Efficient Two-Phase Approaches for Branch-and-Bound Style Resource Constrained Scheduling

Mingsong Chen*, Fan Gu, Lei Zhou, Geguang Pu and Xiao Liu Shanghai Key Lab of Trustworthy Computing East China Normal University, China * Presenter

January 7, 2014

Introduction

RCS using Branch-and-Bound Approaches

- Graph-based Notations
- BULB Approach
- Our Two-Phase Approaches
 - Bounded-Operation Approach
 - Non-Chronological Backtrack
 - Search Space Speculation
- Experiments
- Conclusion

Introduction

- RCS using Branch-and-Bound Approaches
 - Graph-based Notations
 - BULB Approach
- Our Two-Phase Approaches
 - Bounded-Operation Approach
 - Non-Chronological Backtrack
 - Search Space Speculation
- Experiments
- Conclusion

SoC Design Cost Model

Big Savings by using ESL Methodology

(Courtesy: Andrew Kahng, UCSD and SRC)

Total Design Cost

High Level Synthesis

- Convert ESL specification to RTL implementation, and satisfy the design constraints.
 - Input: Behavior specifications (C, SystemC, etc.), and design constraints (delay, power, area, etc.)
 - Output: RTL implementations (datapath, controller)

Resource Constrained Scheduling

- Scheduling is a mapping of operations to control steps
 - Given a DFG and a set of resource constraints, RCS tries to find a (optimal) schedule with minimum overall control steps.
- Various resource constraints (e.g., functional units, power, ...).

RCS is NP-Complete. RCS should take care of1) Operation precedence. 2) Resource sharing constraints

Basic Solutions

- Non-optimal heuristics
 - Force Directed Scheduling
 - List scheduling
 - ✓ Pros: Fast to get near-optimal results
 - Cons: schedules may not be tight
- Optimal sequential approaches
 - Integer linear programming (ILP)
 - ✓ Pros: easy modeling
 - ✓ Cons: scalability, cannot handle non-integer time
 - Branch-and-bound
 - Pros: can prune the fruitless search space efficiently
 - ✓ Cons: hard to achieve a tight initial upper-bound

Introduction

RCS using Branch-and-Bound Approaches

- Graph-based Notations
- BULB Approach
- Our Two-Phase Approaches
 - Bounded-Operation Approach
 - Non-Chronological Backtrack
 - Search Space Speculation
- Experiments
- Conclusion

Scheduling Using [ASAP, ALAP]

- Based on [ASAP, ALAP], naively enumerating all the possibilities can be extremely time consuming
 - The operations are enumerated in a specific order
 - Each operation is enumerated from ASAP to ALAP

Constraints: Delay(+)=1, Delay(*)=2, 1+, 1*

A schedule is a binary relation of operations and corresponding dispatching control step

◆ E.g., {(v1, 1), (v2, 2), (v3, 3), (v4, 5), (v5, 7)}

Branch and Bound Style RCS (BULB)

- BULB tries to prune fruitless enumerations.
- B&B approach keeps two data structure regarding bound information.
 - ◆ S_{bsf}, best complete schedule searched so far

S, current incomplete schedule

Pruning in BULB

- Pruning [lower > ω] \rightarrow Backtrack to last operation
- **Termination** [globalLow == ω or fully explored]
- Substitution [if (upper < ω) ω = upper]

- ω plays an important role in B&B approaches. A smaller ω can tighten the [ASAP, ALAP] intervals, i.e., search space;
- enable the fast pruning of inferior schedules during RCS.

Introduction

- RCS using Branch-and-Bound Approaches
 - Graph-based Notations

BULB Approach

- Our Two-Phase Approaches
 - Bounded-Operation Approach
 - Non-Chronological Backtrack
 - Search Space Speculation
- Experiments
- Conclusion

Importance of Initial Feasible Schedule

ALAP(OPi, Sinit) = ω_{init} – CPw(G(OP_i)), where Sinit is an initial feasible schedule, and ω_{init} = length(S_{init}).

- List scheduling cannot always guarantee a small ω_{init}, since it only considers only one possible schedule combination of unscheduled operations.
- How to quickly find a small ω_{init} is a key issue in RCS.

Basic Idea of Our 2P Approach

- Two-phase approach has two steps
 - Step 1 does partial search on the search space coarsely to achieve a tight schedule.
 - Step 2 fully scans the search space in the same way as BULB approach, but with a tight ω_{init} achieved from step 1.

a) BULB Searching
b) Two-phase Searching
Partial Search should achieve a small ω_{init} with small overhead.

Bounded Operation Approach

- Basic idea: Less operations involved in partial search.
- Bounded operation approach only considers the input nodes. The remaining nodes are estimated using list scheduling approach.

Example:

Only 4 tries can achieve the tightest initial schedule. Bounded operation method can efficiently avoid trap in the deep search.

