
SAT Based Efficient Directed Test
Generation Techniques

Presented

by
Mingsong Chen

Software Engineering Institute
East China Normal University

May 5, 2011

2

Outline
 Introduction
Model Checking Based Test Generation

SAT-based Bounded Model Checking
DPLL algorithm

Conflict clause

 Efficient Test Generation Approaches
Conflict clause forwarding based approaches

Decision ordering based techniques

Property decomposition based methods

Conclusion

演示者
演示文稿备注
This presentation has three parts. First I will present the motivation my research. And next, I will introduce the research contributions in details. Finally, I will give the conclusion.

3

Outline
 Introduction
Model Checking Based Test Generation

SAT-based Bounded Model Checking
DPLL algorithm

Conflict clause

 Efficient Test Generation Approaches
Conflict clause forwarding based approaches

Decision ordering based techniques

Property decomposition based methods

Conclusion

演示者
演示文稿备注
This presentation has three parts. First I will present the motivation my research. And next, I will introduce the research contributions in details. Finally, I will give the conclusion.

Functional Validation of SOC Designs

Logic Gates

Si
m

ul
at

io
n

Ve
ct

or
s

En
gi

ne
er

 Y
ea

rs

20

200

2000

1995

2001

2007

100M

10B

1000B

1M 10M 100M

Source: Synopsys

Source: G. Spirakis, keynote address at DATE 2004

Functional validation is a major bottleneck during SoC
development! (up to 70% of time and resources are used)

演示者
演示文稿备注
The answer is no. Actually under the cost and time constraint, most SoC companies including Intel, AMD did as much as they can before the manufacturing. In the figure we can find that both the engineer years and simulation vectors are increasing exponentially. In fact, the functional validation is becoming a major bottleneck during the SoC development! Around 70% of time and resources are used.

5

Functional Validation Methods

 Formal (Verification)
 Mathematical proof that a

system (implementation)
behaves according to a
given set of requirements
(specification)

 Complete verification

 Applied to small and
critical components due
to the state space
explosion problem

 Simulation (Validation)
 The process of gaining

confidence by examining
the behavior of the
implementation using
input/output test vectors

 Incompleteness
verification: not possible for
all input vectors

 Applicable to large
designs

6

Approaches for Specification Validation

Verification / Validation

Formal Verification Simulation-based Validation

Model
Checking

SAT
Solving

Theorem
Proving

Random
Test

Directed
Test

Constrained
Random

Test

Bounded Model
Checking

SAT-based Bounded
Model Checking

Validation using a combination of simulation
based techniques and formal methods.

7

Test Generation using Model Checking

Model Checking (MC)
 Specification is translated to formal models, e.g., SMV
 Desired behaviors in temporal logic properties, e.g. LTL
 Property falsification leads to counterexamples (tests)

 Test Generation

 Generate a counterexample: sequence of variable assignments

User name Password User intput
 Bob ABC ABD

Model Checker

Password Input is always true ATM Model

An Example
Generate a test to fail passward input

Problem: Test generation is very costly or not applicable in
 many complex scenarios.
Approach: Exploit learning to reduce validation complexity
 - Reduction of test generation time
 - Enables test generation in complex scenarios

8

Outline
 Introduction
Model Checking Based Test Generation

SAT-based Bounded Model Checking
DPLL algorithm

Conflict clause

 Efficient Test Generation Approaches
Conflict clause forwarding based approaches

Decision ordering based techniques

Property decomposition based methods

Conclusion

演示者
演示文稿备注
This presentation has three parts. First I will present the motivation my research. And next, I will introduce the research contributions in details. Finally, I will give the conclusion.

SAT-based Bounded Model Checking
The safety property P is valid up to cycle k

iff Ω(k) is not satisfiable.

If Ω(k) is satisfiable, then we can get an

assignment which can be translated to a
test.

