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A B S T R A C T

A sensitive label-free fluorescent aptasensing strategy for the detection of adenosine triphosphate (ATP)
has been developed with a metallocyclodextrin, tris(bipyridine)ruthenium(II) complex containing six
cyclodextrin units (6CD-Ru), which exhibited much stronger emission signal compared to the parent
compound Ru(bpy)3Cl2. Furthermore, the emission spectrum showed that the ATP-aptamer (ssDNA)
could increase the fluorescence intensity of 6CD-Ru dramatically, attributed to the interaction between
aptamer and cyclodextrin, which could provide protection to the ruthenium core from the quenching of
emission by oxygen in the solution. With the addition of ATP, the interaction between aptamer and
cyclodextrins on 6CD-Ru was diminished, since the ATP/aptamer complex had the priority to be formed,
leading to the corresponding reduction of fluorescence intensity, which could be utilized to detect ATP
quantitatively. A linear relationship was displayed between the fluorescence and the logarithm of ATP
concentrations in the range from 1 nmol/L to 1 mmol/L with the detection limit of 0.5 nmol/L (S/N = 3).
The proposed fluorescent aptasensing strategy exhibited high sensitivity and specificity, without any
labeling or amplification procedures, and it could also be applied for the detection of many other
aptamer-specific targets.
© 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
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1. Introduction

Adenosine triphosphate (ATP), generally acknowledged as
“energy currency” in most animate beings, plays an essential role
in most enzymatic activities [1] and it is a vital component of many
biological cofactors [2]. In addition, ATP has also been used as an
indicator for cell viability and cell injury [3]. Thus, developing
simple, sensitive and specific methods for ATP detection is much
important in clinic diagnosis. The key factors, including a highly
selective ATP recognition element and a novel mechanism of signal
enhancement, should be integrated for a successful detection
method [4]. Aptamers, as recognition element, are synthetic
oligonucleotides, which are generated by an in vitro selection
technique known as SELEX (systematic evolution of ligands by
exponential enrichment) from a nucleic acid library [5]. They have
gained increasing attention due to the unique character of
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specifically targeting for a wide variety of substances, such as
proteins [6,7], small molecules [8,9], metal ions [10] and cells
[11,12]. The ATP sensing based on the aptamer-binding methods
usually offer advantages in desirable specificity and affinity.
At the present, a number of detection systems have been
developed, including fluorescence [13], electrochemistry [14],
colorimetry [15], piezoelectric mechanisms [16] and electro-
chemiluminescence [17]. Among these methods, fluorescence-
based detection method exhibits excellent benefits in sensitivity,
simplicity, convenience and diversity [18,19], thus it has been
widely used and continues to act as an important role in future
research.

Cyclodextrin, cyclic oligosaccharides, composed of glucose
units at different numbers, presents bucket structure with a
hydrophobic inner cavity and a hydrophilic outer side [20], which
can accommodate a wide range of molecules to form stable
inclusion complexes [21,22] and this effect is named as host–guest
recognition. This unique property promises a wide application in
various fields, especially in biomolecules aptasensing. By intro-
ducing luminescent transition metal, such as rhenium [23],
Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
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Scheme 1. Schematic representation of fluorescence detection of ATP based on the change of fluorescence intensity.

Fig. 1. Fluorescence spectra of (a) Ru(bpy)3Cl2 (1mmol/L), (b) Ru(bpy)3Cl2 (1mmol/L)
with ATP-aptamer (1 mmol/L), (c) 6CD-Ru (1 mmol/L) and (d) 6CD-Ru (1 mmol/L) with
ATP-aptamer (1 mmol/L) excitated at 450 nm in aqueous solution at 25 �C.
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ruthenium [24], and metal binding sites into cyclodextrins
framework, metallocyclodextrin have been synthesized and they
are appealing in building blocks for the development of
sophisticated supramolecular devices [25]. Since they combine
the attractive encapsulated features of cyclodextrin with the
inherent properties of metal center in a single molecule, it creates
new opportunities for the development of biosensing methods
[26,27], especially based on fluorescence change. A luminescent
system for steroids detection has been designed using tris-
(bipyridine)ruthenium(II) complexes containing multiple cyclo-
dextrin binding sites [28]. It was noteworthy that this synthesized
metallocyclodextrin displayed bright luminescence, twice as
intense as the reference metal core, which could be attributed
to that the shielding effects of cyclodextrins to the metal core
strongly decreased the quenching effects by dissolved oxygen in
aqueous solution [29–31]. Our group has also successfully
synthesized a series of tris(bipyridine)ruthenium(II) complexes
containing multi-ruthenium(II) and multi-cyclodextrins, respec-
tively [32,33]. The former type exhibited excellent electrochemi-
luminescence (ECL) properties as well as host–guest recognition
ability, so it has been applied to the determination of DNA [34],
proteins [35,36] and small molecules [37]. The latter type,
especially with six cyclodextrin units (6CD-Ru) (Scheme 1),
exhibited great fluorescence performance, thus it has been
exploited to develop an aptasensing method for the determination
of lysozyme [38].

