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a b s t r a c t

Breather, lump and X soliton solutions are presented via the Hirota bilinear method,
to the nonlocal (2+1)-dimensional KP equation, derived from the Alice–Bob system. The
resulting breather contains two cases, one is the line breather and another is the normal
breather, both of which are different from the solutions of the classical (2+1)-dimensional
KP equation; the X soliton is found with the long wave limit by some constraints to the
parameters; the lump solution is obtained in virtue of two methods, one is as the long
wave limit of breather theoretically, the other is with the quadratic function method,
which can be guaranteed rationally localized in all directions in the space under some
constraints of the parameters. By choosing specific values of the involved parameters, the
dynamic properties of some breather, lump solutions to nonlocal KP equation are plotted,
as illustrative examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Generally speaking, many non-Hermitian systems with parity-time (PT) symmetry [1] have been studied due to its
supernatural physics properties, especially in the optics [2,3]. This concept originated from the theory of quantum fields and
brought about new strategies in achieving a harmonic interaction between optical gain and loss. Here the parity reflection
operator P: p → −p, x → −x, is the linear and the time reflection operator T : p → −p, t → −t, i → −i is anti-linear [4].
In [5], Yang et al. investigated the nonlinear wave propagation in parity-time symmetric localized potentials. Usually, a
necessary condition to PT symmetry is that its complex refractive satisfies a basic condition V (−x) = V ∗(x) so as to manifest
the real part of V is symmetric and the imaginary component is antisymmetric. As tomultidimensions, the PT symmetry has
been extended to the partial-parity-time (PPT ) symmetry [6]. Up to now, there aremany articles referred to the PT symmetry
and PPT symmetry, such as the integrable nonlocal nonlinear Schrödinger equation (NLS) [7,8], which has been proved that
it has an infinite number of conservation laws via the inverse scattering method, whereafter based on the general AKNS
scattering problems [9], a series of new nonlocal nonlinear integrable equations are derived, such as modified Korteweg–de
Vries (mKdV), sine-Gordon, (1+ 1) and (2+ 1) dimensional three-wave interaction, derivative NLS, Davey–Stewartson (DS)
equations.

Recently, Lou [10,11] put forward an Alice–Bob system, in which, the event A can be regarded as the decrease of ice at
Arctic sea in the summer of 2007 and the event B can be considered to be responsible for the heavy freezing rain in winter
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2008 in Southern, moreover the strong EI Nino event occurred in 1997 and the heavy Yangtze River flooding in 1998 can
also be described with the Alice–Bob system. Meanwhile, it is reported that the detection of the signal of gravitational wave
(can be called the event B) is closely related to the event A, which can be regarded as themerging of two black holes from 1.3
billion light years away. These two far-away particles Alice and Bob may be entangled each other with a suitable operator f̂ ,
that is

B(x′, t ′) = f̂ A = Af , (1)

where f̂ indicates the shifted parity (P̂s) transformation for the spatial and the delayed time reversal (T̂d) for the time variable

x′
= −x + x0 ≡ P̂sx, t ′ = −t + t0 ≡ T̂dt, (2)

if x0 = 0, t0 = 0, then it can be reduced the general PT symmetry, the model with x0 = 0 has been studied bymany authors,
but it is a new model for x0 ̸= 0.

As to classical KP equation, the lump solution [12], roguewave [13,14] are presented via the bilinear method. Meanwhile,
some rational solutions to other equations are obtained, such as the Schrödinger equations [15], Shallow-Water equa-
tion [16], the Yajima–Oikawa systems [17], (3+1)-dimensional Jimbo–Miwa equation [18,19], KP-Boussinesq equation [20],
KP-like equation [21], Hirota–Satsuma-like equation [22], and other Hirota bilinear equation [23–25]. Some of these rational
solutions can be described the Rossby solitary [26] wave in the ocean. Especially, a special rational solution (X soliton) [27]
attracts a lot of attentions. However, there are only several nonlocal equations whose solutions are given, for example, the
rational solutions to nonlocal DSI [28,29], DSII equations [30] and the multi-soliton to Alice–Bob system [10].

In this paper, we discuss the dynamics properties to two kinds of nonlocal KP equations derived from the nonlocal Alice–
Bob system, one is the nonlocal KPI equation and the other is KPII equation. Firstly, we give the line breather to these two
nonlocal KP equations, comparedwith the classical line breather, this kind of line breather is composedwith the aggregation
of some parallel line wave. Thereafter, by a long wave limit, two unexpected phenomena appear, one is the lump solution
and the other is the interaction between two solitons. It is interesting that the evolutionary two-soliton dynamics behavior to
the nonlocal KPI equation is similar to a progress of the phase of the moon, that is, it appears a first quarter in the beginning,
changes into a full moon and reduces to a last quarter in the end. While the interaction between the two-soliton to nonlocal
KPII equation is different, it begins with a symmetric two-soliton about the y axis, then it divides into a X soliton and this
X soliton is symmetric not only about the y axis but also with the x axis, after the fusion, it returns back to two solitons.
Furthermore, we study the lump solution to nonlocal KPI equation via the quadratic function method, discuss the different
dynamical behaviors caused by the effect of x0, y0 to the lump solution and give the comparison figures with different x0, y0.

