
ADAutomation: An Activity
Diagram Based Automated
GUI Testing Framework for
Smartphone Applications

Ang Li, Zishan Qin, Mingsong Chen* and Jing Liu

Shanghai Key Lab of Trustworthy Computing

East China Normal University, China

June 30, 2014

2

Outline

 Introduction

 Behavior Modeling Using Activity Diagrams

 Graph–based Notations

 User Behavior Modeling & Extraction

 Our Automated GUI Testing Framework

 Test Script Library Generation

 GUI Testing & Error Diagnosis

 Experiments

 Conclusion

3

Outline

 Introduction

 Behavior Modeling Using Activity Diagrams

 Graph–based Notations

 User Behavior Modeling & Extraction

 Our Automated GUI Testing Framework

 Test Script Library Generation

 GUI Testing & Error Diagnosis

 Experiments

 Conclusion

4

Introduction

 More and more people rely on smartphone apps to manage their
daily life (bills, shopping, surfing, emails, etc.).

 GUI testing is becoming a major bottleneck in overall testing (up
to 40% of time and resources).

 Time-to-market pressure requires automated GUI testing
techniques.

75

300

500

700

1000

16

100

319

675

1000

0

100

200

300

400

500

600

700

800

900

1,000

2009 2010 2011 2012 2013

A
v
a
ila

b
le

 A
p
p
s

iOS Android

(Thousand)

Total number of both iOS and Android APP Downloads : >100 billion

5

Summary of Related Work

 Capture & Replay / Script Driven Testing

 Flexible for debug purpose (tools: Robotium, UIAutomation, etc.)

 Require expert-knowledge to detect errors, need human intervention

 Random Testing

 Can be fully automated (tools: Monkey, UI-Auto-Monkey, etc.)

 Coverage convergence cannot be guaranteed. The coverage may take
quite long time to go from 90% to 99%.

 Model-Based Approaches (e.g., FSM, Event-Flow)

 Can be automated with less test cases.

 Focus on the internal logic rather than user behaviors

 Few of existing testing approaches make use of user behavior
information.

 How to model user behaviors accurately?

 How to check the inconsistency between GUI specifications and GUI
implementations?

6

User Behavior Modeling

Coverage

Criteria

Formal

Models

Behavior

Extraction

XML Parser

GUI Test

Functions

Action-Function

Mapping

Test Script Library Construction

Test Case Execution

Test

Engine

GUI

Application

Simulator Log Analyzer

Coverage

Report

Replay-based

Debugger

Post-test Analysis

GUI Specification
（Activity Diagrams with

system & action

configurations）

Action

Sequences

Test Script

Generation

Test Scripts

GUI Test Case Generation

Overview of Our ADAutomation Framework

7

Outline

 Introduction

 Behavior Modeling Using Activity Diagrams

 Graph–based Notations

 User Behavior Modeling & Extraction

 Our Automated GUI Testing Framework

 Test Script Library Generation

 GUI Testing & Error Diagnosis

 Experiments

 Conclusion

8

User Behavior Modeling

Coverage

Criteria

Formal

Models

Behavior

Extraction

XML Parser

GUI Test

Functions

Action-Function

Mapping

Test Script Library Construction

Test Case Execution

Test

Engine
Application

Simulator Log Analyzer

Coverage

Report

Replay-based

Debugger

Post-test Analysis

GUI Specification
（Activity Diagrams with

system & action

configurations）

Action

Sequences

Test Script

Generation

Test Scripts

GUI Test Case Generation

User Behavior Modeling

9

Graph-Based Notations

 UML Activity Diagram Notations

 Actions (i.e., external operations) and activities (i.e., GUI views, which
indicate a collection of correlated actions)

 Control nodes and flows (indicating the execution order of actions)

 Control nodes

 Control flow

Action Name

Action Activity

Initial

Join

Decision/Merge

Action1 Action2

…

…

Final

Fork Arrow

Action

10

User Behavior Modeling

 As a semi-formal specification, UML activity diagrams
cannot be automatically analyzed.

 We extend the relation between actions with a quasi-
Petri-net semantics for GUI testing purpose.

 Concurrent action execution Interleaving of actions

 Activities GUI views

Actions in the current view cannot be preempted by actions from
other views.

 Activity depth Action execution priority

Nested activities are indexed by their depth

At any time, only actions in the deepest activity can be fired.

