
Mingsong Chen*, Fan Gu, Lei Zhou, Geguang Pu and Xiao Liu
Shanghai Key Lab of Trustworthy Computing

East China Normal University, China
* Presenter

January 7, 2014

Efficient Two-Phase Approaches
for Branch-and-Bound Style

Resource Constrained Scheduling

2

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–based Notations
 BULB Approach

 Our Two-Phase Approaches
 Bounded-Operation Approach
 Non-Chronological Backtrack
 Search Space Speculation

 Experiments
 Conclusion

3

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–based Notations
 BULB Approach

 Our Two-Phase Approaches
 Bounded-Operation Approach
 Non-Chronological Backtrack
 Search Space Speculation

 Experiments
 Conclusion

4

SoC Design Cost Model

Rising cost of IC design and effect of CAD tools
(Courtesy: Andrew Kahng, UCSD and SRC)

To
ta

l D
es

ig
n

C
os

t

Big Savings by using ESL Methodology

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

5

High Level Synthesis
 Convert ESL specification to RTL implementation,

and satisfy the design constraints.
 Input: Behavior specifications (C, SystemC, etc.), and design

constraints (delay, power, area, etc.)
 Output: RTL implementations (datapath, controller)

Frontend
Compilation

CDFG,
DFG

Behavior
Spec.

RTL
Generation

VHDL,
Verilog

int Sample(){
var A,B,C,D,E,F,G : int;
Read(A, B, C, D, E);
F = E * (A + B);
G = (A + B) * (C + D);
……
}

Synthesis
Optimization

Schedules,
Binding

+ +

*

F G

*

E A D C B

+ +

*
F G

*

E A D C B

Cycle 1

Cycle 2

Cycle 3

+1,+2 *1,*2

B,D E, t1 A,C t1, t2

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

6

Resource Constrained Scheduling
 Scheduling is a mapping of operations to control steps

 Given a DFG and a set of resource constraints, RCS tries to find a
(optimal) schedule with minimum overall control steps.

 Various resource constraints (e.g., functional units, power, …).

Constraints:
 Delay(+)=1,
 Delay(*)=2,
Functional units:
 1+, 1*

RCS is NP-Complete. RCS should take care of
 1) Operation precedence. 2) Resource sharing constraints

+
v1 v2

v3

*

* *

+

v4

v5

Control Step 1

2

3

4

5

6

7

8

+

*

*
+

Schedule length = 8

v1

v2
v3

v4

v5
*

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

7

Basic Solutions
 Non-optimal heuristics
 Force Directed Scheduling
 List scheduling
 Pros: Fast to get near-optimal results
 Cons: schedules may not be tight

 Optimal sequential approaches
 Integer linear programming (ILP)
 Pros: easy modeling
 Cons: scalability, cannot handle non-integer time

 Branch-and-bound
 Pros: can prune the fruitless search space efficiently
 Cons: hard to achieve a tight initial upper-bound

演示者
演示文稿备注
Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost.

8

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–based Notations
 BULB Approach

 Our Two-Phase Approaches
 Bounded-Operation Approach
 Non-Chronological Backtrack
 Search Space Speculation

 Experiments
 Conclusion

9

Scheduling Using [ASAP, ALAP]
 Based on [ASAP, ALAP], naively enumerating all

the possibilities can be extremely time consuming
 The operations are enumerated in a specific order
 Each operation is enumerated from ASAP to ALAP

 A schedule is a binary relation of operations and
corresponding dispatching control step
 E.g., {(v1, 1), (v2, 2), (v3, 3), (v4, 5), (v5, 7)}

Constraints:
Delay(+)=1,
Delay(*)=2,
1+, 1*

+
v1 v2

v3

*

* *

+

v4

v5

[1, 3] [1, 3]

[2, 5] [2, 5]

[4, 7]

Control Step
1

2

3

4

5

6

7

8

+

*

*
+
(v1,1)

(v2,2)
(v3,3)

(V4,5)