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

SAT Decision Procedure

Given a ϕ in CNF: (x+y+z)(¬x+y)(¬y+z)(¬x+¬ y+¬ z)

Decide()

Deduce()

Resolve_Conflict()

√ X

X X X X

ϕ

x=1@ level1

y=0 or 1@level2

z=1@level2

¬x x

¬z z ¬y y

z ¬z y ¬y

() ()

(z),(¬z) ()

(y),(¬y,z),(¬y, ¬z)

()

() ()

(y),(¬y)

(y,z),(¬y,z)

ϕ

DPLL Algorithm

Boolean Constraint Propagation (BCP) consumes up to 80%
of the time and resources during SAT solving

while (1){
 run_periodic_function();
 if(decide_next_branch()){
 while (deduce() == CONFLICT) {
 blevel = analyze_conflicts();
 if(blevel<0)
 return UNSAT;
 }
 } else return SAT;
}

BCP = Implication Number + Conflict Backtrack

Conflict Backtrack

Implication

Implication Graph, Conflict Clause

ω1 = (x2 ∨ x6 ∨ ¬ x4)

ω2 = (¬x8 ∨ x3 ∨ ¬ x7)

ω3 = (¬x1 ∨ x4∨ x5)

ω4 = (¬x3 ∨ ¬ x4)

ω5 = (¬ x2 ∨ x3∨ x8)

ω6 : (¬x1 ∨ x5 ∨ x6 ∨ ¬ x7)

cut1
¬ x6@1

x1@3

¬ x5@4

x4@4

x2@4

¬ x3@4

x7@2

x8@4

¬ x8@4

conflict

 Conflict clause can be treated as the knowledge
learned during the SAT solving. It is a restriction
of the variable assignment.

Same Property but Different Bounds

p1
1

p1
3 p1

2 p1
1

p1
2

p13

Forward

Forward

Δp1
2

Δp1
3

Δp1
k

p1
k

The minimal bound is k:

Save: ΔP1
2 + Δp1

3+ …+Δp1
k-1 + …+ Δp1

k

O. Strichman. Pruning Techniques for the SAT-Based Bounded
Model Checking Problems. CHARME , 2001

演示者
演示文稿备注
For property falsification, the current methods focus on how to efficient for a single property. Strichman proposed a method which uses conflict clauses forwarding based learning to reduce the test generation time. The basic idea is to share the leaning between different time steps.

14

Outline
 Introduction
Model Checking Based Test Generation

SAT-based Bound Model Checking
DPLL algorithm

Conflict clause

 Efficient Test Generation Approaches
Conflict clause forwarding based approaches

Decision ordering based techniques

Property decomposition based methods

Conclusion

演示者
演示文稿备注
This presentation has three parts. First I will present the motivation my research. And next, I will introduce the research contributions in details. Finally, I will give the conclusion.

Same Design, Different Properties

P1 P2

P3

rb1

rb2
rb4

rb3

……

rbn
Forward

rg1

rg2
rg4

rg3

……

rgk

Forward Benefit:
Original: Red + Blue + Green
Now: Red + (Blue –Δblue) +

(Green –Δgreen)
Save: Δblue + Δgreen

Δblue

Δgreen

演示者
演示文稿备注
However, for a complex SoC design, there will exist a large set of properties. Can we share the leaning between them? For example…s

 Clustering properties is to exploit the structural
and behavior similarity and maximize the
validation reuse

 Property clustering methods:
 Based on structural similarity

 Based on textual similarity

 Based on Influence (Cone of Influence)

 Based on CNF intersections

Property Clustering

Identification of Common Conflict Clauses

cut1
¬ x6@1

X1@3

¬ x5@4

x4@4

x2@4

¬ x3@4

x7@2

x8@4

¬ x8@4

conflict

Conflict Clause
 (¬ X1 ∨ X5 ∨ X6 ∨ ¬ X7)

 Conflict Side Clauses

Clauses
Group ID

4 3 2 1
(¬X2 ∨X3 ∨X8) 0 1 1 1

(X3 ∨¬X7 ∨¬X8) 1 0 1 0

(X2 ∨¬X3 ∨X6) 1 1 1 1

(¬X3 ∨¬X4) 1 0 1 0

(¬X1 ∨X4 ∨X5) 1 1 1 0

Let ∧ be the bit “AND” operation. (0111 ∧ 1010 ∧ 1111 ∧ 1010 ∧ 1110) = 0010.
So the conflict clause (¬X1 ∨X5 ∨X6 ∨¬X7) can be reused for property 2.

