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Task Allocation & Scheduling in MPSoC 

  

 Task allocation & scheduling is important for MPSoC Design 
 Maximize the utilization of available Processing Elements (PEs) 
 Satisfying various design constraints (e.g., response time, power) 
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Power(A)=10, Power(B)=15, MaxPower(Design)=35 

 TAS instance representation 
 (task scheduling sequence; task-resource binding info) 
 Example:(T3,T1,T2,T4,T5,T6,T7;B2,A2,A1,B1,B1,A2,B1) 
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Variations in TAS 

  

 The control the manufacturing process in deep-submicron 

technologies is becoming harder 
 Increasing performance and power consumption variations across 

identically designed PEs and Chips 
 Up to 25% performance variation and power variation within an 

experimental Intel CPU [P. Gupta et al., TCAD, 2013]  

WCET methods can lead to overly pessimistic evaluation 

 Variation-aware performance analysis is becoming more 

and more important in system-level task allocation. 
 Performance yield is proposed to define the probability of an 

assigned TAS instance meeting required MPSoC design 
constraints under variation [Wang et al., ICCAD, 2007] 

 Various heuristic strategies have been proposed to maximize 
performance yields 
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 Due to variations, it’s hard to determine which strategy can 

generate TAS instances with better performance yield. E.g., 

 

 

 

 

 Limitations of previous work 
 Inaccurate modeling of parallel task execution (e.g., ILP method) 
 Constraint solving based approaches can only answer yes or no, 

but cannot answer why the performance yield is bad 
 Support limited number of distributions for TAS modeling (e.g., 

Gaussian distribution, exponential distribution) 
 Focus on optimization rather than quantitative evaluation 
 Lack of automated tools to enable the quantitative reasoning about 

the performance yield of TAS instances   

Limitations & Challenges in TAS under Variations 

Challenges: 

i) How to accurately model parallel task executions under various 

kinds of variations?  

ii) How to enable the quantitative reasoning of performance yield to 

achieve better designs automatically? 
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Variation-Aware Construction of NPTA 

PTA  A PTA  B 

 NPTA - Network of Priced Timed Automata 

 An NPTA instance, (A | B)  

Time of reaching (A3, B3) ~ N(9,12+22). 

t1 ~ N(3,12 ) t2 ~ N(6,22 ) 

 A possible behavior of the NPTA (A|B) 



9 

Statistical Model Checking (SMC) 
 Our TAS evaluation is based on SMC, which is effective for 

checking large stochastic systems 
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 UPPAAL-SMC supported queries 
 Qualitative check:   Pr [time <= bound] (<> expr) >= p 
 Quantitative check:   Pr [time <= bound] (<> expr) 
 Probability comparison: 
Pr [time1 <= bound1] (<> expr1) >= Pr [time2 <= bound2] (<> expr2) 
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UPPAAL-SMC 
 UPPAAL-SMC versus formal model checking 

 Based on simulation, thus requiring far less memory and time 
 Allow high scalable validation approximation  
 Support quantitative performance analysis 

 Application domains:  Real-time systems, Smart building, Biology, … 
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Problem Definition 

Task Graph 

DAG G = (V,E) 

Resources with 

Variation Info 

 PEs +type infor  

 PE variation info 
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Our Framework 

 Model Generation:                                                                                                                                                                                                 
 TAS instances and variation information are translated into NPTA model 

 Property Generation 
 Design constraints are converted into propoerties to enable queires 

 Analysis & Evaluation 
 Conduct the automated quantitative analysis using UPPAAL-SMCs 
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NPTA Model Generation 

Front-end Model for Tasks 
 Task.Initial state  

 The beginning of a task 

 Task.Receiving state 
 Tries to obtain notification 

messages from all the 
predecessors 

 Task.Running state 
 All predecessors finished 
 Current task is executing 

 Task.Sending state  
 Notify all successive tasks 

about its completion 

 Task.Finish state 
 The completion of a task 
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NPTA Model Generation 

Front-end Model for PEs Each PE has a queue containing 

ready tasks. 

Front-end Model for  

Power Monitor 

 PE.Waiting state 
 Waiting for ready tasks assigned to 

this PE 

 PE.Running state 
 Executing the task at the head of the 

queue with a specified time 

 PE.Finish state 
 The completion of a task execution 
 

 Power.Handling state 
 Registration of a task running on 

some PE with a specified power 

 Power.Finish state 
 Release the task on the PE together 

with its power requirement 
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Back-end Configuration describes both concurrent behaviors 

of tasks and variation information. 

NPTA Model Generation 

 Task precedence configuration 
 To use a matrix PM to indicate task precedence relation 
 PM[i][j]=1  the ith tasks finishes before jth task starts 

 Variation configuration 
 Describe the time and power distributions of services 
 tvar[N+1][2] denotes the time variation 
 pvar[N+1][2] denotes the power variation 

 

 
 

 

 Different TAS instance will have different above 

configurations  
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Our approach uses broadcast channels to synchronize PTAs. 

