and Fig. 3.

 The reduction of the power constraint in TAS generation will
result in large response time, thus affecting the overall
performance yield (see Fig. 4).

26

Tuning of Architectural Configurations

Fig. 5 Evaluation of different architectural configurations

Pr[<= 190](<> Task(0).Finish && max_power<=60)

 Assume that the MPSoC design can be customized with at most

8 PEs of different types.

 By using BULB 1, Proc (2,3,3) achieves the best performance

yield as well as the best average response time.

Proc(x,y,z) means that the

design of x PEs of type A, y

PEs of type B, and z PEs of

type C.

27

Conclusion

 Automated variation-aware evaluation of TAS
strategies is important in MPSoC design flow

 Reduce the decision making efforts of MPSoC designers

 Improve the overall performance yields

 We propose an UPPAAL-SMC-based TAS strategy
evaluation framework

 Support complex performance yield queries under power and
time variations

 Enable the tuning of design constraint parameters to explore
TAS instances with better performance yields

 Comprehensive experimental results demonstrates
the efficacy of our approach

28

Thank you !