Herein, a sensitive fluorescent aptasensing strategy without any
signal labeling or amplification procedures for ATP detection was
proposed based on the host–guest recognition of cyclodextrin on
6CD-Ru to the aptamer (Scheme 1). The fluorescence intensity of
6CD-Ru was firstly enhanced by the addition of aptamer, and then,
the presence of ATP reduced the intensity. The signal change could
be utilized for the quantitative determination of target molecule—
ATP. This proposed fluorescent aptasensing strategy performs the
satisfactory sensitivity, simplicity and operability, and it can be
further applied to the detection of other aptamer-specific targets.

2. Results and discussion

2.1. Photophysical properties of 6CD-Ru and fluorescence
enhancement induced by ssDNA/aptamer

In order to investigate the photophysical properties of the
metallocyclodextrin—6CD-Ru, its fluorescence spectrum (curve c)
was measured in aqueous solution as illustrated in Fig. 1, with the
fluorescence spectrum of the parent compound Ru(bpy)3Cl2 (curve
a) as a comparison. 6CD-Ru fluoresces with a maximum peak at
approximately 620 nm, and the intensity is nearly 4 times as that of
Ru(bpy)3Cl2, due to the protecting effect of CDs.

It has been reported [39,40] that single bases, as the key
components of ssDNA/aptamer, can be encapsulated into the
cyclodextrin cavity freely, thus ssDNA/aptamer can bind cyclodex-
trin through the host–guest recognition, and then it is supposed to
form the noncovalent complex with 6CD-Ru. As shown in Fig.1, the
fluorescence intensity of 6CD-Ru has been further improved
drastically after the addition of ssDNA (ATP-aptamer here) (curve
d), with 60.4% increase. While, as a comparison, the parent
compound Ru(bpy)3Cl2 (curve b) has only obtained 19.8% increase
under the same conditions due to the electrostatic effect existed
between Ru(bpy)32+ and ssDNA [41]. This result verifies Scheme 1a
and suggests that the cyclodextrin rings play an important role in
the interaction between ssDNA and 6CD-Ru.

This interaction, enhancing the fluorescence intensity, was
further investigated by switching to nucleotides—the monomer of
ssDNA. As shown in Fig. 2A, the interaction between 6CD-Ru and
single nucleotides just caused 6.8% increase in fluorescence
intensity (curve b). While, the addition of ssDNA could improve
the fluorescence intensity of 6CD-Ru drastically with 117.8%
increase (curve c). It is known that fluorescence generated by
Ru(bpy)32+ could be quenched by dissolved oxygen. 6CD-Ru
presents stronger fluorescence property since cyclodextrins could
shield the core of Ru(bpy)32+ from dissolved oxygen. On this basis,
the fluorescence intensity would be enhanced further by the
interaction between 6CD-Ru and ssDNA, which causes ssDNA
chains to wrap around 6CD-Ru, thus leading to the increased
shielding effect. While, this wrapping conformation could not be
formed with single nucleotides, so they do not have the ability to
enhance the fluorescence intensity. To further verify this deduc-
tion, amino acids and the polymerized peptide were employed to
interact with 6CD-Ru by indole group (Fig. 2B), obtaining 4.3%
increase (curve b) and 59.3% increase (curve c), respectively.



Fig. 2. (A) Fluorescence spectra of (a) 6CD-Ru (1 mmol/L), (b) 6CD-Ru (1 mmol/L) with nucleotides (1 mmol/L, including 0.222 mmol/L adenine nucleotide, 0.185 mmol/L
thymine nucleoside, 0.111 mmol/L cytosine nucleoside and 4.82 mmol/L guanine nucleotide), and (c) 6CD-Ru (1 mmol/L) with ss-DNA (1 mmol/L) excitated at 450 nm in
aqueous solution at 25 �C. (B) Fluorescence spectra of (a) 6CD-Ru (1 mmol/L), (b) 6CD-Ru (1 mmol/L) with amino acids (1 mmol/L, including 0.5 mmol/L glutamic acid and
0.5 mmol/L glycine) and (c) 6CD-Ru (1 mmol/L) with peptide (1 mmol/L) excitated at 450 nm in aqueous solution at 25 �C.
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Clearly, the interaction with the polymerized peptide generated
more significant enhancement of fluorescence intensity. Thus, the
development of aptasensing strategy can be realized based on this
unique property of 6CD-Ru.

