
Mingsong Chen, Xiaoke Qin and Prabhat Mishra

Computer and Information Science and Engineering

University of Florida, USA

March 10, 2010

Efficient Decision Ordering
Techniques for SAT-based

Test Generation

2

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

3

Functional Verification of SOC Designs

Logic Gates

S
im

u
la

ti
o

n
 V

ec
to

rs

E
n

g
in

ee
r

Y
ea

rs

20

200

2000

1995

2001

2007

100M

10B

1000B

1M 10M 100M Source: Synopsys

 Functional validation is a major challenge

 Majority of the SOC fails due to logic errors

 Simulation using directed tests is promising

4

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

5

Test Generation using Model Checking

 Model Checking
 Design is modeled temporal specification, e.g., SMV

 Desired behaviors in temporal logic properties

 Property holds, or fails with a counterexample

 Test generation Example
 Generate a counterexample: sequence of variable assignments

User name Access code Intput

 Bob ABC ABD

Model Checker

Input is always true ATM Model

An Example

Generate a test to make access code input fail

Approach: Exploit learning to reduce complexity

 - Reduction of TG time & memory requirements

 - Enables test generation in complex scenarios

Problem: Test generation is very costly or not possible

 in many scenarios in the presence of

 complex SoCs and/or complex properties.

6

SAT-based Bound Model Checking

 For every finite model and a LTL property
there exists k such that:

 Test generation needs to consider safety
properties

 The safety property P is valid up to cycle k iff
(k) is not satisfiable.

 If (k) is satisfiable, then we can get an
assignment which can be translated to a test.

. . .
s0 s1 s2 sk-1 sk

p p p p p

7

DPLL Algorithm

Boolean Constraint Propagation (BCP) consumes up

to 80% of the time and resources during SAT solving

while (1){

 run_periodic_function();

 if(decide_next_branch()){

 while (deduce() == CONFLICT) {

 blevel = analyze_conflicts();

 if(blevel<0)

 return UNSAT;

 }

 } else return SAT;

} BCP = Implication Number + Conflict Backtrack

Conflict Backtrack

Implication

8

Same Property but Different Bounds

p1
1

p1
3 p1

2 p1
1

p1
2

p1
3

Forward

Forward

Δp1
2

Δp1
3

Δp1
k

p1
k

The minimal bound is k:

Save: ΔP1
2 + Δp1

3+ …+Δp1
k-1 + …+ Δp1

k

O. Strichman. Pruning Techniques for the SAT-Based Bounded

Model Checking Problems. CHARME , 2001

9

Same Design, Different Properties

P1 P2

P3

rb1

rb2

rb4

rb3

……

rbn

Forward

rg1

rg2

rg4

rg3

……

rgk

Forward

Benefit:
Original: Red + Blue + Green
Now: Red + (Blue –Δblue) + (Green –
Δgreen)

Save: Δblue + Δgreen

Δblue

Δgreen

P. Mishra and M. Chen. Efficient Techniques for Directed Test

Generation using Incremental Satisfiabilty. VLSI Design 2009

10

Promising Observations

Similar properties have the similar counter-
examples (variable assignments).

Such important information can be reused.

Current decision ordering techniques focus on
the SAT problem instead of the real design.

For example, VSDIS, for each literal lit has a score

 Initialization

 score(lit) = literal count of lit in CNF clauses

Periodical update (not include initialization)

 score(lit) = score(lit) /2 + lit_in_conflict(lit)

11

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

12

Two Similar SAT Problems

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

a

b b

c c c c

F F F F F F S F

Ordering: a, a’, b, b’, c, c’

Without Learning, 7 conflicts in SAT2.

SAT 1 SAT 2

13

Learning: Bit Value Ordering

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

a

b b

c c c c

F F F F F F S F

Ordering: a, a’, b’, b, c’, c

With bit value learning, 4 conflicts in SAT2.

SAT 1 SAT 2

Bit value: a=1,b=0,c=0

14

Learning: Variable Ordering

a

b b

c c c c

F F F S F F F F

Ordering: a, a’, b, b’, c, c’

b

c c

a a a a

F F F F F F S F

Ordering: b’, b, c’, c, a, a’

With bit value+ variable order learning, 1 conflict in SAT2.

