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SoC Design Cost Model  

Rising cost of IC design and effect of CAD tools 
(Courtesy: Andrew Kahng, UCSD and SRC)  
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Big Savings by using ESL Methodology 
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Moore’s Law. Figuring our power thermal, and do some optimization in RTL level is difficult. 
In parallel with the Moore’s law, each generation of EDA tools can efficiently reduce the overall cost. 
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High Level Synthesis 
 Convert ESL specification to RTL implementation, 

and satisfy the design constraints. 
 Input: Behavior specifications (C, SystemC, etc.),  and design 

constraints (delay, power, area, etc.) 
 Output: RTL implementations (datapath, controller) 

Frontend 
Compilation 

CDFG,  
DFG 

Behavior  
Spec. 

RTL 
Generation 

VHDL, 
Verilog  

 

int Sample(){ 
var  A,B,C,D,E,F,G : int; 
Read(A, B, C, D, E); 
F = E * (A + B); 
G = (A + B) * (C + D); 
…… 
} 
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Resource Constrained Scheduling  
 Scheduling is a mapping of operations to control steps 

 Given a DFG and a set of  resource constraints, RCS tries to find a 
(optimal) schedule with minimum overall control steps. 

 Various resource constraints (e.g., functional units, power, …). 
 

Constraints: 
    Delay(+)=1,   
    Delay(*)=2, 
Functional units:  
    1+, 1* 

RCS is NP-Complete. RCS should take care of 
 1) Operation precedence.  2) Resource sharing constraints 
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Basic Solutions 
 Non-optimal heuristics 
 Force Directed Scheduling 
 List scheduling 
 Pros: Fast to get near-optimal results 
 Cons: schedules may not be tight 

 Optimal sequential approaches 
 Integer linear programming (ILP) 
 Pros: easy modeling 
 Cons: scalability,  cannot handle non-integer time 

 Branch-and-bound 
 Pros: can prune the fruitless search space efficiently 
 Cons: hard to achieve a tight initial upper-bound 
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Scheduling Using [ASAP, ALAP] 
 Based on [ASAP, ALAP], naively enumerating all 

the possibilities can be extremely time consuming 
 The operations are enumerated in a specific order 
 Each operation is enumerated from ASAP to ALAP 

 
 
 
 
 
 

 A schedule is a binary relation of operations and 
corresponding dispatching control step 
 E.g., {(v1, 1), (v2, 2), (v3, 3), (v4, 5), (v5, 7)} 
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Branch and Bound Style RCS (BULB) 
 BULB tries to prune fruitless enumerations.  
 B&B approach keeps two data structure regarding 

bound information. 
Sbsf , best complete schedule searched so far 
S, current incomplete schedule 
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Pruning in BULB 

Sbsf 

S 
upper 

lower 

globalLow ω optimal 

 Pruning  [lower > ω]    Backtrack to last operation 
 Termination  [globalLow == ω or fully explored] 
 Substitution  [ if(upper < ω) ω = upper] 

 
 

ω  plays an important role in B&B approaches. A  smaller ω can  
- tighten the [ASAP, ALAP] intervals, i.e., search space; 
- enable the fast pruning of inferior schedules during RCS.  
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 ALAP(OPi, Sinit) = ωinit – CPw(G(OPi)), where Sinit is 
an initial feasible schedule, and ωinit = length(Sinit) .  
 
 
 
 
 

 
 List scheduling cannot always guarantee a small ωinit, 

since it only considers only one possible schedule 
combination of unscheduled operations.  

 How to quickly find a small ωinit is a key issue in RCS. 
 
 

 
 
 
 
 
 
 

 

Importance of Initial Feasible Schedule 

ωinit = 8 ω'init = 7 
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 Two-phase approach has two steps 
 Step 1 does partial search on the search space coarsely to 

achieve a tight schedule. 
 Step 2 fully scans the search space in the same way as BULB 

approach, but with a tight ωinit  achieved from step 1. 
 
 
 
 
 
 
 

 
 Partial Search should achieve a small ωinit  with small 

overhead. 
 
