
Ang Li and Mingsong Chen
Shanghai Key Lab of Trustworthy Computing

East China Normal University, China

October 9, 2012

Efficient Self-Learning
Techniques for SAT-Based

Test Generation

演示者
演示文稿备注
Good morning everyone. My name is Mingsong Chen from East China Normal University. My presentation topic is
“”. This is a collaborate work with my student Ang Li.

2

Outline
• Introduction
• SAT-Based Directed Test Generation

• Test Generation using Model Checking
• Test Generation using SAT-Based BMC

• Our Self-Learning Techniques
• Motivation and Overview
• Learning Oriented Partitioning Heuristics
• Self-Learning Based Test Generation

• Experiments
• Conclusions

演示者
演示文稿备注
Our presentation consists of 5 parts. First we will briefly introduce the necessity of the directed tests. Second, we will present some preliminary of the SAT-based directed test generation. Next, we will describe our self-learnings in detail. Finally we will give our experimental results and the summary of the presentation.

3

Outline
• Introduction
• SAT-Based Directed Test Generation

• Test Generation using Model Checking
• Test Generation using SAT-Based BMC

• Our Self-Learning Techniques
• Motivation and Overview
• Learning Oriented Partitioning Heuristics
• Self-Learning Based Test Generation

• Experiments
• Conclusions

4

2000 2007 1000B

100M

200 2001 10B

10M

Functional Validation of SoC Designs

Source: Synopsys

Trillions

Billions

20000? 2012

 SoC Validation is a major bottleneck
 Up to 70% time and resources are used!

100M

Logic Gates

Si
m

ul
at

io
n

Ve
ct

or
s

En
gi

ne
er

 Y
ea

rs

20 1995

1M

演示者
演示文稿备注
From 1995 to 2012, the design complexity of the SoC increases exponentially.
Currently, a typical design needs around billions of gates, thousands of engineering years, and the engineers need to run trillions of simulation vectors during validation stage. However, many functional errors are still escaped.

5

Simulation-based Validation

Simulation
(DUT)

Pass /
Fail Test Test Test Test Test

Generation

Coverage
Analysis

演示者
演示文稿备注
Simulation is the most widely used approach for the functional validation of SoC. By deriving a large set of test, it runs the tests on the design and monitors the coverage, if some bad scenarios be detected, then the simulation fails. Otherwise the whole simulation will be terminated when some coverage is achieved. From this picture we can find that the quality of the tests determines the simulation performance.

6

Why Directed Test Generation
 Activate desired behavior with efficient tests

 Need for automated generation of directed tests

B

A

B

A

Random Test Directed Test

演示者
演示文稿备注
Random approach is great to derive tests, but it may take quite long time to go from 90% to 99%. Furthermore, for a specific scenario, it generally requires a large set of test. Unlike random approach, directed approach just need a small set of tests to get the required coverage. However directed test generation needs the expert knowledge, which makes the automation a major challenge.

7

Outline
• Introduction
• SAT-Based Directed Test Generation

• Test Generation using Model Checking
• Test Generation using SAT-Based BMC

• Our Self-Learning Techniques
• Motivation and Overview
• Learning Oriented Partitioning Heuristics
• Self-Learning Based Test Generation

• Experiments
• Conclusions

8

Automated Directed Test Generation

Verification / Validation

Formal Verification Simulation-based Validation

Model
Checking

SAT
Solving

Theorem
Proving

Random
Test

Directed
Test

Constrained
Random

Test

Bounded Model
Checking

SAT-based Bounded
Model Checking

Directed test generation based on the
automation of model checking techniques.

演示者
演示文稿备注
Thanks to the formal approaches, such as model checking and SAT solving, which can automatically check one specified property of a design. Our work tries to utilize the automation of formal model checking to derive the directed tests.

