
Variation-Aware Evaluation of MPSoC
Task Allocation and Scheduling using

Statistical Model Checking

Mingsong Chen1*, Daian Yue1, Xiaoke Qin3,

Xin Fu2 and Prabhat Mishra3
1Software Engineering Institute, East China Normal University, China

2ECE Department, University of Houston, USA
3CISE Department, University of Florida, USA

*Presenter

DATE 2015, Grenoble, France

2

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

3

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

4

Task Allocation & Scheduling in MPSoC

 Task allocation & scheduling is important for MPSoC Design
 Maximize the utilization of available Processing Elements (PEs)
 Satisfying various design constraints (e.g., response time, power)

1 2 3 4

6 5

7

PE A2

PE B2

MPSoC

PE A1

PE B1
Given

Determine

(A,10

)

(A,7) (B,8) (B,3)

(B,5) (A,4)

(B,6)

B2

B1

A2

A1

(T3,8)

(T4,3) (T5,5) (T7,6)

(T1,10) (T6,4)

(T2,7)

22

Power(A)=10, Power(B)=15, MaxPower(Design)=35

 TAS instance representation
 (task scheduling sequence; task-resource binding info)
 Example:(T3,T1,T2,T4,T5,T6,T7;B2,A2,A1,B1,B1,A2,B1)

5

Variations in TAS

 The control the manufacturing process in deep-submicron

technologies is becoming harder
 Increasing performance and power consumption variations across

identically designed PEs and Chips
 Up to 25% performance variation and power variation within an

experimental Intel CPU [P. Gupta et al., TCAD, 2013]

WCET methods can lead to overly pessimistic evaluation

 Variation-aware performance analysis is becoming more

and more important in system-level task allocation.
 Performance yield is proposed to define the probability of an

assigned TAS instance meeting required MPSoC design
constraints under variation [Wang et al., ICCAD, 2007]

 Various heuristic strategies have been proposed to maximize
performance yields

6

 Due to variations, it’s hard to determine which strategy can

generate TAS instances with better performance yield. E.g.,

 Limitations of previous work
 Inaccurate modeling of parallel task execution (e.g., ILP method)
 Constraint solving based approaches can only answer yes or no,

but cannot answer why the performance yield is bad
 Support limited number of distributions for TAS modeling (e.g.,

Gaussian distribution, exponential distribution)
 Focus on optimization rather than quantitative evaluation
 Lack of automated tools to enable the quantitative reasoning about

the performance yield of TAS instances

Limitations & Challenges in TAS under Variations

Challenges:

i) How to accurately model parallel task executions under various

kinds of variations?

ii) How to enable the quantitative reasoning of performance yield to

achieve better designs automatically?

B2

B1

A2

A1

(T3,8)

(T4,3) (T5,5) (T7,6)

(T1,10) (T6,4)

(T2,7)

22

B2

B1

A2

A1

(T3,8) (T4,3)

(T5,5) (T7,6)

(T1,10)

(T6,4) (T2,7)

23

7

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

8

Variation-Aware Construction of NPTA

PTA A PTA B

 NPTA - Network of Priced Timed Automata

 An NPTA instance, (A | B)

Time of reaching (A3, B3) ~ N(9,12+22).

t1 ~ N(3,12) t2 ~ N(6,22)

 A possible behavior of the NPTA (A|B)

9

Statistical Model Checking (SMC)
 Our TAS evaluation is based on SMC, which is effective for

checking large stochastic systems

Quantitative

Analysis

TAS Strategy

Design Constraints

Model

Property

SMC

Checker

Evaluation Results

 UPPAAL-SMC supported queries
 Qualitative check: Pr [time <= bound] (<> expr) >= p
 Quantitative check: Pr [time <= bound] (<> expr)
 Probability comparison:
Pr [time1 <= bound1] (<> expr1) >= Pr [time2 <= bound2] (<> expr2)

10

UPPAAL-SMC
 UPPAAL-SMC versus formal model checking

 Based on simulation, thus requiring far less memory and time
 Allow high scalable validation approximation
 Support quantitative performance analysis

 Application domains: Real-time systems, Smart building, Biology, …

11

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

12

Problem Definition

Task Graph

DAG G = (V,E)

Resources with

Variation Info

 PEs +type infor

 PE variation info

Design

Constraints

 Maximum power

 Response time

 ……

Quantitative Evaluation Framework

Performance Yield Results

TAS

Strategies

 Build in

 User specified

 ……

13

Our Framework

 Model Generation:
 TAS instances and variation information are translated into NPTA model

 Property Generation
 Design constraints are converted into propoerties to enable queires

 Analysis & Evaluation
 Conduct the automated quantitative analysis using UPPAAL-SMCs

14

NPTA Model Generation

Front-end Model for Tasks
 Task.Initial state

 The beginning of a task

 Task.Receiving state
 Tries to obtain notification

messages from all the
predecessors

 Task.Running state
 All predecessors finished
 Current task is executing

 Task.Sending state
 Notify all successive tasks

about its completion

 Task.Finish state
 The completion of a task

15

NPTA Model Generation

Front-end Model for PEs Each PE has a queue containing

ready tasks.

Front-end Model for

Power Monitor

 PE.Waiting state
 Waiting for ready tasks assigned to

this PE

 PE.Running state
 Executing the task at the head of the

queue with a specified time

 PE.Finish state
 The completion of a task execution

 Power.Handling state
 Registration of a task running on

some PE with a specified power

 Power.Finish state
 Release the task on the PE together

with its power requirement

16

Back-end Configuration describes both concurrent behaviors

of tasks and variation information.