(v5,7)
*

10

Branch and Bound Style RCS (BULB)
 BULB tries to prune fruitless enumerations.
 B&B approach keeps two data structure regarding

bound information.
Sbsf , best complete schedule searched so far
S, current incomplete schedule

 Sbsf

1

2

3

4

5

6

7

8

+

*

*
+
(v1, 1)

(v2, 2)
(v3, 3)

(V4, 5)

(v5, 7)
*

globalL
ow

 ω

S
1

2

3

4

5

6

7

8

+

*

* +
(v2, 1)

(v1, 2) (v3, 3)

(V4, 5)

(v5, 7)
*

upper

low
er

11

Pruning in BULB

Sbsf

S
upper

lower

globalLow ω optimal

 Pruning [lower > ω] Backtrack to last operation
 Termination [globalLow == ω or fully explored]
 Substitution [if(upper < ω) ω = upper]

ω plays an important role in B&B approaches. A smaller ω can
- tighten the [ASAP, ALAP] intervals, i.e., search space;
- enable the fast pruning of inferior schedules during RCS.

12

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–based Notations
 BULB Approach

 Our Two-Phase Approaches
 Bounded-Operation Approach
 Non-Chronological Backtrack
 Search Space Speculation

 Experiments
 Conclusion

13

 ALAP(OPi, Sinit) = ωinit – CPw(G(OPi)), where Sinit is
an initial feasible schedule, and ωinit = length(Sinit) .

 List scheduling cannot always guarantee a small ωinit,

since it only considers only one possible schedule
combination of unscheduled operations.

 How to quickly find a small ωinit is a key issue in RCS.

Importance of Initial Feasible Schedule

ωinit = 8 ω'init = 7

+
v1 v2

v3

*

* *

+

v4

v5

[1, 3] [1, 3]

[2, 5] [2, 5]

[4, 7]

+
v1 v2

v3

*

* *

+

v4

v5

[1, 2] [1, 2]

[2, 4] [2, 4]

[4, 6]

14

 Two-phase approach has two steps
 Step 1 does partial search on the search space coarsely to

achieve a tight schedule.
 Step 2 fully scans the search space in the same way as BULB

approach, but with a tight ωinit achieved from step 1.

 Partial Search should achieve a small ωinit with small

overhead.

Basic Idea of Our 2P Approach

15

Bounded Operation Approach
 Basic idea: Less operations involved in partial search.
 Bounded operation approach only considers the

input nodes. The remaining nodes are estimated
using list scheduling approach.

 Example:
 S1 = {(OP1, 1)}

S2 = {(OP1, 1), {(OP2, 2)}
 ListScheduling(S1) = ListScheduling(S2) = 8
S3 = {(OP1, 1), {(OP2, 3)}
 ListScheduling(S3) = 9
S4 = {(OP1, 2), {(OP2, 1)}
 ListScheduling(S4) = 7 = Length(Sopt)

+
v1 v2

v3

*

* *

+

v4

v5

[1, 3] [1, 3]

[2, 5] [2, 5]

[4, 7]

Only 4 tries can achieve the tightest initial schedule.
Bounded operation method can efficiently avoid trap in the deep search.

16

Search Space Speculation
 Basic idea: Smaller search range of each operation.
 By adopting a greedy strategy, our speculation

approach assumes that the global optimal result will
be always located in the first half of orginal range.

 Example:

+
v1 v2

v3

*

* *

+

v4

v5

[1, 3] [1, 3]

[2, 5] [2, 5]

[4, 7]

+
v1 v2

v3

*

* *

+

v4

v5

[1, 2] [1, 2]

[2, 3] [2, 3]

[4, 5]

Only 4 tries can achieve the tightest initial schedule.
Search space speculation can efficiently avoid trap in the deep search.