2.2. Development of the aptasensing strategy

Scheme 1 displays a sensitive and label-free aptasensing
strategy to detect ATP. Firstly, the fluorescence intensity of 6CD-
Ru is improved sharply by the addition of ATP-aptamer via the
interaction between cyclodextrin and aptamer (Scheme 1a). When
ATP was presented in the mixture solution, ATP/aptamer complex
prefers to be formed and the conformation changes of ATP-
aptamer weakens the interaction with cyclodextrins on 6CD-Ru,
which causes the fluorescence reduction (Scheme 1b).

In order to verify the proposed strategy, the ATP detection was
then performed, as shown in Fig. 3. Compared to the original
fluorescence signal of 6CD-Ru (curve a), the addition of ATP-
aptamer increases the emission signal (curve c), corresponding to
Scheme 1a. Then, ATP solution was added into the mixed system
for incubation and the portion formation of ATP/aptamer complex
was promoted, leading to the obvious fluorescence signal decrease
Fig. 3. Fluorescence spectra of (a) 6CD-Ru (1 mmol/L), (b) 6CD-Ru (1 mmol/L) with
ATP-aptamer (1 mmol/L) and ATP (1 mmol/L) and (c) 6CD-Ru (1 mmol/L) with ATP-
aptamer (1 mmol/L) excitated at 450 nm in aqueous solution at 25 �C.
in the spectrum (curve b), corresponding to Scheme 1b. This
fluorescence aptasensing strategy is proved feasible for ATP
determination.

2.3. Optimization of experimental variables

The fluorescence aptasensing is affected by various experimen-
tal variables. Thus, in order to achieve the most excellent
performance of 6CD-Ru, pH value and ATP-aptamer concentration
have been optimized. As illustrated in Fig. 4A, the fluorescence
enhancement (DI, DI = I � I0, where I0 and I are the fluorescence
intensities of 6CD-Ru in the absence and presence of ATP-aptamer,
respectively) increases with pH value increasing until pH value
comes to 8.5. Then, DI reduces as pH value continues to increase.
Thus, pH 8.5 is selected as the optimum condition. The effect of
ATP-aptamer concentration on fluorescence enhancement of 6CD-
Ru was examined by adding ATP-aptamer at different concen-
trations (from 0.25 mmol/L to 3.5 mmol/L) into 0.5 mmol/L 6CD-Ru
solution (Fig. 4B). Clearly, the fluorescence intensity of 6CD-Ru is
sharply enhanced by ATP-aptamer at the increasing concentration
until up to 2.0 mmol/L, and then continues with almost no change
in DI for the higher concentrations, indicating that the largest
absolute fluorescence enhancement could be obtained with
2.0 mmol/L ATP-aptamer for 0.5 mmol/L 6CD-Ru. Therefore,
2.0 mmol/L ATP-aptamer was selected as the optimum concentra-
tion.

2.4. Quantitative determination of ATP

Based on the developed aptasensing strategy, the determina-
tion of ATP is performed quantitatively. From Fig. 5A, it can be seen
that the fluorescence intensity increases with the decreased
concentration of ATP, where the curves from a to h corresponded to
the ATP concentrations ranging from 0 to 1 mmol/L, respectively.
Fig. 5 B displays a linear relationship between the difference in the
fluorescence signal (DI, DI = I0� I, where I0 and I are the
fluorescence intensities in the absence and presence of ATP,
respectively) and the logarithm of ATP concentrations in the range
of 1 nmol/L–1 mmol/L. The calibration equation obtained from this
curve is DI = 278.5 � lgCATP + 0.6382 with a correlation coefficient
of 0.991. The detection limit is found to be 0.5 nmol/L (S/N = 3),
which is close to or lower than the previously reported detection
methods for ATP [6,42]. It is indicative of an acceptable
quantitative behavior, and this approach possesses excellent



Fig. 4. Fluorescence enhancement (DI) of 6CD-Ru (0.5 mmol/L) induced by (A) ATP-aptamer (0.5 mmol/L) with different pH values (pH = 6.0, 7.0, 8.0, 8.5 and 9.0) and (B) ATP-
aptamer at different concentrations ranging from 0.25 mmol/L to 3.5 mmol/L.

Fig. 5. (A) Fluorescence responses of the mixed solution containing 0.5 mmol/L 6CD-Ru and 0.5 mmol/L ATP-aptamer incubated with ATP at different concentrations (from
curve a to h: 0 mol/L, 1 nmol/L, 5 nmol/L, 10 nmol/L, 50 nmol/L, 100 nmol/L, 500 nmol/L and 1 mmol/L) in the binding buffer. (B) The resulting calibration curve for absolute
difference of the fluorescence intensity as a function of the logarithm of ATP concentration from 1 nmol/L to 1 mmol/L for 0.5 mmol/L 6CD-Ru. The error bars were derived from
the standard deviation of three replicate experiments.
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sensitivity without any further signal labeling or amplification
procedures.

