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Good morning everyone. My name is Mingsong Chen from East China Normal University. My presentation topic is
“”. This is a collaborate work with my student Ang Li.
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Our presentation consists of 5 parts. First we will briefly introduce the necessity of the directed tests. Second, we will present some preliminary of the SAT-based directed test generation. Next, we will describe our self-learnings in detail. Finally we will give our experimental results and the summary of the presentation.
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Functional Validation of SoC Designs 

Source: Synopsys 
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 SoC Validation is a major bottleneck 
 Up to 70% time and resources are used! 
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演示者
演示文稿备注
From 1995 to 2012, the design complexity of the SoC increases exponentially. 
Currently, a typical design needs around billions of gates, thousands of engineering years, and the engineers need to run trillions of simulation vectors during validation stage. However, many functional errors are still escaped.
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Simulation-based Validation 

Simulation 
(DUT) 

Pass /  
Fail Test Test Test Test Test 

Generation 

Coverage 
Analysis 

演示者
演示文稿备注
Simulation is the most widely used approach for the functional validation of SoC. By deriving a large set of test, it runs the tests on the design and monitors the coverage, if some bad scenarios be detected, then the simulation fails. Otherwise the whole simulation will be terminated when some coverage is achieved. From this picture we can find that the quality of the tests determines the simulation performance. 
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Why Directed Test Generation 
 Activate desired behavior with efficient tests 

 
 
 
 
 
 
 
 
 

 
 

 Need for automated generation of directed tests 
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演示者
演示文稿备注
Random approach is great to derive tests, but it may take quite long time to go from 90% to 99%. Furthermore, for a specific scenario, it generally requires a large set of test. Unlike random approach, directed approach just need a small set of tests to get the required coverage. However directed test generation needs the expert knowledge, which makes the automation a major challenge. 
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Automated Directed Test Generation 

Verification / Validation 

Formal Verification Simulation-based Validation 

Model 
Checking 

SAT 
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Theorem 
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Random 
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Test 

Constrained 
Random 

Test 

Bounded Model 
Checking 

SAT-based Bounded 
Model Checking 

Directed test generation based on the 
automation of model checking techniques. 

演示者
演示文稿备注
Thanks to the formal approaches, such as model checking and SAT solving, which can automatically check one specified property of a design. Our work tries to utilize the automation of formal model checking to derive the directed tests.
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Test Generation using Model Checking 

Cycle    Opcode  Dest   Src1  Src2 
    1          NOP 
    2          ADD      R3      R1     R2 
    3          SUB      R4      R3      R2 

Model Checker 

assert G (ID.stall != 1) Processor Model 

Example: Generate a directed test to stall a decode unit (ID) 

Counterexample (directed test) 

Negated Property  
(intended  behavior) Design 

Test = ModelCheck (Design & ~Property) 

 

Approach: Exploit some learning to reduce complexity 
  - Reduce TG time & memory requirements  
          - Enable test generation in complex scenarios 
 

 

Problem: Test generation is very costly or not possible    
                in many scenarios in the presence of  
                complex SoCs and/or complex properties. 
 

演示者
演示文稿备注
Firstly, let’s have a look of how the model checking techniques can derive a directed tests. For example, assume that we need to generate a directed test to stall a decode unit. We use the formal processor model and the negated property as the inputs, the model checker will automatically figure out the tests to falsify the property. Although the automation of the model checkcing approach is good, the test generation is very costly due to the state space explosion problem in model checking. Our approach tries to expolit some leanring  to recue the complexity during the test generation. 
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SAT-based Bounded Model Checking 

 Test generation needs to consider safety 
properties 

 The safety property P is valid up to cycle k iff  
Ω(k) is not satisfiable. 
 
 
 

 
 
 If Ω(k) is satisfiable, then we can get an 

assignment which can be translated to a test. 