9

Test Generation using Model Checking

Cycle Opcode Dest Src1 Src2
 1 NOP
 2 ADD R3 R1 R2
 3 SUB R4 R3 R2

Model Checker

assert G (ID.stall != 1) Processor Model

Example: Generate a directed test to stall a decode unit (ID)

Counterexample (directed test)

Negated Property
(intended behavior) Design

Test = ModelCheck (Design & ~Property)

Approach: Exploit some learning to reduce complexity
 - Reduce TG time & memory requirements
 - Enable test generation in complex scenarios

Problem: Test generation is very costly or not possible
 in many scenarios in the presence of
 complex SoCs and/or complex properties.

演示者
演示文稿备注
Firstly, let’s have a look of how the model checking techniques can derive a directed tests. For example, assume that we need to generate a directed test to stall a decode unit. We use the formal processor model and the negated property as the inputs, the model checker will automatically figure out the tests to falsify the property. Although the automation of the model checkcing approach is good, the test generation is very costly due to the state space explosion problem in model checking. Our approach tries to expolit some leanring to recue the complexity during the test generation.

10

SAT-based Bounded Model Checking

 Test generation needs to consider safety
properties

 The safety property P is valid up to cycle k iff
Ω(k) is not satisfiable.

 If Ω(k) is satisfiable, then we can get an

assignment which can be translated to a test.

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

演示者
演示文稿备注
SAT based BMC is a promising approach to reduce the test generation time. It can efficiently restrict the search range by unrolling the design within a given bound. For a safety property, it encodes the design and property into a SAT formulae omega k, where I means the initial sate, R means the transition between the state I and i+1, and negated P means the property constraints on each state. If omega is satisfiable, then we can find a test which is against the property. Therefore, we can find the test generation performance is determined by how to quickly find a satsifying assignment of a SAT problem.

11

DPLL Search Procedure

while (1){
 run_periodic_function();
 if(decide_next_branch()){
 while (deduce() == CONFLICT) {
 blevel = analyze_conflicts();
 if(blevel<0)
 return UNSAT;
 }
 } else return SAT;
}

Diagnosis

Decision

Deduction

SAT search time can be improved if we can reduce:
 - the number of bad decisions at early stage, and
 - the number of long distance backtracks.

演示者
演示文稿备注
DPLL approach is a promising approach to find the satisfying assignment. It includes three important steps. The decision step makes the assignment to a untouched Boolean variable. Based on the assignment, the deduction will propagate the effect of the assignment to the related variable by implication. If some conflict happens, the diagnosis will try the resolve the conflict. The statistics shows that upto 80% time and resources are spend because of the frequent bad decisions and long distance backtracks because of these three

12

Outline
• Introduction
• SAT-Based Directed Test Generation

• Test Generation using Model Checking
• Test Generation using SAT-Based BMC

• Our Self-Learning Techniques
• Motivation and Overview
• Learning Oriented Partitioning Heuristics
• Self-Learning Based Test Generation

• Experiments
• Conclusions

13

Property Learning Techniques

P1 P2

P3

rb1

rb2
rb4

rb3

……
rbn

Forward

rg1

rg2
rg4

rg3

……
rgk

Forward Benefit:
Original: Red + Blue + Green
Now: Red + (Blue –Δblue) + (Green –
Δgreen)

Save: Δblue + Δgreen

Δblue

Δgreen

M. Chen and P. Mishra. Functional Test Generation using Efficient Property Clustering and Learning
Techniques. TCAD 2010.
M. Chen and P. Mishra. Efficient Decision Ordering Techniques for SAT-based Test Generation. DATE
2010.

Problem: There is a lack of learning for P1?

演示者
演示文稿备注
To reduce the SAT searching time during the test generation various approaches are proposed. Since similar properties can derive similar tests, the property leaning techniques tries to share the learning among a large set of properties. By solving the base property first, it utlizes the learning from base property to help the solving of the other properties. However, there is a lock of leraning when solving P1.

