
Efficient Techniques for Directed
Test Generation Using Incremental

Satisfiablility

Prabhat Mishra and Mingsong Chen
Embedded Systems Lab

Computer and Information Science and Engineering
University of Florida, USA

Outline
 Introduction

 Related Work

 Test Generation Using Incremental SAT

 Clustering of similar properties

 Name substitution for computation of intersection

 Identify and reuse of common conflict clauses

 Experiments

 Conclusion

演示者
演示文稿备注
First, I will briefly introduce the code compression problem.Then, I will briefly describe existing dictionary-based code compression techniques including bitmask-based code compression and discuss various practical challenges of using it in SOC design methodology.Next, I will present an application-aware code compression technique that addresses these challenges.Finally, I will present experiments and conclude with a short summary and future work directions.

Introduction
 Functional verification is a major bottleneck

 Increasing design complexity
 Decreasing time-to-market

 Directed tests can reduce validation effort
 Same coverage goal can be reached using small

number of directed tests
 Model checking based test generation

 Automated generation of directed tests
 Unsuitable for large designs
 State space explosion

 Need to reduce test generation time (complexity)

Motivation
 SAT-based bounded model checking (BMC)

can address state space explosion
 Searches within a bound
 CNF can be smaller than BDD
 SAT has many heuristic decision algorithms
 Exploit the similarity of SAT instances

 Existing approaches exploit similarity for the
same test generation instance
 Same property with different bounds

 We extend incremental SAT to exploit test
generation involving multiple properties

SAT-based Bound Model Checking
 For every finite model and a LTL property φ there

exists k such that:

 Test generation needs to consider safety properties
 The safety property P is valid up to cycle k iff Ω(k) is

not satisfiable.

 If Ω(k) is satisfiable, then we can get an assignment
which can be translated to a test.

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

Implication Graph, Conflict Clause

ω1 = (x2 ∨ x6 ∨ ¬ x4)

ω2 = (¬x8 ∨ x3 ∨ ¬ x7)

ω3 = (¬x1 ∨ x4∨ x5)

ω4 = (¬x3 ∨ ¬ x4)

ω5 = (¬ x2 ∨ x3∨ x8)

ω6 : (¬x1 ∨ x5 ∨ x6 ∨ ¬ x7)

cut1
¬ x6@1

x1@3

¬ x5@4

x4@4

x2@4

¬ x3@4

x7@2

x8@4

¬ x8@4

conflict

 Conflict clause can be treated as the knowledge
learned during the SAT solving. It is a restriction
of the variable assignment.

Incremental SAT
 Given two CNF formulas (sets of clauses) S1 and S2,

the following statement holds.
 (1) Let π be the conflict clause learned from S1, then:
 S1 is satisfiable iff S1 ∧ π is satisfiable
 (2) Let ϕ0 ≡ S1 ∩ S2, if π is a conflict clause learned from ϕ0

 then:

 So when checking S2, we can reuse the knowledge π

learned during checking S1.
 Currently, the incremental SAT is used for checking

the same property with different bounds.

S1 is satisfiable iff S1 ∧ π is satisfiable.
S2 is satisfiable iff S2 ∧ π is satisfiable.

Test Generation Using Incremental SAT
The goal of our approach is to reduce the

overall functional validation effort by reducing
the test generation time for directed tests.
The basic idea is to learn from solving one

property and sharing learning (through conflict
clauses) for solving the similar properties in
the cluster.
This paper focuses on test generation for

safety properties. We assume that the bound
for each property can be pre-determined
based on the structure of the model.

Workflow of Our Method
1. Cluster the properties based on similarity
2. for each cluster i, of properties

① Select base property pi
1, and generate CNFi

1
② for each CNFi

j of pi
j (j≠1) in cluster i

a) Perform name substitution on CNFi
j

b) Compute intersection INTi
j between CNFi

1 and CNFi
j

c) Mark the clauses of CNFi
1 using INTi

j

③ Solve CNFi
1 to get the conflict clauses CCi

1 and testi1
④ for each CNFi

j (j≠1)
a) CNFi

j = CNFi
j + Filter (CNFi , j)

b) Solve CNFi
j and get the testij

endfor
endfor

Property Clustering
 More intersections imply more conflict clause

forwarding. However, for n properties, clustering
based on intersection need n(n-1)/2 comparisons.

 A simple and natural way to cluster properties is to
exploit the structural and behavior similarity.

 Rules used for base property selection.
 Variable and/or sub-expression overlap
 Small bound.

 The DIMACS file contains the mapping between
the CNF variable and the variables of the model.
 E.g. C 8 => V1_var [6]
 Variable 8 is used to refer to 7th bit of variable var in

the specification in time step 1.
 Name substitution can get more intersection.