. . . 
s0 s1 s2 sk-1 sk 

p p p ¬p p 

演示者
演示文稿备注
SAT based BMC is a promising approach to reduce the test generation time. It can efficiently restrict the search range by unrolling the design within a given bound. For a safety property, it encodes the design and property into a SAT formulae omega k, where I means the initial sate, R means the transition between the state I and i+1, and negated P means the property constraints on each state. If omega is satisfiable, then we can find a test which is against the property. Therefore, we can find the test generation performance is determined by how to quickly find a satsifying assignment of a SAT problem. 
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DPLL Search Procedure  

  

while (1){ 
      run_periodic_function(); 
      if( decide_next_branch() ){ 
  while (deduce() == CONFLICT) { 
                     blevel = analyze_conflicts(); 
           if( blevel<0 ) 
     return UNSAT; 
  } 
      } else return SAT; 
} 

Diagnosis 

Decision 

Deduction 

SAT search time can be improved if we can reduce: 
    - the number of  bad decisions at early stage, and  
    - the number of long distance backtracks. 

演示者
演示文稿备注
DPLL approach is a promising approach to find the satisfying assignment. It includes three important steps. The decision step makes the assignment to a untouched Boolean variable. Based on the assignment, the deduction will propagate the effect of the assignment to the related variable by implication. If some conflict happens, the diagnosis will try the resolve the conflict. The statistics shows that upto 80% time and resources are spend because of the frequent bad decisions and long distance backtracks because of these three  
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Property Learning Techniques 

P1 P2 

P3 

rb1 

rb2 
rb4 

rb3 

…… 
rbn 

Forward 

rg1 

rg2 
rg4 

rg3 

…… 
rgk 

Forward Benefit:  
Original: Red + Blue + Green 
Now: Red + (Blue –Δblue) + (Green –
Δgreen) 

Save: Δblue + Δgreen 

 
Δblue 

Δgreen 

M. Chen and P. Mishra. Functional Test Generation using Efficient Property Clustering and Learning 
Techniques. TCAD 2010. 
M. Chen and P. Mishra. Efficient Decision Ordering Techniques for SAT-based Test Generation. DATE 
2010. 

 

Problem:  There is a lack of learning for P1? 
 

演示者
演示文稿备注
To reduce the SAT searching time during the test generation various approaches are proposed. Since similar properties can derive similar tests, the property leaning techniques tries to share the learning among a large set of properties. By solving the base property first, it utlizes the learning from base property to help the solving of the other properties. However, there is a lock of leraning when solving P1.
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Property Decomposition Techniques 
Property 

p1 pn p2 …… 

Learning 

Test 

BMC 

Koo et al. Functional Test Generation using Property Decomposition Techniques.  ACM 
TECS, 2009 
M. Chen and P. Mishra. Decision ordering based property decomposition for functional 
test generation. DATE, 2011 

 

Problem:  Sub-property decomposition                
needs expert knowledge? 
 

演示者
演示文稿备注
The base (first) property needs to be solved alone (no learning). In general, for a complex design, the test generation for a complex property can be a bottleneck. Therefore we need to scale down the complexity of the property falsification. Koo and  Chen et al . proposed various decomposition based method that can scale down the test generation by decompose a complex property into several simpler sub-properties. Altohough some learning may be used in
Composition the sub-tests, the first step of sub-property decomposition needs the expert knowledge, which cannot be fully automated.  
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Key Observations 

SAT 

SAT1 SAT2 
SAT3 

Forward 

Forward 

Forward 

Problems: How to achieve the beneficial learning efficiently? 
              - Which kind of learning can be forwarded? 
              - How can we achieve and utilize such kinds of learnings? 

演示者
演示文稿备注
The basic idea of our self-learning is as follows: Assume that we have the SAT instance of a complex property P, 
we than divided it into several partitions and check each of them to achieve some learning. By forwarding the learning from these partitions, we can accelerate the checking of original P. Since the cost of checking  small partitions is negligible, the overall test generation time can be saved. Here, an important issue is how to achieve beneficial learning  efficiently. In our approach, we tried to investigate how to learning from the BMC formulas and CNF clauses.   
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Conflict Clause Based Learning 

ω1 = (x2 ∨ x6 ∨ ¬ x4)  

ω2 = (¬x8 ∨ x3 ∨ ¬ x7) 

ω3 = (¬x1 ∨ x4∨ x5) 

ω4 = (¬x3 ∨ ¬ x4) 

ω5 = (¬ x2 ∨ x3∨ x8) 

ω6 : (¬x1 ∨ x5 ∨ x6 ∨ ¬ x7) 

cut1 
¬ x6@1 

x1@3 

¬ x5@4 

x4@4 

x2@4 

¬ x3@4 

x7@2 

x8@4 

¬ x8@4 

conflict 

 Conflict clause can be treated as the knowledge 
learned during the SAT solving. It is a restriction 
of the variable assignment. 