14

Property Decomposition Techniques
Property

p1 pn p2 ……

Learning

Test

BMC

Koo et al. Functional Test Generation using Property Decomposition Techniques. ACM
TECS, 2009
M. Chen and P. Mishra. Decision ordering based property decomposition for functional
test generation. DATE, 2011

Problem: Sub-property decomposition
needs expert knowledge?

演示者
演示文稿备注
The base (first) property needs to be solved alone (no learning). In general, for a complex design, the test generation for a complex property can be a bottleneck. Therefore we need to scale down the complexity of the property falsification. Koo and Chen et al . proposed various decomposition based method that can scale down the test generation by decompose a complex property into several simpler sub-properties. Altohough some learning may be used in
Composition the sub-tests, the first step of sub-property decomposition needs the expert knowledge, which cannot be fully automated.

15

Key Observations

SAT

SAT1 SAT2
SAT3

Forward

Forward

Forward

Problems: How to achieve the beneficial learning efficiently?
 - Which kind of learning can be forwarded?
 - How can we achieve and utilize such kinds of learnings?

演示者
演示文稿备注
The basic idea of our self-learning is as follows: Assume that we have the SAT instance of a complex property P,
we than divided it into several partitions and check each of them to achieve some learning. By forwarding the learning from these partitions, we can accelerate the checking of original P. Since the cost of checking small partitions is negligible, the overall test generation time can be saved. Here, an important issue is how to achieve beneficial learning efficiently. In our approach, we tried to investigate how to learning from the BMC formulas and CNF clauses.

16

Conflict Clause Based Learning

ω1 = (x2 ∨ x6 ∨ ¬ x4)

ω2 = (¬x8 ∨ x3 ∨ ¬ x7)

ω3 = (¬x1 ∨ x4∨ x5)

ω4 = (¬x3 ∨ ¬ x4)

ω5 = (¬ x2 ∨ x3∨ x8)

ω6 : (¬x1 ∨ x5 ∨ x6 ∨ ¬ x7)

cut1
¬ x6@1

x1@3

¬ x5@4

x4@4

x2@4

¬ x3@4

x7@2

x8@4

¬ x8@4

conflict

 Conflict clause can be treated as the knowledge
learned during the SAT solving. It is a restriction
of the variable assignment.

演示者
演示文稿备注
The previous two kinds of approaches we just talked about mainly depends on two promising learnings. The first one is conflict clauses. The basic idea of the conflict clauses is that we need to maintained an implication graph which rescores the relations of the variable assignment. When a conflict happens, which means that a variable is assigned with both true and false value, it will backtrack and find the reason of the conflict. And the negated version of the reason will be encoded into one clause and added into the original clause set to avoid the same conflict in future. There conflict clause can be considered as a kind of learning.

17

Decision Ordering Based Learning

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

a

b b

c c c c

F F F F F F S F

Ordering: a, a’, b, b’, c, c’

Without Learning, 7 conflicts in SAT2.

SAT 1 SAT 2

演示者
演示文稿备注
Decision ordering plays an important role during the SAT solving. Let’s have a look of the effect of decision ordering for two similar SAT instance SAT1 and SAT2. This slides shows their decision tree. F means a conflict happened. S means that we find a satisfying assignment. Without any learning, SAT 2 search will encounter 7 conflicts.

18

Decision Ordering Based Learning

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

b

c c

a a a a

F F F F F F S F

Ordering: b’, b, c’, c, a, a’

With bit value+ variable order learning, 1 conflict in SAT2.

SAT 1 SAT 2

Bit value: a=1,b=0,c=0

Variable order: b>c>a

演示者
演示文稿备注
However, if we solve SAT1 first, and we can achieve some learnings on the decision ordering to help the SAT 2 searching, in this case, we only encounter 1 conflict, which will drastically reduce the test generation time.

19

Learn from the Structure of BMC Formulas

I T P

I T P

演示者
演示文稿备注
In BMC, we can find that the SAT problem can be divided into three parts. Here I indicate the initial setting, T means the encoded transitions, and P means the constraints on each state by the property. It can be found that T is the largest part of the whole SAT instance.