Test Generation For A Property Cluster
1. Cluster the properties based on similarity
2. for each cluster i, of properties

① Select base property pi
1, and generate CNFi

1
② for each CNFi

j of pi
j (j≠1) in cluster i

a) Perform name substitution on CNFi
j

b) Compute intersection INTi
j between CNFi

1 and CNFi
j

c) Mark the clauses of CNFi
1 using INTi

j

endfor
③ Solve CNFi

1 to get the conflict clauses CCi
1 and testi1

④ for each CNFi
j (j≠1)

a) CNFi
j = CNFi

j + Filter (CCi
j , j)

b) Solve CNFi
j to get testij

endfor
endfor

Case Study 1 : MIPS Processor

Fetch

Decode

PC

DIV FADD1 IALU MUL1

FADD3

FADD2 MUL2

FADD4

Decode

WriteBack

Register File

Memory

MUL7

Unit
Storage
 Pipeline edge
Data-transfer edge

The Architecture

MIPS Processor
- 20 nodes
- 24 edges
- 91 instructions

MIPS Processor Results
 The processor has five pipeline stages: fetch,

decode, execute, memory and writeback.
 There are totally 171 properties generated.

Methods Structure Textual Influence Intersection

Num. of Clusters 16 32 27 17

zChaff (sec.)
(Existing Approach)

3275.07 3266.73 3241.00 3323.34

Our Method (sec.) 957.42 879.19 754.58 751.36

Speedup 3.42 3.72 4.33 4.42

zChaff is a state-of-the-art SAT Solver.

Case Study 2 : OSES
VerifyOrd
er

Settle_tra
de

Trade_S

Update_SHolderDB
_S

Update_StockDB
_S
Update_OrderDB_
S

Update_orderDB_
NM

Trade_N
M Trade_

PE
Update
_stockDB_PE

Update_StockerHolderDB_
PE

Update_OrderDB_
PE

UpdateM
ap

AddOrderForm
List

GetNewOrd
er

Trade
_F

CheckLimitPr
ice

Update_orderDB
_F

End
Order

Order
Error

Get Order
Result

Limit Buy

Market
Buy

Marker
Sale

Limit
Sale

t0

t11

t1

t2

t12

t9 t8

t6 t5

t7

t3

t15
t16

t13
t14 t17 t18

t10
t22

t27

t28

t29

t23

t29

t26

t2
5

t2
4

t20

t21

t19

t4

 This case study is a on-line stock exchange system. The
activity diagram consists of 27 activities, 29 transitions
and 18 key paths. There are totally 51 properties.

OSES Results

Methods Structure Textual Influence Intersection

Num. of Clusters 18 9 12 13

zChaff (sec.)
(Existing Approach)

2119.16 2159.92 2311.47 2134.26

Our Method (sec.) 939.25 926.98 966.19 794.48

Speedup 2.26 2.33 2.44 2.69

23

Outline
 Introduction
Model Checking Based Test Generation

SAT-based Bounded Model Checking
DPLL algorithm

Conflict clause

 Efficient Test Generation Approaches
Conflict clause forwarding based approaches

Decision ordering based techniques

Property decomposition based methods

Conclusion

演示者
演示文稿备注
This presentation has three parts. First I will present the motivation my research. And next, I will introduce the research contributions in details. Finally, I will give the conclusion.

Decision Ordering Problem

24

 A wise decision ordering
can quickly locate the true
assignment.
 Bit value ordering
 Variable Orderinig

√ X

X X X X

ϕ

¬x x

¬z z ¬y y

z ¬z y ¬y

() ()

(z),(¬z) ()

(y),(¬y,z),(¬y, ¬z)

()

() ()

(y),(¬y)

(y,z),(¬y,z)

ϕ

Given a ϕ in CNF: (x+y+z)(¬x+y)(¬y+z)(¬x+¬ y+¬ z)

Best decision: ¬ x, z

演示者
演示文稿备注
Can decision ordering can be used as a kind of learning? By our observation, similar properties will have similar test. Therefore the assignment of the derived tests can be used to as a kind of learning.

Two Similar SAT Problems

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

a

b b

c c c c

F F F F F F S F

Ordering: a, a’, b, b’, c, c’

Without Learning, 7 conflicts in SAT2.

SAT 1 SAT 2

演示者
演示文稿备注
Briefly introduce the graphs.

Learning: Bit Value Ordering

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

a

b b

c c c c

F F F F F F S F

Ordering: a, a’, b’, b, c’, c

With bit value learning, 4 conflicts in SAT2.

SAT 1 SAT 2

Bit value: a=1,b=0,c=0

Learning: Bit Value + Variable Ordering

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

b

c c

a a a a

F F F F F F S F

Ordering: b’, b, c’, c, a, a’

With bit value+ variable order learning, 1 conflict in SAT2.