2.5. Specificity of the proposed aptasensing strategy

The specificity of our proposed aptasensing strategy toward ATP
detection was further investigated in the existence of other typical
interfering analogous molecules, including CTP, UTP, GTP, AMP and
ADP under the same experimental conditions. Fig. 6 shows that
none of the above interfering molecules induces obvious fluores-
cence changes (DI = I0� I, where I0 and I are the fluorescence
intensities in the absence and presence of detected molecules)
even their concentrations are 10 times larger than that of ATP,
while the addition of ATP brings about a significant intensity
decrease. The results suggest that the designed fluorescent
aptasensing strategy performs excellent specificity for ATP
detection.

3. Conclusions

In summary, the present work demonstrates a novel label-free
fluorescent aptasensing strategy for sensitive detection of ATP with
the synthesized compound—6CD-Ru, based on its remarkable
photophysical properties. The fluorescent signal was further
enhanced by ATP-aptamer due to the host–guest recognition
between cyclodextrins on 6CD-Ru and ATP-aptamer. The addition
of ATP switches the conformation of ATP-aptamer and diminishes
the interaction existed between ATP-aptamer and 6CD-Ru, due to
the priority formation of ATP/aptamer complex. Under the
optimized condition, the detection limit of 0.5 nmol/L was
successfully obtained. The proposed fluorescent aptasensing
strategy exhibits high sensitivity and specificity, without any
signal labeling or amplification procedures. Moreover, it can be
expanded into detecting other biomolecules with the correspond-
ing aptamers.

4. Experimental

4.1. Chemicals and materials

The metallocyclodextrin compound—6CD-Ru was synthesized
by our group [32,33]. ATP, guanosine triphosphate (GTP), uridine
triphosphate (UTP), and cytosine triphosphate (CTP) were pur-
chased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,



Fig. 6. Specificity investigation with comparing the signals of ATP (10 nmol/L) and
other non-target small molecules: GTP (100 nmol/L), UTP (100 nmol/L), CTP
(100 nmol/L), AMP (100 nmol/L) and ADP (100 nmol/L), incubated with 1 mmol/L
6CD-Ru and 1 mmol/L ATP-aptamer. Each data points represented the average
values of the three independent experiments with error bars indicated.
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China). Adenosine monophosphate (AMP) and adenosine diphos-
phate (ADP) were purchased from Sigma-Aldrich Trading Co., Ltd.
(Shanghai, China). The oligonucleotides used here were synthe-
sized and purified by Shanghai Sangon Biotechnology Co., Ltd.
(Shanghai, China). The sequence of the ATP-aptamer is 50-
ACCTGGGGGAGTATTGCGGAGGAAGGT-30. All solutions were pre-
pared with double-distilled water, which was purified with a
Millipore Milli-Q purification system to a specific resistance of
>18.3 MV cm. The binding buffer for the incubation of ATP and its
aptamer was made up of 0.56 mmol/L tris-HCl, 4.7 mmol/L NaCl
and 0.14 mmol/L KCl. All reagents used in this work are of analytical
reagent grade.

4.2. Instrumentation

Fluorescence spectra were collected on a F-7000 fluorescence
spectrophotometer (Hitachi High-Technologies Co., Ltd. Japan).
HZQ-C swing bed machine (Donglian Electronic Technology Co.,
Ltd., China) was used for facilitating the incubation of ATP and its
aptamer. The centrifugation of DNA was performed with a TDL-16B
centrifugal machine (Shanghai Anting Scientific Instruments
Factory, China).

4.3. Optimization of experimental variables

The effect of pH value and ATP-aptamer on the performance of
6CD-Ru was investigated by mixing 6CD-Ru (0.5 mmol/L) with ATP-
aptamer (0.5 mmol/L) at various pH values (pH = 6.0, 7.0, 8.0, 8.5,
9.0), and ATP-aptamer at various concentrations (0.25 mmol/L–
3.5 mmol/L) at 25 �C for 2 h, respectively, followed by the
fluorescence measurement. The fluorescence spectra were collect-
ed at the excitation wavelength of 450 nm with the slit width of
10 nm and the photomultiplier voltage of 700 V at 25 �C.

4.4. ATP determination

The ATP solution at various concentrations was added into the
binding buffer containing 6CD-Ru and the aptamer under the
optimized condition. The mixture was incubated at 37 �C for 2 h,
and then the fluorescence intensity was measured with the same
parameters. The detection was performed by independent experi-
ments with repetition for at least three times.

Furthermore, the specificity of this aptasensing strategy was
investigated using some typical interference targets (100 nmol/L),
including GTP, UTP, CTP, AMP and ADP to perform comparative
experiments under the same conditions.
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