Assume that there are T tasks and P PEs. 

NPTA Model Generation 

 Communication from tasks to PEs (many to many) 

Sender idtask  

e= idtask×(T +1)+idpe idpe= e%(T + 1) 

Receiver idpe 

Channel  assign_proc[(T+1)*P] 

 Communication from PEs to tasks (many to 1) 

Sender idpe  

e= idtask idtask= e 

Receiver idtask 

Channel  pt_notify[(T+1)] 

Private channel from all the Pes to task with ID idtask 
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Property Generation 

“What is the performance yield that the task graph can 

be completed under the time constraint of x and power 

constraint of y?” 

Pr [<= x] (<> Task(0).finish && max_power<= y) 

 [<= x]  indicates the time constraint of t 

 <>p checks whether customer requirement p can be fulfilled 

eventually. 

 Task(0).finish indicates the completion of all the tasks 

max_power<= y denotes that the maximum power of the task 

execution cannot be larger than y 
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TAS Instance Generation 

List Scheduling 
 Can quickly achieve near-optimal TAS instances 

 

BULB Approach  
 Can explore all the search space to get optimal TAS 

instances in a branch-and-bound manner 

 

Our framework incorporates two built-in power-constrained 

time-minimization TAS methods. Other TAS approaches 

can be easily integrated in our framework. 

By tuning the operation enumeration order, we can obtain 

different TAS instances using the same above TAS 

approach. 
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Parameter Tuning 

Power constraint tuning  
 Iteratively reduce the power constraint until 

 Either achieve a satisfying performance yield, 

 or the time constraint is violated 

Architectural configuration exploration 

 Explore and evaluate all possible MPSoC designs 
with different PE combinations to achieve a required 
performance yield 

When the generated TAS instances cannot meet the 

specified performance yield, our framework allows the 

tuning of design constraint or architecture parameters to 

explore better instances.  
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Each task is assigned with a 

the information of the target 

PE type and mean execution 

time. 

Case Study 

 We use TGFF to generate a 22-node synthetic task graph (max 

input-degree equals 3 and max output-degree  equals 2).   

 We adopt UPPAAL-SMC as the engine of our framework with 

parameters ε=0.05 , α= 0.05. 

 All the experimental results were obtained on a Ubuntu Linux 

desktop with 4.0 GHz AMD CPU and 8GB RAM.  
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Case Study 

 There are three types of PEs in the MPSoC design and the task 

execution time and power follow the Gaussian distribution on 

these PEs [Sarangi et al., IEEE TSM, 2008]. 

 

 

 

 

 

 

 In table 1, x represents the mean execution time. For example, 

if the mean execution time of a task is 10, its execution time on 

PE A follows the Gaussian distribution N(10,0.52). 

 In the experiment, we apply four TAS strategies: two list 

scheduling variants (i.e., List 1 and List 2), and two BULB 

variants (i.e., BULB 1 and BULB 2).  

Table 1: Power Variation for MPSoC PEs 
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MPSoC Design and Constraint 

Although BULB is optimal 

without considering 

variations, List 1 achieves 

the best result.  

None of the generated 

TAS instances is selected! 

 Assume that the MPSoC design consists of 8 PEs (including 3 

PEs of type A, 3 PEs of type B, and 2 PEs of type C) and the 

design is fixed before TAS.   

 Design constraint: The performance yield cannot be smaller 

than 90% within 190 time units and 65 power units. 

The reason of low performance yield is mainly due to the power variation, because the 

increase of response time cannot improve the performance yield after time 175. 

Fig 1. Power Constraint = 65 
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Tuning of Power Constraint 

Fig 2. Power Constraint = 60 Fig 3. Power Constraint = 55 Fig 4. Power Constraint = 50 

 Tune the power constraint with an interval of 5 units 

 Significant increase of performance yield in Fig. 2 and Fig. 3.  

 The reduction of the power constraint in TAS generation will 
result in large response time, thus affecting the overall 
performance yield (see Fig. 4).  
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Tuning of Architectural Configurations 

Fig. 5  Evaluation of different architectural configurations 

Pr[<= 190](<> Task(0).Finish && max_power<=60) 

 Assume that the MPSoC  design can be customized with at most 

8 PEs of different types. 

 By using BULB 1, Proc (2,3,3) achieves the best performance 

yield as well as the best average response time.  
 

Proc(x,y,z) means that the 

design of x PEs of type A, y 

PEs of type B, and z PEs of 

type C.  
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Conclusion 

 Automated variation-aware evaluation of TAS 
strategies is important in MPSoC design flow 

 Reduce the decision making efforts of MPSoC designers 

 Improve the overall performance yields  

 We propose an UPPAAL-SMC-based TAS strategy 
evaluation framework 

 Support complex performance yield queries under power and 
time variations 

 Enable the tuning of design constraint parameters to explore 
TAS instances with better performance yields 

 Comprehensive experimental results demonstrates 
the efficacy of our approach 
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Thank you ! 