 The behavior of an activity diagram can be represented by a
sequence of actions (e.g., <Initial, a, b, c, …, Final>).

11

Fork/Join Operations & Activity Hierarchy

The execution of action1, action2,

and action3 cannot be interrupted

by the action4 and action5.

Action3

Action2

Action1

Action4

Action5

Action4

Action5

Action2

Action3

Action1

The action order of each thread

should be kept. Independent

actions can be interleaved.

12

User Behavior Extraction

 To enable sufficient testing, we need to enumerate all
possible user behaviors from activity diagrams, which
can be explored in a depth-first way

 However, due to the loops, it is impossible to
enumerate all the user behaviors

 Restrict the length of path with a limited bound

 To mimic the user behaviors, the depth-first user
behavior exploration needs to consider the hierarchy
information of activities.

 Consider the depth information of enclosed activity for
each action

 Only the actions within the deepest activity can be
explored further

13

Select Files

Press Download

Button

Initial

Check

Downloaded Files

Input User Name

ActivityInitial

Input Password

Submit

e d

a

b

c

f

g

t1

t2

t3

t5

 t4
[Yes]

t5

t12

t7

t9
t10 [No]

t11

Login

Succeed ?
Has Logged in?

[Yes]

[No]

t6

Final

t13

t8

ActivityFinal

Forward Path Exploration

CS=<a,c>

path=<a>

t6

CS=<a,d>

path=<a,d>

CS=<a,e>

path=<a,d,e>

CS=<b,c>

path=<a,d,e,f,b>

CS=<g>

path=<a,d,e,f,b,g>

t7

t12

…

14

Select Files

Press Download

Button

Initial

Check

Downloaded Files

Input User Name

ActivityInitial

Input Password

Submit

e d

a

b

c

f

g

t1

t2

t3

t5

 t4
[Yes]

t5

t12

t7

t9
t10 [No]

t11

Login

Succeed ?
Has Logged in?

[Yes]

[No]

t6

Final

t13

t8

ActivityFinal

Backward Path Exploration

t12

CS=<g>

path=<a,d,e,f,b,g>

CS=<b,c>

path=<a,d,e,f,b>

t5

CS=<a,c>

path=<a,d,e,f,b,a>

CS=<b,c>

path=<a,d,e,f,b,a,b>

t2

CS=<Final>

path=<a,d,e,f,b,g>

t13

15

User Behavior Coverage Criteria

 To measure the effectiveness of user behaviors
extracted from activity diagrams, we propose three
types of coverage metrics.

 Action coverage check the reachability of each action

 Transition coverage checks all the conditional branch
along the control flows.

 Simple path checks possible combination of actions and
transitions.

A simple path is a path (user behavior) without action repetition.

When a user behavior remove all its repeated actions, it should
match some simple path.

16

t3

An Example of Simple Path Coverage

 A user behavior matches a

simple path if it can

simulate on the activity

diagram and it contains all

the actions of the simple

paths.

 E.g., the user behavior

described in blue lines

matches the simple

path in green lines.

 Simple path coverage

requires that all the simple

paths to be covered.

Select Files

Press Download

Button

Initial

Check

Downloaded Files

Input User Name

ActivityInitial

Input Password

Submit

e d

a

b

c

f

g

t2

t1

t7

t4

t5

 t6
[Yes]

t14

t15

t9

t11

t12 [No]

t13

Login

Succeed ?
Has Logged in?

[Yes]

[No] t8

Final

t16

t10

ActivityFinal

17

Outline

 Introduction

 Behavior Modeling Using Activity Diagrams

 Graph–based Notations

 User Behavior Modeling & Extraction

 Our Automated GUI Testing Framework

 Test Script Library Generation

 GUI Testing and Error Diagnosis

 Experiments

 Conclusion

18

User Behavior Modeling

Coverage

Criteria

Formal

Models

Behavior

Extraction

XML Parser

GUI Test

Functions

Action-Function

Mapping

Test Script Library Construction

Test Case Execution

Test

Engine
Application

Simulator Log Analyzer

Coverage

Report

Replay-based

Debugger

Post-test Analysis

GUI Specification
（Activity Diagrams with

system & action

configurations）

Action

Sequences

Test Script

Generation

Test Scripts

GUI Test Case Generation

Test Script Library Construction

19

Activity Diagram Annotation

 System configuration

<Platform>

 <Name>iOS</Name>

 <Version>6.0</Version>

 <TestEngine>

 <Name>…</Name>

 <Version>…</Version>

 </TestEngine>

 <Delay>

 <Unit>Second</Unit>

 <Value>0.2</Value>

 </Delay>

</Platform>

20

Activity Diagram Annotation

 Action configuration

 Widget features specify
the attributes of
corresponding GUI
widgets such as ID,
name, position, size, etc.