 
 
 
 
 
 

 

Basic Idea of Our 2P Approach 
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Bounded Operation Approach   
 Basic idea: Less operations involved in partial search.  
 Bounded operation approach only considers the 

input nodes. The remaining nodes are estimated 
using list scheduling approach. 

 Example:  
 S1 = {(OP1, 1)} 

S2 = {(OP1, 1), {(OP2, 2)} 
 ListScheduling(S1) = ListScheduling(S2) = 8  
S3 = {(OP1, 1), {(OP2, 3)} 
 ListScheduling(S3) = 9  
S4 = {(OP1, 2), {(OP2, 1)}  
 ListScheduling(S4) = 7 = Length(Sopt) 
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Only 4 tries can achieve the tightest initial schedule.  
Bounded operation method can  efficiently avoid trap in the deep search. 
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Search Space Speculation 
 Basic idea: Smaller search range of each operation. 
 By adopting a greedy strategy, our speculation 

approach assumes that the global optimal result will 
be always located in the first half of orginal range. 

 Example: 
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Only 4 tries can achieve the tightest initial schedule.  
Search space speculation can  efficiently avoid trap in the deep search. 

S1 = {(OP1, 1)} 
S2= {(OP1, 1),(OP2, 2)} 
S3= {(OP1, 1),(OP2, 2),(OP3, 3)} 
 ListScheduling(S1) = ListScheduling(S2)  
 = ListScheduling(S3) =8 
S3 = {(OP1, 2), {(OP2, 1)}  
ListScheduling(S3) = 7 = Length(Sopt) 
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Non-Chronological Backtrack 
 Basic idea: A large backtrack jump to escape the 

local deep search.  
 Our non-chronological partial search is based on 

the DFG level structure.  
 Level indicates the precedence between operations. 
 Level check condition: All the operations in the ith 

level are scheduled, and for each operation opi,j in the 
ith level, Sbsf(opi,j) <= S(opi,j)  
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 When level check condition holds in the ith level, 
the scheduling  will backtrack  to the first 
dispatched operation of ith level.  

 Example 
 

 
 
 

Non-Chronological Backtrack 
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Sbsf  = { (OP1, 1), (OP2, 2), (OP3, 3),  
             (OP4, 5), (OP5, 7)} 
S1 = {(OP1, 1)} 
ListScheduling(S1) = 8 
S2 = {(OP1, 1), {(OP2, 2)}will backtrack 
due to the level check condition  
S2’ = { (OP1, 2), (OP2,1)}  
ListScheduling(S2’) = 7 = Length(Sopt) 
 
 
 

Only 2 tries can achieve the tightest initial schedule.  
Non-chronological backtrack can  efficiently escape the deep search. 
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Benchmarks & Settings 
 Using benchmarks from MediaBench. 
 Implementing BULB & our approach using C++.  
 All experiments were conducted on a Linux 

machine with Intel Xeon 3.3GHz Processor and 
8G RAM. 

 Setting of functional units: 
 

 
 
 
 
 
 

 

Functional 
Unit 

Operation 
class 

Delay 
(unit) 

Power 
(unit) 

Energy 
(unit) 

Area 
 (unit) 

ADD/SUB +/- 1 10 10 10 
MUL/DIV */ 2 20 40 40 

MEM LD/STR 1 15 15 20 
Shift <</>> 1 10 10 5 

Others … 1 10 10 10 
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Results under Functional Constraints  

RCS efforts are significantly improved: 
 - Our 2P approaches outperform both ILP and BULB approaches 
 - Parallel execution of 2P methods may achieve the best overall performance 
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Scheduling  Using Area of 140 Units 

The two-phases approaches (e.g., bounded operation) 
can achieve a speedup of several orders of magnitude.  
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Conclusions 
 RCS is a major bottleneck in HLS 
 Search Branch-and-bound approaches are promising 

for optimal resource-constrained scheduling 

 Proposed an efficient two-phase B&B approach 
 Two-phase search space reduction 
 Partial-search heuristics 
 Bounded operation approach, non-chronological 

backtrack and search space speculation 

 Successfully applied on various benchmarks with 
different resource constraints 
 Significant reduction in overall RCS efforts 
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Thank you ! 
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