演示者
演示文稿备注
The previous two kinds of approaches we just talked about mainly depends on two promising learnings. The first one is conflict clauses. The basic idea of the conflict clauses is that we need to maintained an implication graph which rescores the relations of the variable assignment. When a conflict happens, which means that a variable is assigned with both true and false value, it will backtrack and find the reason of the conflict. And the negated version of the reason will be encoded into one clause and added into the original clause set to avoid the same conflict in future. There conflict clause can be considered as a kind of learning.   
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Decision Ordering Based Learning 

a 

b b 

c c c c 

F F F S F F F F 

Ordering: a, a’, b, b’, c, c’ 

a 

b b 

c c c c 

F F F F F F S F 

Ordering: a, a’, b, b’, c, c’ 

Without Learning, 7 conflicts in SAT2. 

SAT 1 SAT 2 

演示者
演示文稿备注
Decision ordering plays an important role during the SAT solving. Let’s have a look of the effect of  decision ordering for two similar SAT instance SAT1 and SAT2. This slides shows their decision tree. F means a conflict happened. S means that we find a satisfying assignment. Without any learning, SAT 2 search will encounter 7 conflicts. 
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Decision Ordering Based Learning 

a 

b b 

c c c c 

F F F S F F F F 

Ordering: a, a’, b, b’, c, c’ 

b 

c c 

a a a a 

F F F F F F S F 

Ordering: b’, b, c’, c, a, a’ 

With bit value+ variable order learning, 1 conflict in SAT2. 

SAT 1 SAT 2 

Bit value:  a=1,b=0,c=0 
 

Variable order:  b>c>a 
 

演示者
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However, if we solve SAT1 first, and we can achieve some learnings on the decision ordering to help the SAT 2 searching, in this case, we only encounter 1 conflict, which will drastically reduce the test generation time. 
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Learn from the Structure of BMC Formulas  

I T P 

I T P 

演示者
演示文稿备注
In BMC, we can find that the SAT problem can be divided into three parts. Here I indicate the initial setting, T means the encoded transitions, and P means the constraints on each state by the property. It can be found that T is the largest part of the whole SAT instance. 
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Learn from the Structure of BMC Formulas  

┐V 

 
┐V 

 

I T P 

 
┐V 

 

I T P 

a) A deduction for a transition variable 

b) A deduction for a property variable 

v 

v Reasons for long-distance backtracks: 
 The constraint imposed by the transition part T is weak. 
 A bad decision is made too early but detected too late. 

By our observation, conflict clause and decision ordering are 
two promising self-learning candidates to address the above 
two problems. 

演示者
演示文稿备注
Assume that we are handling a transition variable. By assigning it with a value, since there is no strong constraints for this variable. T can be considered as a media where the effect of v’s assignment can be propagated freely. Finally that a conflict will be ecnountered because of the constraints posed either partI or part P.
An extreme case is that the variable decision can traverse the T part without any disturbance until the part of I. 
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Learning from Segmental Partitioning 

Si’ 

S=I∧T P 

c’ 

V ┐V 

演示者
演示文稿备注
So we proposed the learning from segmental partitioning. The basic ideas is to derive some local guards that can block some propagation along the transition part. We divide the I and T into several small partitions. By combing each small partition together with the part of P, we can achieve such guards. 
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Learning from Incremental Partitioning 

S=I∧T P 
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…… 

演示者
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The idea of the incremental partitioning is a little bit similar to the segmental partitioning. The difference is that the incremental method gradually increase the search range of the SAT instance, which can gradually form a global view of the whole SAT search.  In this method, the conflict clause can be used as local guides, and the decision ordering can be used as a kind of guide for the quick satisfying assignment.
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Learn from the Structure of CNF clauses 

 For a set of small CNF clauses, the impact of a 
variable decision can be propagate instantly. 
Only a few decision levels are involved in the 
searching (avoid long-distance backtracking). 

 We take clause size into account to derive 
high-quality conflict clauses. 
 A set of small CNF clauses has a high chance 

to derive small-size conflict clauses. 
 Smaller conflict clauses can prune more 

search space. 
 