 GUI operations describe
user operations
conducted on associated
GUI widgets.

 Test logs instrument
proper log information
based on the result of
GUI operations.

21

Action-Function Mapping

 For each action, our tool will generate one corresponding
function. Therefore, there will be a mapping between the
action and its associate test function.

 For the name of derived test function, we use the
following convention

 Action node information

-Name=“Select Files”

- ID=1

 Function name

-_1_SelectFiles

22

Test Script Library
 A Test script library is a set of system settings and

generated test functions

 System configuration System settings

 Action configuration Test Functions

 A skeleton of a test script library library.js in JavaScript

var delay = 0.2;; // System setting

function screenshot(){ ……} // System Functions

function _1_SelectFiles(){……}

function _2_PressDownloadButton (){……}

function _3_InputUserName(){

 UIALogger.logMessage(“Action:InputUserName”);

 win.textFields()[0].setValue(“…");

 screenshot();

}

function _4_InputPasswd(){……}

function _5_Submit(){……}

function _6_CheckDownloadFiles(){……}

……

// Test functions

23

Test Case Generation

 The process of test case generation is a one-one
mapping from a user behavior to a test case

 An extracted user behavior example
<Initial, “Select Files”, “Input User Name”, “Input Password”,
“Submit”, “Press Download Button”, “Check Download Files”, Final >

 The corresponding generated test case

#import “Library.js”

UIALogger.logStart(“Testing starts”);

_1_SelectFiles();

_3_InputUserName();

_4_InputPasswd();

_5_Submit();

_2_PressDownloadButton ();

_6_CheckDownloadFiles();

UIALogger.logPass(“Testing ends”);

24

User Behavior Modeling

Coverage

Criteria

Formal

Models

Behavior

Extraction

XML Parser

GUI Test

Functions

Action-Function

Mapping

Test Script Library Construction

Test Case Execution

Test

Engine
Application

Simulator Log Analyzer

Coverage

Report

Replay-based

Debugger

Post-test Analysis

GUI Specification
（Activity Diagrams with

system & action

configurations）

Action

Sequences

Test Script

Generation

Test Scripts

GUI Test Case Generation

Overview of ADAutomation Framework

25

Error Diagnosis

 Error Diagnosis

 Log information

 Playback

26

Outline

 Introduction

 Behavior Modeling Using Activity Diagrams

 Graph–based Notations

 User Behavior Modeling & Extraction

 Our Automated GUI Testing Framework

 Test Script Library Generation

 GUI Testing & Error Diagnosis

 Experiments

 Conclusion

27

User Behavior
Model

Test Scripts

Test Log

Tools Chain for Experiment

Our XMI Parser

& Test Scripts Generator

Application Under Test

& Test Engines

(Xcode Instruments, Robotium)

Debug

 All the experimental results were obtained on a MacBook
Pro machine with Intel Core i5 2.4GHz processor and 4 GB
RAM.

GUI

Specification

28

Case Study 1: PicFlic

 PicFlic is a free Wi-Fi based
remote picture print
management application
developed by Eastman Kodak
company.

 The left picture shows the
eight views of PicFlick on iOS
and the corresponding view
switches indicated by arrow
lines .

 We did GUI testing on both
iOS and Android versions of
PicFlick.

29

The Activity Diagram of PicFlick

 Designing this activity diagram from user specification needs around 6 hours.

 30 actions, 86 transitions, and 955 simple paths are derived from this activity
diagram.

 It can generate 12776 test cases with a bound limit 18.