20

Learn from the Structure of BMC Formulas

┐V

┐V

I T P

┐V

I T P

a) A deduction for a transition variable

b) A deduction for a property variable

v

v Reasons for long-distance backtracks:
 The constraint imposed by the transition part T is weak.
 A bad decision is made too early but detected too late.

By our observation, conflict clause and decision ordering are
two promising self-learning candidates to address the above
two problems.

演示者
演示文稿备注
Assume that we are handling a transition variable. By assigning it with a value, since there is no strong constraints for this variable. T can be considered as a media where the effect of v’s assignment can be propagated freely. Finally that a conflict will be ecnountered because of the constraints posed either partI or part P.
An extreme case is that the variable decision can traverse the T part without any disturbance until the part of I.

21

Learning from Segmental Partitioning

Si’

S=I∧T P

c’

V ┐V

演示者
演示文稿备注
So we proposed the learning from segmental partitioning. The basic ideas is to derive some local guards that can block some propagation along the transition part. We divide the I and T into several small partitions. By combing each small partition together with the part of P, we can achieve such guards.

22

Learning from Incremental Partitioning

S=I∧T P

1th

2th

kth

s1

s2

sk

……

演示者
演示文稿备注
The idea of the incremental partitioning is a little bit similar to the segmental partitioning. The difference is that the incremental method gradually increase the search range of the SAT instance, which can gradually form a global view of the whole SAT search. In this method, the conflict clause can be used as local guides, and the decision ordering can be used as a kind of guide for the quick satisfying assignment.

23

Learn from the Structure of CNF clauses

 For a set of small CNF clauses, the impact of a
variable decision can be propagate instantly.
Only a few decision levels are involved in the
searching (avoid long-distance backtracking).

 We take clause size into account to derive
high-quality conflict clauses.
 A set of small CNF clauses has a high chance

to derive small-size conflict clauses.
 Smaller conflict clauses can prune more

search space.

演示者
演示文稿备注
Also the structure of the CNF clauses is a good object to explore the self-learnings.

24

Learning from Clause Size Aware Partitioning

P+(I+T) 1…k

P+(I+T) 1…2k

…
…

P+(I+T)

Small

Large

C
lause size of (I+T)

演示者
演示文稿备注
The conflict clause size aware partitioning sorts the I and T parts based on their clause size in an increasing order.
The subscript 1..k means that the clause size is smaller than k. Then we check partitions in an incremental way with the learning of both conflict clauses and decision ordering.

25

Test Generation using Self-Learning Techniques

Design Specification Property

SAT Instance

SAT Solver

Partitioning

Learning

Test

Specification
Validation

1

2

3

演示者
演示文稿备注
This figure shows the flow of our self-learning test generation approach. In step 1, the partiting divides the sat instance into small pieces. Then in step 2 and three SAT solver will collect the learning and forwarded it for the solving of partitions. Finally, we can achieve the test for the given property.

26

Self-Learning Based Test Generation
Input: i) Formal model D and property P with the bound Boundp

 ii) Partitioning type type and the number of patitions n
Output: A test tp to satisfy the property P

1. Initialize lBucket[1..n] and vStat[1..sz][];
2. CNF=BMC(D, P, Boundp);
3. {p1,p2,..., pn} = Partition(CNF, type, n);
4. for i is from 1 to n do

① (Assigni, confi) = SAT(pi, lBucket[1..i-1], vStat);
② lBucket[i] = confi;
③ for j is from 1 to sz do

a) if (assigni[j]==0) vStat[j][2]++;
b) else if (assigni[j]==1) vStat[j][1]++;

5. (tp,) = SAT(CNF, lBucket[1..n] , vStat);
6. Return tp.

27

Outline
• Introduction
• SAT-Based Directed Test Generation

• Test Generation using Model Checking
• Test Generation using SAT-Based BMC

• Our Self-Learning Techniques
• Motivation and Overview
• Learning Oriented Partitioning Heuristics
• Self-Learning Based Test Generation

• Experiments
• Conclusions

28

Experiments

• The experiments were conducted on a
Linux PC with a 3.3GHz CPU and 4G RAM.