NPTA Model Generation

 Task precedence configuration
 To use a matrix PM to indicate task precedence relation
 PM[i][j]=1 the ith tasks finishes before jth task starts

 Variation configuration
 Describe the time and power distributions of services
 tvar[N+1][2] denotes the time variation
 pvar[N+1][2] denotes the power variation

 Different TAS instance will have different above

configurations

17

Our approach uses broadcast channels to synchronize PTAs.

Assume that there are T tasks and P PEs.

NPTA Model Generation

 Communication from tasks to PEs (many to many)

Sender idtask

e= idtask×(T +1)+idpe idpe= e%(T + 1)

Receiver idpe

Channel assign_proc[(T+1)*P]

 Communication from PEs to tasks (many to 1)

Sender idpe

e= idtask idtask= e

Receiver idtask

Channel pt_notify[(T+1)]

Private channel from all the Pes to task with ID idtask

18

Property Generation

“What is the performance yield that the task graph can

be completed under the time constraint of x and power

constraint of y?”

Pr [<= x] (<> Task(0).finish && max_power<= y)

 [<= x] indicates the time constraint of t

 <>p checks whether customer requirement p can be fulfilled

eventually.

 Task(0).finish indicates the completion of all the tasks

max_power<= y denotes that the maximum power of the task

execution cannot be larger than y

19

TAS Instance Generation

List Scheduling
 Can quickly achieve near-optimal TAS instances

BULB Approach
 Can explore all the search space to get optimal TAS

instances in a branch-and-bound manner

Our framework incorporates two built-in power-constrained

time-minimization TAS methods. Other TAS approaches

can be easily integrated in our framework.

By tuning the operation enumeration order, we can obtain

different TAS instances using the same above TAS

approach.

20

Parameter Tuning

Power constraint tuning
 Iteratively reduce the power constraint until

 Either achieve a satisfying performance yield,

 or the time constraint is violated

Architectural configuration exploration

 Explore and evaluate all possible MPSoC designs
with different PE combinations to achieve a required
performance yield

When the generated TAS instances cannot meet the

specified performance yield, our framework allows the

tuning of design constraint or architecture parameters to

explore better instances.

21

Outline

 Introduction

 Preliminary Knowledge

 Variation-aware Construction of NPTA

 UPPAAL-SMC Based Evaluation

 Our Quantitative TAS Evaluation Approach

 Model and Property Generation

 SMC-Based TAS Evaluation

 Parameter Tuning

 Experimental Results

 Conclusion

22

Each task is assigned with a

the information of the target

PE type and mean execution

time.

Case Study

 We use TGFF to generate a 22-node synthetic task graph (max

input-degree equals 3 and max output-degree equals 2).

 We adopt UPPAAL-SMC as the engine of our framework with

parameters ε=0.05 , α= 0.05.

 All the experimental results were obtained on a Ubuntu Linux

desktop with 4.0 GHz AMD CPU and 8GB RAM.

23

Case Study

 There are three types of PEs in the MPSoC design and the task

execution time and power follow the Gaussian distribution on

these PEs [Sarangi et al., IEEE TSM, 2008].

 In table 1, x represents the mean execution time. For example,

if the mean execution time of a task is 10, its execution time on

PE A follows the Gaussian distribution N(10,0.52).

 In the experiment, we apply four TAS strategies: two list

scheduling variants (i.e., List 1 and List 2), and two BULB

variants (i.e., BULB 1 and BULB 2).

Table 1: Power Variation for MPSoC PEs

24

MPSoC Design and Constraint

Although BULB is optimal

without considering

variations, List 1 achieves

the best result.

None of the generated

TAS instances is selected!

 Assume that the MPSoC design consists of 8 PEs (including 3

PEs of type A, 3 PEs of type B, and 2 PEs of type C) and the

design is fixed before TAS.

 Design constraint: The performance yield cannot be smaller

than 90% within 190 time units and 65 power units.

The reason of low performance yield is mainly due to the power variation, because the

increase of response time cannot improve the performance yield after time 175.

Fig 1. Power Constraint = 65

25

Tuning of Power Constraint

Fig 2. Power Constraint = 60 Fig 3. Power Constraint = 55 Fig 4. Power Constraint = 50

 Tune the power constraint with an interval of 5 units

 Significant increase of performance yield in Fig. 2 and Fig. 3.

 The reduction of the power constraint in TAS generation will
result in large response time, thus affecting the overall
performance yield (see Fig. 4).

26

Tuning of Architectural Configurations

Fig. 5 Evaluation of different architectural configurations

Pr[<= 190](<> Task(0).Finish && max_power<=60)

 Assume that the MPSoC design can be customized with at most

8 PEs of different types.

 By using BULB 1, Proc (2,3,3) achieves the best performance

yield as well as the best average response time.

Proc(x,y,z) means that the

design of x PEs of type A, y

PEs of type B, and z PEs of

type C.

27

Conclusion

 Automated variation-aware evaluation of TAS
strategies is important in MPSoC design flow

 Reduce the decision making efforts of MPSoC designers

 Improve the overall performance yields

 We propose an UPPAAL-SMC-based TAS strategy
evaluation framework

 Support complex performance yield queries under power and
time variations

 Enable the tuning of design constraint parameters to explore
TAS instances with better performance yields

 Comprehensive experimental results demonstrates
the efficacy of our approach

28

Thank you !

