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Task Allocation & Scheduling in MPSoC 

  

 Task allocation & scheduling is important for MPSoC Design 
 Maximize the utilization of available Processing Elements (PEs) 
 Satisfying various design constraints (e.g., response time, power) 
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Power(A)=10, Power(B)=15, MaxPower(Design)=35 

 TAS instance representation 
 (task scheduling sequence; task-resource binding info) 
 Example:(T3,T1,T2,T4,T5,T6,T7;B2,A2,A1,B1,B1,A2,B1) 
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Variations in TAS 

  

 The control the manufacturing process in deep-submicron 

technologies is becoming harder 
 Increasing performance and power consumption variations across 

identically designed PEs and Chips 
 Up to 25% performance variation and power variation within an 

experimental Intel CPU [P. Gupta et al., TCAD, 2013]  

WCET methods can lead to overly pessimistic evaluation 

 Variation-aware performance analysis is becoming more 

and more important in system-level task allocation. 
 Performance yield is proposed to define the probability of an 

assigned TAS instance meeting required MPSoC design 
constraints under variation [Wang et al., ICCAD, 2007] 

 Various heuristic strategies have been proposed to maximize 
performance yields 
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 Due to variations, it’s hard to determine which strategy can 

generate TAS instances with better performance yield. E.g., 

 

 

 

 

 Limitations of previous work 
 Inaccurate modeling of parallel task execution (e.g., ILP method) 
 Constraint solving based approaches can only answer yes or no, 

but cannot answer why the performance yield is bad 
 Support limited number of distributions for TAS modeling (e.g., 

Gaussian distribution, exponential distribution) 
 Focus on optimization rather than quantitative evaluation 
 Lack of automated tools to enable the quantitative reasoning about 

the performance yield of TAS instances   

Limitations & Challenges in TAS under Variations 

Challenges: 

i) How to accurately model parallel task executions under various 

kinds of variations?  

ii) How to enable the quantitative reasoning of performance yield to 

achieve better designs automatically? 
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Variation-Aware Construction of NPTA 

PTA  A PTA  B 

 NPTA - Network of Priced Timed Automata 

 An NPTA instance, (A | B)  

Time of reaching (A3, B3) ~ N(9,12+22). 

t1 ~ N(3,12 ) t2 ~ N(6,22 ) 

 A possible behavior of the NPTA (A|B) 
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Statistical Model Checking (SMC) 
 Our TAS evaluation is based on SMC, which is effective for 

checking large stochastic systems 
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Evaluation Results 

 UPPAAL-SMC supported queries 
 Qualitative check:   Pr [time <= bound] (<> expr) >= p 
 Quantitative check:   Pr [time <= bound] (<> expr) 
 Probability comparison: 
Pr [time1 <= bound1] (<> expr1) >= Pr [time2 <= bound2] (<> expr2) 
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UPPAAL-SMC 
 UPPAAL-SMC versus formal model checking 

 Based on simulation, thus requiring far less memory and time 
 Allow high scalable validation approximation  
 Support quantitative performance analysis 

 Application domains:  Real-time systems, Smart building, Biology, … 
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Problem Definition 

Task Graph 

DAG G = (V,E) 

Resources with 

Variation Info 

 PEs +type infor  

 PE variation info 
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Our Framework 

 Model Generation:                                                                                                                                                                                                 
 TAS instances and variation information are translated into NPTA model 

 Property Generation 
 Design constraints are converted into propoerties to enable queires 

 Analysis & Evaluation 
 Conduct the automated quantitative analysis using UPPAAL-SMCs 
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NPTA Model Generation 

Front-end Model for Tasks 
 Task.Initial state  

 The beginning of a task 

 Task.Receiving state 
 Tries to obtain notification 

messages from all the 
predecessors 

 Task.Running state 
 All predecessors finished 
 Current task is executing 

 Task.Sending state  
 Notify all successive tasks 

about its completion 

 Task.Finish state 
 The completion of a task 
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NPTA Model Generation 

Front-end Model for PEs Each PE has a queue containing 

ready tasks. 

Front-end Model for  

Power Monitor 

 PE.Waiting state 
 Waiting for ready tasks assigned to 

this PE 

 PE.Running state 
 Executing the task at the head of the 

queue with a specified time 

 PE.Finish state 
 The completion of a task execution 
 

 Power.Handling state 
 Registration of a task running on 

some PE with a specified power 

 Power.Finish state 
 Release the task on the PE together 

with its power requirement 
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Back-end Configuration describes both concurrent behaviors 

of tasks and variation information. 

NPTA Model Generation 

 Task precedence configuration 
 To use a matrix PM to indicate task precedence relation 
 PM[i][j]=1  the ith tasks finishes before jth task starts 

 Variation configuration 
 Describe the time and power distributions of services 
 tvar[N+1][2] denotes the time variation 
 pvar[N+1][2] denotes the power variation 

 

 
 

 

 Different TAS instance will have different above 

configurations  
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Our approach uses broadcast channels to synchronize PTAs. 