• We modified the SAT solvers MiniSAT2.2
and zChaff to incorporate our paritioning
and self-learning techniques.

• In our experiments, all the SAT instances
are divided into 4 partitions by default. For
conflict clauses based self-learning, we
only forward the conflict clauses whose
size is smaller than 9.

29

Case Study 1: DLX+OSES
• The benchmark is a set of SAT instances derived from a

MIPS processor (DLX), and an online stock exchance
system (OSES). All the SAT instances are generated
using the tool NuSMV.

• Since the test generation time using MiniSAT without
any leanring is small, the extra self-learning does not
show significant improvement.

30

Case Study 1: DLX+OSES

Indications: Test generation complexity is significantly
reduced in zChaff.
 - Reduction of long-distance backtracking

 - Reduction of bad decisions

The conflict which requires a backtrack
with >20 decision levels

The conflict which requires a cancel of
>2000 variable assignments

31

Case Study 2: PIPE Processor Design

• The benchmark is a set of SAT instances from 10 buggy
variants of 12-pipelined processors named PIPE-SAT-1.1.

• Both the modified zChaff and MiniSAT shows that our
self-learnings can achieve significant improvement.

32

Case Study 3: UNSAT PIPE_OOO
• We also conducted the experiment on a set of bigger

variants of the pipe_ooo benchmarks named PIPE-
OOO-UNSAT-1.1.

• Interestingly, our approach can also benifit the UNSAT
instance checking. We can find that zChaff outperforms
MiniSAT in this benchmark, and our self-learning
techniques can achieve an up to 13.4 times improvement
using MiniSAT and 2 times improvement using zChaff.

33

Evaluation of the number of partitions

Indications:
-For zChaff, the methods using 4 partitions show a better performance
for these three benchmarks.
- For MiniSAT, the approaches using 2 partitions or 4 partitions are
good enough for test generation.

34

Outline
• Introduction
• SAT-Based Directed Test Generation

• Test Generation using Model Checking
• Test Generation using SAT-Based BMC

• Our Self-Learning Techniques
• Motivation and Overview
• Learning Oriented Partitioning Heuristics
• Self-Learning Based Test Generation

• Experiments
• Conclusions

35

Conclusions
 Functional validation is a major bottleneck

 SAT-based approaches are promising for
automated test generation.

 Proposed efficient self-learning techniques for
automated generation of directed tests
 Investigated two kinds of learning objects.
 Developed three learning-oriented partitioning

heuristic methods.

 Successfully applied on both hardware and
software designs
 Significant reduction in test generation time.

36

Thank you !

	Efficient Self-Learning Techniques for SAT-Based Test Generation
	Outline
	Outline
	Functional Validation of SoC Designs
	Simulation-based Validation
	Why Directed Test Generation
	Outline
	Automated Directed Test Generation
	Test Generation using Model Checking
	SAT-based Bounded Model Checking
	DPLL Search Procedure
	Outline
	Property Learning Techniques
	Property Decomposition Techniques
	Key Observations
	Conflict Clause Based Learning
	Decision Ordering Based Learning
	Decision Ordering Based Learning
	Learn from the Structure of BMC Formulas
	Learn from the Structure of BMC Formulas
	Learning from Segmental Partitioning
	Learning from Incremental Partitioning
	Learn from the Structure of CNF clauses
	Learning from Clause Size Aware Partitioning
	Test Generation using Self-Learning Techniques�
	Self-Learning Based Test Generation
	Outline
	Experiments
	Case Study 1: DLX+OSES
	Case Study 1: DLX+OSES
	Case Study 2: PIPE Processor Design
	Case Study 3: UNSAT PIPE_OOO
	Evaluation of the number of partitions
	Outline
	Conclusions
	幻灯片编号 36