30

Test Results of PicFlick

Bound

Size

Test Case

Failed

Case #

Test Time

(s)

Action

Coverage

Transition

Coverage

Sim. Path

Coverage

2 2 0 16.06 13.33% 13.95% 0.21%

4 13 0 103.37 43.33% 46.51% 1.05%

6 59 0 438.57 66.67% 67.44% 2.62%

8 176 5 1207.15 83.33% 82.56% 5.03%

10 432 14 2773.44 100% 100% 8.07%

12 881 22 5231.80 100% 100% 19.71%

14 2224 83 13235.72 100% 100% 45.60%

16 5784 331 33481.70 100% 100% 81.66%

18 12776 993 70217.14 100% 100% 98.95%

 Testing Time (test case generation time + simulation time):

 70217 seconds (less than 20 hours) for PicFlick (iOS).

 Compared to 2-3 man month manual testing in industrial.

 Android version shows the similar testing results.

31

Bugs Found in PicFlick

 993 of 12776 test cases resulted in application crashes on
iOS, and 5 suspected bugs were found.

 925 of 12776 test cases resulted in application crashes on
Android, but only bug 1 and 2 were reported.

Index Error Scenarios Failed # Reasons of the failures

1

If the picture is too large,

then the drag of the picture

may crash.

121

Due to the limited resource for the

smartphone application, the drag of big

pictures will use up all the allocated CPU

and memory resources.

2

If users send pictures to

digital frames and printers at

the same time, the

application will crash.

806

The implementation of the task scheduling

between sending list and pending list is

wrong.

3
Fail to delete tasks from

pending list.
40

The implementation of the delete operation

of the pending list is wrong.

4
Fail to tap the sending list

button in the Queue view.
12

After selecting devices to send photos, the

sending list button is disabled by mistake.

5
Fail to find printers which

appear in the Tools view.
14

The implementation of the connection

between PicFlick and the drivers of printers

is wrong.

32

Random Testing for PicFlick

Bound Size
Action

Coverage

Transition

Coverage

Simple Path

Coverage
Bugs Found

20 47.22% 59.34% 0.93% 0

50 97.22% 97.80% 65.60% 1

100 97.22% 97.80% 85.80% 2

200 97.22% 97.80% 85.80% 2

400 100% 100% 93.89% 3

unlimited∗ 100% 100% 93.89% 3

 We conduct the random testing using UI AutoMonkey on iOS

 Random testing took 24 hours, but only 3 out of 5 known
bugs were found. No new errors were detected using the
random approach.

 Simple path coverage is 93.89% using the random approach
compared to 98.95% using ADAutomation.

 Random testing on Android shows the similar results.

33

Case Study 2: Newsyc

 Newsyc is an open source Hacker
News client.

 The GUI implementation has four
views (i.e., news list view, news
browsing view, comments view,
and system setting view).

 Its activity diagram has12 actions,
35 transitions, and 5 simple paths

 4995 test cases were generated
form this diagram with a bound
limit of 15

34

Testing Result for Newsyc (iOS)

Bound

Size

Test

Case #
Test Time (s)

Action

Coverage

Transition

Coverage

Sim. Path

Coverage

2 1 8.48 25.00% 29.41% 6.67%

3 3 26.11 33.33% 35.29% 20.00%

4 7 62.45 33.33% 47.06% 20.00%

5 11 99.66 33.33% 47.06% 20.00%

……

15 4995 47145.0 33.33% 47.06% 20.00%

 One Bug Found - When users enter the news browsing view
for the first time, they cannot bookmark the news, share the
news, or modify the font size.

 Test time (test case generation time + simulation time) is
47145 seconds (about 13 hours).

35

Random Testing for Newsyc

Bound Size
Action

Coverage

Transition

Coverage

Simple Path

Coverage
Bugs Found

10 100.00% 97.06% 53.33% 0

20 100.00% 100.00% 80.00% 0

50 100.00% 100.00% 100.00% 0

100 100.00% 100.00% 100.00% 0

200 100.00% 100.00% 100.00% 0

unlimited∗ 100.00% 100.00% 100.00 % 0

 Random testing takes12 hours.

 Achieved 100% coverage in all categories.

 No bug was found.

36

Conclusion

 GUI testing is becoming a major bottleneck in
smartphone application development.

 This paper proposes an efficient automated GUI
testing framework for smartphone applications

 User behavior modeling using activity diagram

 Three test adequacy criteria

 Automated GUI test library construction

 Tool chain for automated GUI testing

 Successfully applied on various smartphone
applications

 Significant reduction in overall GUI testing time

 More bugs found than random methods

37

Thank you !