SAT 1 SAT 2 Bit value: a=1,b=0,c=0

Variable order: b>c>a

Our method – An Example with 3 properties

Approach: Using the statistics of the counterexamples when
checking the properties in a cluster
- Count of values  bit value ordering
- Variance of counts of two literals  variable ordering

VarStat a b c d
[0] V
[1] V

0
VarStat a b c d

[0] V
[1] V

0

0 0
0
0

0
0

…

…
…

VarStat a b c d
[0] V
[1] V 0 0

0 0 1

…

…
…

1

1 1

VarStat a b c d
[0] V
[1] V

0

0

…
…
… 0

2 2
2

1

1

P1: a=0, b=0, c=1, d=1

P2: a=0, b=0, c=1, d=0

Predict ordering for P3
P3: a=0, b=0, c=1, d=?

score(a) ↑, score(a’)↑

score(b) ↑, score(b’)↑

score(c) ↑, score(c’)↑

Case Study 1 : MIPS Processor
 For each function unit (ALU, DIV, FADD and MUL) in

the pipelined processor. We generate 4 properties.

Property
(test)

zChaff
(sec)

Clustering Speedup
(over zChaff)

Decision
Ordering

Speedup
(over Clustering)

ALU 23.20 23.20 1 23.20 1

P1 20.73 2.74 7.57 0.18 15.22

P2 21.33 3.01 7.09 0.15 20.07

P3 18.03 2.70 6.68 0.29 9.31

DIV 18.78 18.78 1 18.78 1

P4 23.55 2.72 8.66 0.13 20.92

P5 18.31 3.60 5.09 0.14 25.71

P6 18.11 3.72 4.87 0.18 20.67

FADD 22.90 22.90 1 22.90 1

P7 16.95 4.46 3.80 0.23 19.39

P8 18.89 2.71 6.97 0.16 16.94

P9 19.80 4.70 4.21 0.39 12.05

MUL 64.21 64.21 1 64.21 1

P10 59.15 3.36 17.60 0.24 14.00

P11 59.65 3.85 15.49 0.45 8.56

P12 73.98 6.28 11.78 0.18 34.89

Case Study 1 : MIPS Processor

Test generation time is significantly improved
 - Drastic reduction of conflict clauses
 - Drastic reduction in number of implications

 This case study is a on-line stock exchange system.
The activity diagram consists of 27 activities, 29
transitions and 18 key paths.

Case Study 2 : OSES

Average - 227.53 123.21 1.85 20.67 5.97

C1 3 1.18 2.18 0.54 0.70 3.11

C2 4 14.53 9.53 1.52 0.78 12.22

C3 8 375.91 170.06 2.21 36.19 4.70

C4 4 12.98 8.33 1.56 1.24 6.72

C5 4 7.13 16.88 0.42 1.02 16.55

C6 8 720.13 474.68 1.52 28.60 16.60

C7 4 10.80 24.55 0.44 1.95 12.59

C8 8 656.95 321.14 2.05 77.65 4.14

C9 8 248.17 82.42 3.01 37.93 2.17

Cluster Size zChaff Clustering Speedup
(over zChaff)

Decision
Ordering

Speedup
(over Clustering)

32

Outline
 Introduction
Model Checking Based Test Generation

SAT-based Bounded Model Checking
 Implication graph

SAT decision procedure – DPLL algorithm

 Efficient Test Generation Approaches
Conflict clause forwarding based approaches

Decision ordering based techniques

Property decomposition based methods

Conclusion

演示者
演示文稿备注
This presentation has three parts. First I will present the motivation my research. And next, I will introduce the research contributions in details. Finally, I will give the conclusion.

33

Property Decomposition Techniques
Property

p1 pn p2 ……

t1 t2 tn

Composition

Test

Property

p1 pn p2 ……

Learnings

Test

BMC

Koo et al. Functional Test Generation
using Property Decomposition
Techniques. ACM TECS, 2009

Drawback: Hard to automate

演示者
演示文稿备注
So far, we discussed clustering and decision ordering for efficient test generation. However, base (first) property needs to be solved alone (no learning). In general, for a complex design, the test generation for a complex property can be a bottleneck. Therefore we need to scale down the complexity of the property falsification. Koo et al . Proposed a decomposition based method that.

34

Spatial Decomposition

Cone1

Cone2

Cone3

V1

V2

V3

V4

V5

Vn

……

p1

p2

p3

P

COI(p1) < COI(p2) < COI(p3) <COI(P)

Time(p1) < Time(p2) < Time(p3) <Time(P)

Learning from P1 can reduce the Time(P) ?