Assume that there are T tasks and P PEs. 

NPTA Model Generation 

 Communication from tasks to PEs (many to many) 

Sender idtask  

e= idtask×(T +1)+idpe idpe= e%(T + 1) 

Receiver idpe 

Channel  assign_proc[(T+1)*P] 

 Communication from PEs to tasks (many to 1) 

Sender idpe  

e= idtask idtask= e 

Receiver idtask 

Channel  pt_notify[(T+1)] 

Private channel from all the Pes to task with ID idtask 
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Property Generation 

“What is the performance yield that the task graph can 

be completed under the time constraint of x and power 

constraint of y?” 

Pr [<= x] (<> Task(0).finish && max_power<= y) 

 [<= x]  indicates the time constraint of t 

 <>p checks whether customer requirement p can be fulfilled 

eventually. 

 Task(0).finish indicates the completion of all the tasks 

max_power<= y denotes that the maximum power of the task 

execution cannot be larger than y 
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TAS Instance Generation 

List Scheduling 
 Can quickly achieve near-optimal TAS instances 

 

BULB Approach  
 Can explore all the search space to get optimal TAS 

instances in a branch-and-bound manner 

 

Our framework incorporates two built-in power-constrained 

time-minimization TAS methods. Other TAS approaches 

can be easily integrated in our framework. 

By tuning the operation enumeration order, we can obtain 

different TAS instances using the same above TAS 

approach. 
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Parameter Tuning 

Power constraint tuning  
 Iteratively reduce the power constraint until 

 Either achieve a satisfying performance yield, 

 or the time constraint is violated 

Architectural configuration exploration 

 Explore and evaluate all possible MPSoC designs 
with different PE combinations to achieve a required 
performance yield 

When the generated TAS instances cannot meet the 

specified performance yield, our framework allows the 

tuning of design constraint or architecture parameters to 

explore better instances.  
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Each task is assigned with a 

the information of the target 

PE type and mean execution 

time. 

Case Study 

 We use TGFF to generate a 22-node synthetic task graph (max 

input-degree equals 3 and max output-degree  equals 2).   

 We adopt UPPAAL-SMC as the engine of our framework with 

parameters ε=0.05 , α= 0.05. 

 All the experimental results were obtained on a Ubuntu Linux 

desktop with 4.0 GHz AMD CPU and 8GB RAM.  
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Case Study 

 There are three types of PEs in the MPSoC design and the task 

execution time and power follow the Gaussian distribution on 

these PEs [Sarangi et al., IEEE TSM, 2008]. 

 

 

 

 

 

 

 In table 1, x represents the mean execution time. For example, 

if the mean execution time of a task is 10, its execution time on 

PE A follows the Gaussian distribution N(10,0.52). 

 In the experiment, we apply four TAS strategies: two list 

scheduling variants (i.e., List 1 and List 2), and two BULB 

variants (i.e., BULB 1 and BULB 2).  

Table 1: Power Variation for MPSoC PEs 
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MPSoC Design and Constraint 

Although BULB is optimal 

without considering 

variations, List 1 achieves 

the best result.  

None of the generated 

TAS instances is selected! 

 Assume that the MPSoC design consists of 8 PEs (including 3 

PEs of type A, 3 PEs of type B, and 2 PEs of type C) and the 

design is fixed before TAS.   

 Design constraint: The performance yield cannot be smaller 

than 90% within 190 time units and 65 power units. 

The reason of low performance yield is mainly due to the power variation, because the 

increase of response time cannot improve the performance yield after time 175. 

Fig 1. Power Constraint = 65 
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Tuning of Power Constraint 

Fig 2. Power Constraint = 60 Fig 3. Power Constraint = 55 Fig 4. Power Constraint = 50 

 Tune the power constraint with an interval of 5 units 

 Significant increase of performance yield in Fig. 2 and Fig. 3.  

 The reduction of the power constraint in TAS generation will 
result in large response time, thus affecting the overall 
performance yield (see Fig. 4).  
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Tuning of Architectural Configurations 

Fig. 5  Evaluation of different architectural configurations 

Pr[<= 190](<> Task(0).Finish && max_power<=60) 

 Assume that the MPSoC  design can be customized with at most 

8 PEs of different types. 

 By using BULB 1, Proc (2,3,3) achieves the best performance 

yield as well as the best average response time.  
 

Proc(x,y,z) means that the 

design of x PEs of type A, y 

PEs of type B, and z PEs of 

type C.  



27 

Conclusion 

 Automated variation-aware evaluation of TAS 
strategies is important in MPSoC design flow 

 Reduce the decision making efforts of MPSoC designers 

 Improve the overall performance yields  

 We propose an UPPAAL-SMC-based TAS strategy 
evaluation framework 

 Support complex performance yield queries under power and 
time variations 

 Enable the tuning of design constraint parameters to explore 
TAS instances with better performance yields 

 Comprehensive experimental results demonstrates 
the efficacy of our approach 
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Thank you ! 