SAT 1 SAT 2
Bit value: a=1,b=0,c=0

Variable order: b>c>a

15

Test Generation Using Our Method

Inputs: a) Formal model, D

 b) A cluster of properties P with satisfiable bounds

1. Initialize varStat

2. Select the base property p1, and generate CNF1

3. (assignment1, test1) = SAT(CNF1)

4. Test-suite = {test1}

5. for i is from 2 to the size of P

a) Update varStat using assignmenti-1

b) Generate CNFi = BMC(D, pi, boundi)

c) (assignmenti, testi) = SAT(CNFi)

d) Test-suite = Test-suite U {testi}

endfor

6. Return Test-suite

16

An Illustrative Example with 3 properties

Approach: Using the statistics of the counterexamples when

checking the properties in a cluster

- Count the number of values bit value ordering

- Variance of counts of two literals variable ordering

VarStat a b c d

[0] V

[1] V

0

VarStat a b c d

[0] V

[1] V

0

0 0

0

0

0

0

…

…

…

VarStat a b c d

[0] V

[1] V 0 0

0 0 1

…

…

…

1

1 1

VarStat a b c d

[0] V

[1] V

0

0

…

…

… 0

2 2

2

1

1

P1: a=0, b=0, c=1, d=1

P2: a=0, b=0, c=1, d=0

Predict ordering for P3

P3: a=0, b=0, c=1, d=?

score(a) ↑, score(a’)↑

score(b) ↑, score(b’)↑

score(c) ↑, score(c’)↑

17

Outline

 Introduction

 Simulation-based Validation

 Test Generation using Model Checking

 Test Generation using SAT-based BMC

 Test Generation using Decision Ordering

 Bit value ordering

 Variable ordering

 Test generation using our methodology

 Experiments

 Conclusion

18

Case Study: MIPS Processor

Property

(test)

zChaff

(sec)

Conflict

Clause

Forwarding

Improvement

Factor

Decision

Ordering

Improvement

Factor

ALU 23.20 23.20 1 23.20 1

P1 20.73 2.74 7.57 0.18 15.22

P2 21.33 3.01 7.09 0.15 20.07

P3 18.03 2.70 6.68 0.29 9.31

DIV 18.78 18.78 1 18.78 1

P4 23.55 2.72 8.66 0.13 20.92

P5 18.31 3.60 5.09 0.14 25.71

P6 18.11 3.72 4.87 0.18 20.67

FADD 22.90 22.90 1 22.90 1

P7 16.95 4.46 3.80 0.23 19.39

P8 18.89 2.71 6.97 0.16 16.94

P9 19.80 4.70 4.21 0.39 12.05

MUL 64.21 64.21 1 64.21 1

P10 59.15 3.36 17.60 0.24 14.00

P11 59.65 3.85 15.49 0.45 8.56

P12 73.98 6.28 11.78 0.18 34.89

19

Case Study: MIPS Processor

Indications: Test generation complexity is significantly improved

 - Reduction of conflict clauses

 - Reduction of implication number

20

• This case study is a on-line stock exchange system.
The activity diagram consists of 27 activities, 29
transitions and 18 key paths.

Case Study: OSES

Average - 227.53 123.21 1.85 20.67 5.97

C1 3 1.18 2.18 0.54 0.70 3.11

C2 4 14.53 9.53 1.52 0.78 12.22

C3 8 375.91 170.06 2.21 36.19 4.70

C4 4 12.98 8.33 1.56 1.24 6.72

C5 4 7.13 16.88 0.42 1.02 16.55

C6 8 720.13 474.68 1.52 28.60 16.60

C7 4 10.80 24.55 0.44 1.95 12.59

C8 8 656.95 321.14 2.05 77.65 4.14

C9 8 248.17 82.42 3.01 37.93 2.17

Cluster Size zChaff Conflict

Forward

Improve ment

Factor

Decision

Ordering

Improvement

Factor

21

Conclusions

 Functional validation is a major bottleneck

 SAT-based approaches are promising for
automated test generation.

 Proposed an efficient technique for generation
of directed tests using learning techniques

 Developed a novel decision ordering technique
using both bit-value ordering and variable ordering

 Successfully applied on both hardware and
software designs

 Significant reduction in overall validation effort

22

Thank you !