35

Temporal Decomposition

T1

T2

T3

e1 e2
e3 e4

e5 e6

Cause effect relation: e1e2 e3e4 e5e6

Happen before relation: e1<e3<e4 <e5<e2<e6

演示者
演示文稿备注
In general, a SoC functional scenario consists of several transactions. And each transaction consists of several events. For example, transaction T1 contains two events, e1 and e2. Since the cost for generating a test for an earlier event is cheaper, the learning from e1 can be used for e2. We found that two kinds of temporal relation can be used as a learning.

36

Temporal Decomposition

event Cause-effect Happen-before

e1 e2

e3 e4 e5

e6

e7 e8 e9
1

3

5

1 2

5

2 1

!F(e1) → !F(e3) → !F(e7) → !F(e9)

Case Study 1: MIPS Processor

 We generated 6 complex properties based on
interaction faults on various function unit (ALU,
DIV, FADD and MUL), which cannot handled by
temporal decomposition.

Property
(test)

zChaff
(sec)

Num. of
Clusters

Num. of
Sub-props

Spatial
(sec)

Speedup

P1 127.52 3 2 49.41 2.58
P2 49.24 3 2 15.73 3.13
P3 9.18 2 1 4.99 1.84
P4 13.78 2 1 7.28 1.89
P5 31.63 3 2 12.74 2.48
P6 120.72 3 2 54.21 2.23

Speedup: 1.84-3.13 times

 This case study is a on-line stock exchange system.
The activity diagram consists of 27 activities, 29
transitions and 18 key paths.

Case Study 2 : OSES

P1 25.99 8 3 0.78 33.32
P2 48.99 10 4 2.69 18.21
P3 39.67 11 5 3.45 11.50

P4 247.26 11 5 22.46 11.01
P5 160.73 11 5 15.68 10.25
P6 97.54 11 4 1.56 62.53
P7 31.39 10 4 12.31 2.55
P8 161.74 11 4 12.62 12.82
P9 142.91 10 4 17.57 8.13

P10 33.77 10 4 1.76 19.19

Property zChaff
(sec)

Bound Num. of Sub-
properties

Temporal
(sec)

Speedup

Speedup: 3-62 times

39

Outline
 Introduction
Model Checking Based Test Generation

SAT-based Bounded Model Checking
DPLL algorithm

Conflict clause

 Efficient Test Generation Approaches
Conflict clause forwarding based approaches

Decision ordering based techniques

Property decomposition based methods

Conclusion

演示者
演示文稿备注
This presentation has three parts. First I will present the motivation my research. And next, I will introduce the research contributions in details. Finally, I will give the conclusion.

40

Conclusion
 Validation is a major bottleneck in HW/SW designs
 This presentation discusses how to reduce the

overall validation effort for directed test generation
from models.
1. Conflict clause forwarding and property clustering methods

2. Efficient decision ordering approaches

3. Property decomposition techniques

 Successfully applied on both HW/SW designs
 Several orders of magnitude reduction in overall

validation effort

Thank you !

	SAT Based Efficient Directed Test Generation Techniques�
	Outline
	Outline
	Functional Validation of SOC Designs
	Functional Validation Methods
	Approaches for Specification Validation
	Test Generation using Model Checking
	Outline
	SAT-based Bounded Model Checking
	SAT Decision Procedure
	DPLL Algorithm
	Implication Graph, Conflict Clause
	Same Property but Different Bounds
	Outline
	Same Design, Different Properties
	Property Clustering
	Identification of Common Conflict Clauses
	Test Generation For A Property Cluster
	Case Study 1 : MIPS Processor
	MIPS Processor Results
	Case Study 2 : OSES
	OSES Results
	Outline
	Decision Ordering Problem
	Two Similar SAT Problems
	Learning: Bit Value Ordering
	Learning: Bit Value + Variable Ordering
	Our method – An Example with 3 properties
	Case Study 1 : MIPS Processor
	Case Study 1 : MIPS Processor
	Case Study 2 : OSES
	Outline
	Property Decomposition Techniques
	Spatial Decomposition
	Temporal Decomposition
	Temporal Decomposition
	Case Study 1: MIPS Processor
	Case Study 2 : OSES
	Outline
	Conclusion
	幻灯片编号 41