演示者
演示文稿备注
Also the structure of the CNF clauses is a good object to explore the self-learnings. 
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Learning from Clause Size Aware Partitioning 

  
  
  
  

P+(I+T) 1…k 

P+(I+T) 1…2k 

…
…

 

P+(I+T) 

Small 

Large 

C
lause size of  (I+T) 

演示者
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The conflict clause size aware partitioning sorts the I and T parts based on their clause size in an increasing order. 
The subscript 1..k means that the clause size is smaller than k. Then we check partitions in an incremental way with the learning of both conflict clauses and decision ordering. 
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Test Generation using Self-Learning Techniques 
 

Design Specification Property 

SAT Instance 

SAT Solver 

Partitioning 

Learning 

Test 

Specification 
Validation 

1 

2 

3 

演示者
演示文稿备注
This figure shows the flow of our self-learning test generation approach. In step 1, the partiting divides the sat instance into small pieces.  Then in step 2 and three SAT solver will collect the learning and forwarded it for the solving of partitions. Finally, we can achieve the test for the given property.
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Self-Learning Based Test Generation 
Input: i) Formal model D and property P with the bound Boundp 

         ii) Partitioning type type and the number of patitions n 
Output: A test tp to satisfy the property P 

1. Initialize lBucket[1..n] and vStat[1..sz][ ]; 
2. CNF=BMC(D, P, Boundp); 
3. {p1,p2,..., pn} = Partition(CNF, type, n); 
4. for i is from 1 to n do 

① (Assigni, confi) = SAT(pi, lBucket[1..i-1], vStat); 
② lBucket[i] = confi; 
③ for j is from 1 to sz do 

a) if (assigni[j]==0) vStat[j][2]++; 
b) else if (assigni[j]==1) vStat[j][1]++; 

5. (tp, ) = SAT(CNF, lBucket[1..n] , vStat); 
6. Return tp. 
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Experiments 

• The experiments were conducted on a 
Linux PC with a 3.3GHz CPU and 4G RAM. 
 

• We modified the SAT solvers MiniSAT2.2 
and zChaff to incorporate our paritioning 
and self-learning techniques. 
 

• In our experiments, all the SAT instances 
are divided into 4 partitions by default. For 
conflict clauses based self-learning, we 
only forward the conflict clauses whose 
size is smaller than 9. 
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Case Study 1: DLX+OSES 
• The benchmark is a set of SAT instances derived from a 

MIPS processor (DLX),  and an online stock exchance 
system (OSES).  All the SAT instances are generated 
using the tool NuSMV. 

 
 

 
 

 
 

• Since the test generation time using MiniSAT without 
any leanring is small, the extra self-learning does not 
show significant improvement.   
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Case Study 1: DLX+OSES 

Indications: Test generation complexity is significantly 
reduced in zChaff.   
 - Reduction of long-distance backtracking 

       - Reduction of bad decisions 

The conflict which requires a backtrack  
with >20  decision levels 

The conflict which requires a cancel of 
>2000 variable assignments 
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Case Study 2: PIPE Processor Design 

• The benchmark is a set of SAT instances from 10 buggy 
variants of 12-pipelined processors named PIPE-SAT-1.1.   

 
 

 
 

 
 

• Both the modified zChaff and MiniSAT shows that our 
self-learnings can achieve significant improvement.   
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Case Study 3: UNSAT PIPE_OOO 
• We also conducted the experiment on a set of bigger 

variants of the pipe_ooo benchmarks named PIPE-
OOO-UNSAT-1.1. 

 
 
 

 
 

• Interestingly, our approach can also benifit the UNSAT 
instance checking. We can find that zChaff outperforms 
MiniSAT in this benchmark, and our self-learning 
techniques can achieve an up to 13.4 times improvement 
using MiniSAT and 2 times improvement using zChaff. 
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Evaluation of the number of partitions 

Indications:  
-For zChaff, the methods using 4 partitions show a better performance 
for these three benchmarks. 
- For MiniSAT, the approaches using 2 partitions or 4 partitions are 
good enough for test generation.  
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Conclusions 
 Functional validation is a major bottleneck 

 SAT-based approaches are promising for 
automated test generation. 

 Proposed efficient self-learning techniques for 
automated generation of directed tests 
 Investigated two kinds of learning objects. 
 Developed three learning-oriented partitioning 

heuristic methods. 

 Successfully applied on both hardware and 
software designs 
 Significant reduction in test generation time. 
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Thank you ! 
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