Name Substitution

C 1 => a_1
C 2 => b_1
C 3 => a_2

p cnf 3 3
 -1 2 0
 3 2 0
 1 3 0

……
C 4 => a_1
C 5 => b_1
C 6 => a_2

p cnf 6 4
 5 -4 0
 5 6 0
 1 4 0
 2 -3 0

C 1 => a_1
C 2 => b_1
C 3 => a_2

P cnf 6 4
 2 -1 0
 2 3 0
 4 1 0
 5 -6 0

DIMACS f1 DIMACS f2 DIMACS f2’

Identification of Common Conflict Clauses

cut1
¬ x6@1

X1@3

¬ x5@4

x4@4

x2@4

¬ x3@4

x7@2

x8@4

¬ x8@4

conflict

Conflict Clause
 (¬ X1 ∨ X5 ∨ X6 ∨ ¬ X7)

 Conflict Side Clauses

Clauses
Group ID

4 3 2 1
(¬X2 ∨X3 ∨X8) 0 1 1 1

(X3 ∨¬X7 ∨¬X8) 1 0 1 0

(X2 ∨¬X3 ∨X6) 1 1 1 1

(¬X3 ∨¬X4) 1 0 1 0

(¬X1 ∨X4 ∨X5) 1 1 1 0

Let ∧ be the bit “AND” operation. (0111 ∧ 1010 ∧ 1111 ∧ 1010 ∧ 1110) = 0010.
So the conflict clause (¬X1 ∨X5 ∨X6 ∨¬X7) can be reused for property 2.

 This case study is a on-line stock exchange system. The
activity diagram consists of 27 activities, 29 transitions and
18 key paths.

On-line Stock Exchange System

Clusters
(properties)

Preprocess
Time

zChaff
(sec.)

Our method
(sec.)

Improv.
Factor

Cluster 1 (2) 3.79 59.82 4.43 13.50

Cluster 2 (4) 11.98 78.13 13.68 5.72

Cluster 3 (4) 11.81 161.91 40.50 4.00

Cluster 4 (4) 12.70 144.12 51.80 2.78

Cluster 5 (4) 12.76 426.09 75.34 5.66

Average 4.08 48.33 10.32 4.68

Case Study 2: MIPS Processor
Fetch

Decode

PC

DIV FADD1 IALU MUL1

FADD3

FADD2 MUL2

FADD4

Decode

WriteBack

Register File

Memory

MUL7

Unit
Storage
 Pipeline edge
Data-transfer edge

The Architecture

MIPS Processor
- 20 nodes
- 24 edges
- 91 instructions

Case Study 2: MIPS Processor
 The processor has five pipeline stages: fetch, decode,

execute, memory and writeback. The execute stage has
four execution path, 1 stage integer ALU, 7 stages
multiplier, 4 stage floating point adder and one multi-cycle
divider.

Clusters CNF
Clauses

Intersectio
n

Size

zChaff Our
Method

Improv.
Factor

CLALU 460994 457168 19.35 5.10 3.79

CLFADD 592119 67894 61.61 42.46 1.45

CLMUL 854368 522283 718.85 159.21 4.51

CLDIV 526517 457160 35.07 8.19 4.28

Average 608504 376126 208.72 53.74 3.88

Conclusions
Functional validation is a major bottleneck
Test generation using SAT-based BMC
Incremental SAT involving one property (test)

Directed test generation using Incremental SAT
 Share learning across multiple properties
 Clustering of similar properties

 Name substitution for computation of intersection

 Identify and reuse of common conflict clauses

 Reduces test generation time and complexity
 Four times improvement in test generation time for both

software and hardware designs

演示者
演示文稿备注
To summarize, memory is a major design constraint in embedded systems design and bitmask based code compression is a promising approach to reduce the memory requirement. However, it has various challenges to apply in SOC design methodology.In this talk, I presented application aware code compression technique using efficient mask and dictionary selection methods to address these challenges.In the future, we plan to investigate compiler optimizations to generate compression friendly code. We also plan to study the effects of code size reduction on power savings. Finally, we plan to apply it in manufacturing test compression.

Thank you !

	Efficient Techniques for Directed Test Generation Using Incremental Satisfiablility
	Outline
	Introduction
	Motivation
	SAT-based Bound Model Checking
	Implication Graph, Conflict Clause
	Incremental SAT
	Test Generation Using Incremental SAT
	Workflow of Our Method
	Property Clustering
	Name Substitution
	Identification of Common Conflict Clauses
	On-line Stock Exchange System
	Case Study 2: MIPS Processor
	Case Study 2: MIPS Processor
	Conclusions
	幻灯片编号 17