Search Space Speculation

- Basic idea: Smaller search range of each operation.
- By adopting a greedy strategy, our speculation approach assumes that the global optimal result will be always located in the first half of orginal range.
- Example:

Only 4 tries can achieve the tightest initial schedule. Search space speculation can efficiently avoid trap in the deep search.

Non-Chronological Backtrack

- Basic idea: A large backtrack jump to escape the local deep search.
- Our non-chronological partial search is based on the DFG level structure.

Level indicates the precedence between operations.

Level check condition: All the operations in the ith level are scheduled, and for each operation opi,j in the ith level, Sbsf(opi,j) <= S(opi,j)</p>

Non-Chronological Backtrack

- When level check condition holds in the ith level, the scheduling will backtrack to the first dispatched operation of ith level.
- Example

 $S_{bsf} = \{ (OP_1, 1), (OP_2, 2), (OP_3, 3), \\ (OP_4, 5), (OP_5, 7) \} \\S_1 = \{ (OP_1, 1) \} \\ListScheduling(S_1) = 8 \\S_2 = \{ (OP_1, 1), \{ (OP_2, 2) \} will backtrack \\due to the level check condition \\S_2' = \{ (OP_1, 2), (OP_2, 1) \} \\ListScheduling(S_2') = 7 = Length(S_{opt}) \end{cases}$

Only 2 tries can achieve the tightest initial schedule. Non-chronological backtrack can efficiently escape the deep search.

Introduction

- RCS using Branch-and-Bound Approaches
 - Graph-based Notations
 - BULB Approach
- Our Two-Phase Approaches
 - Bounded-Operation Approach
 - Non-Chronological Backtrack
 - Search Space Speculation

Experiments

Conclusion

Benchmarks & Settings

- Using benchmarks from *MediaBench*.
- Implementing BULB & our approach using C++.
- All experiments were conducted on a Linux machine with Intel Xeon 3.3GHz Processor and 8G RAM.
- Setting of functional units:

Functional Unit	Operation class	Delay (unit)	Power (unit)	Energy (unit)	Area (unit)
ADD/SUB	+/-	1	10	10	10
MUL/DIV	*/	2	20	40	40
MEM	LD/STR	1	15	15	20
Shift	<>	1	10	10	5
Others		1	10	10	10

Results under Functional Constraints

Design	СР	BULB	Bounded Operation		Non-Chronological		Space Speculation		Max
Name			T ₁	T _{total}	T ₁	T _{total}	T ₁	T _{total}	Impr.
ARFilter	TO	0.16	0.08	0.22	< 0.01	0.16	0.10	0.25	1.00
	TO	0.40	0.13	0.49	< 0.01	0.40	0.27	0.62	1.00
	TO	0.38	0.14	0.49	< 0.01	0.38	0.26	0.62	1.00
	1.40	0.01	< 0.01	0.02	< 0.01	0.01	< 0.01	0.01	1.00
Collapse	TO	TO	162.20	162.20	TO	TO	0.18	0.18	>2.00e4
	TO	TO	TO	TO	TO	TO	TO	ТО	NA
	TO	63.51	< 0.01	< 0.01	0.06	0.06	20.94	20.94	1.59e4
Cosine1	TO	377.58	15.66	15.66	0.03	330.23	21.70	21.70	24.11
	TO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.00
FDCT	TO	20.30	< 0.01	< 0.01	18.56	18.56	0.26	0.26	5.08e3
	TO	113.92	0.07	0.07	19.87	19.87	0.65	0.65	1.63e3
	TO	11.17	0.63	0.63	1.94	1.94	2.03	2.03	17.73
	TO	2.49	0.03	0.03	0.23	0.23	3.76	3.76	83.00
	TO	0.48	< 0.01	< 0.01	0.12	0.12	0.16	0.16	120.00
	TO	0.34	0.21	0.21	0.03	0.03	0.14	0.14	11.33
	TO	0.07	0.01	0.01	0.06	0.06	0.02	0.02	7.00
	TO	85.74	77.63	77.63	77.84	77.84	18.38	18.38	4.66
Feedback	TO	TO	TO	ТО	265.30	265.30	TO	TO	>13.60
	TO	2.72	2.48	2.48	2.45	2.45	0.58	0.58	4.70

RCS efforts are significantly improved:

- Our 2P approaches outperform both ILP and BULB approaches

- Parallel execution of 2P methods may achieve the best overall performance

Scheduling Using Area of 140 Units

The two-phases approaches (e.g., bounded operation) can achieve a speedup of several orders of magnitude.

Conclusions

- RCS is a major bottleneck in HLS
 - Search Branch-and-bound approaches are promising for optimal resource-constrained scheduling
- Proposed an efficient two-phase B&B approach
 - Two-phase search space reduction
 - Partial-search heuristics
 - Bounded operation approach, non-chronological backtrack and search space speculation
- Successfully applied on various benchmarks with different resource constraints
 - Significant reduction in overall RCS efforts

Thank you !