S1 = {(OP1, 1)}
S2= {(OP1, 1),(OP2, 2)}
S3= {(OP1, 1),(OP2, 2),(OP3, 3)}
 ListScheduling(S1) = ListScheduling(S2)
 = ListScheduling(S3) =8
S3 = {(OP1, 2), {(OP2, 1)}
ListScheduling(S3) = 7 = Length(Sopt)

17

Non-Chronological Backtrack
 Basic idea: A large backtrack jump to escape the

local deep search.
 Our non-chronological partial search is based on

the DFG level structure.
 Level indicates the precedence between operations.
 Level check condition: All the operations in the ith

level are scheduled, and for each operation opi,j in the
ith level, Sbsf(opi,j) <= S(opi,j)

+
v1 v2

v3

*

* *

+

v4

v5

[1, 3]
level1

level2

level3

[1, 3]

[2, 5] [2, 5]

[4, 7]

18

 When level check condition holds in the ith level,
the scheduling will backtrack to the first
dispatched operation of ith level.

 Example

Non-Chronological Backtrack

+
v1 v2

v3

*

* *

+

v4

v5

[1, 3]
level1

level2

level3

[1, 3]

[2, 5] [2, 5]

[4, 7]

Sbsf = { (OP1, 1), (OP2, 2), (OP3, 3),
 (OP4, 5), (OP5, 7)}
S1 = {(OP1, 1)}
ListScheduling(S1) = 8
S2 = {(OP1, 1), {(OP2, 2)}will backtrack
due to the level check condition
S2’ = { (OP1, 2), (OP2,1)}
ListScheduling(S2’) = 7 = Length(Sopt)

Only 2 tries can achieve the tightest initial schedule.
Non-chronological backtrack can efficiently escape the deep search.

19

Outline
 Introduction
 RCS using Branch-and-Bound Approaches
 Graph–based Notations
 BULB Approach

 Our Two-Phase Approaches
 Bounded-Operation Approach
 Non-Chronological Backtrack
 Search Space Speculation

 Experiments
 Conclusion

20

Benchmarks & Settings
 Using benchmarks from MediaBench.
 Implementing BULB & our approach using C++.
 All experiments were conducted on a Linux

machine with Intel Xeon 3.3GHz Processor and
8G RAM.

 Setting of functional units:

Functional
Unit

Operation
class

Delay
(unit)

Power
(unit)

Energy
(unit)

Area
 (unit)

ADD/SUB +/- 1 10 10 10
MUL/DIV */ 2 20 40 40

MEM LD/STR 1 15 15 20
Shift <</>> 1 10 10 5

Others … 1 10 10 10

21

Results under Functional Constraints

RCS efforts are significantly improved:
 - Our 2P approaches outperform both ILP and BULB approaches
 - Parallel execution of 2P methods may achieve the best overall performance

22

Scheduling Using Area of 140 Units

The two-phases approaches (e.g., bounded operation)
can achieve a speedup of several orders of magnitude.

23

Conclusions
 RCS is a major bottleneck in HLS
 Search Branch-and-bound approaches are promising

for optimal resource-constrained scheduling

 Proposed an efficient two-phase B&B approach
 Two-phase search space reduction
 Partial-search heuristics
 Bounded operation approach, non-chronological

backtrack and search space speculation

 Successfully applied on various benchmarks with
different resource constraints
 Significant reduction in overall RCS efforts

24

Thank you !

	Efficient Two-Phase Approaches for Branch-and-Bound Style Resource Constrained Scheduling
	Outline
	Outline
	SoC Design Cost Model
	High Level Synthesis
	Resource Constrained Scheduling
	Basic Solutions
	Outline
	Scheduling Using [ASAP, ALAP]
	Branch and Bound Style RCS (BULB)
	Pruning in BULB
	Outline
	Importance of Initial Feasible Schedule
	Basic Idea of Our 2P Approach
	Bounded Operation Approach
	Search Space Speculation
	Non-Chronological Backtrack
	Non-Chronological Backtrack
	Outline
	Benchmarks & Settings
	Results under Functional Constraints
	Scheduling Using Area of 140 Units
	Conclusions
	幻灯片编号 24