The outline of this paper is as follows: in Section 2, the two classes of nonlocal KP equations are introduced and their
multi-soliton solutions are given. Then the breather, lump, X soliton solutions to KPI equation and the breather, X soliton
solutions to KPII equation are presented in Section 3. In Section 4, via anothermethod (quadratic functionmethod), the lump
solution to nonlocal KPI equation is obtained. Some conclusion and summary are given in Section 4.

2. Nonlocal KPI and KPII equations

Based on the Alice–Bob referred in [10], the nonlocal KPI equation and KPII equations are derived as

Axt +

(
Axx + 3AB +

3
2
A2

−
3
2
B2

)
xx

− Ayy = 0, (3a)

Axt +

(
Axx + 3AB +

3
2
A2

−
3
2
B2

)
xx

+ Ayy = 0, (3b)

where B = Af , and Af represents three cases:

Af
= P̂xy

s T̂dA = A(−x + x0, −y + y0, −t + t0),

Af
= P̂x

s T̂dA = A(−x + x0, y, −t + t0),

Af
= P̂y

s dA = A(x, −y + y0, t),

Eqs. (3a) and (3b) can be changed into the following bilinear form respectively

DtDxg · g + D4
xg · g − D2

yg · g = 0, (4a)

DtDxg · g + D4
xg · g + D2

yg · g = 0, (4b)

under the transformation A = B = 2(ln g)xx and g satisfies g(x, y, t) = g(−x + x0, −y + y0, −t + t0).
The multi-solitons of this nonlocal KPI can be written as

g =

∑
ν=1,−1

Kν cosh

⎛⎝1
2

N∑
j=1

νjηj

⎞⎠ , (5)
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Fig. 1. The breather to corresponding |A| determined by Eq. (5) whenN = 2, (a) is the line breather by choosing k1 = 1+3I, k2 = 1−3I, p1 = p2 = 2, x0 =

0, t0 = 0, y0 = 0, η0
1 = η0∗

2 = 0, (b) is the normal breather by choosing k1 = 1+2I, k2 = 1−2I, p1 = −2I, p2 = 2I, t0 = 0, y0 = 0, x0 = 0, η0
1 = 0, η0

2 = 0,
(c) and (d) are the corresponding density plots to (a) and (c) respectively.

where

ηj = kj

[(
x −

x0
2

)
+ pj

(
y −

y0
2

)
− (k2j − p2j )

(
t −

t0
2

)]
+ η0

j ,

Kν =

∏
i>j

√
3(ki − νiνjkj)2 + (pi − pj)2,

νi = 1, −1, (i = 1, 2, . . . ,N).

Similarly, the muiti-solitons to KPII equation are derived as

g =

∑
ν=1,−1

Kν cosh

⎛⎝1
2

N∑
j=1

νjηj

⎞⎠ , (6)

where

ηj = kj

[(
x −

x0
2

)
+ pj

(
y −

y0
2

)
− (k2j + p2j )

(
t −

t0
2

)]
+ η0

j ,

Kν =

∏
i>j

√
3(ki − νiνjkj)2 − (pi − pj)2,

νi = 1, −1, (i = 1, 2, . . . ,N).

In earlier works, by some constraints to the parameters on the two-soliton, a family of analytical breathers solutions can
be obtained. Inspired by the general technique, we give the line breather to Eq. (5) when N = 2 by setting

k1 = 1 + 3I, k2 = 1 − 3I, p1 = p2 = 2, x0 = 0, t0 = 0, y0 = 0, η0
1 = η0∗

2 = 0,

then g can be written as

g = 4
√
3(3I cosh(30t + x + 2y) + cos(30t + 3x + 6y)). (7)

The corresponding solutions |A| in the (x, y) plane are shown in Fig. 1. Comparedwith the classical linewave, which keeps
in parallel state and out of interaction with each other, this kind of line wave is composed with many line waves and they
gather together, merge into one line wave, we can call this line wave as the line breather. Moreover, by choosing different
parameters, such as k1 = 1 + 2I, k2 = 1 − 2I, p1 = −2I, p2 = 2I, t0 = 0, y0 = 0, x0 = 0, η0

1 = 0, η0
2 = 0, then g can be

written as

g = 4I(4 cosh(7t + 4y + x) + cos(6t − 2x + 2y)) (8)

and the corresponding |A| in the (x, y) changes into the normal breathers, which is shown in Fig. 1.
Based on the idea of getting the breather to the nonlocal KPI equation, we present the line breather and the normal

breather to the nonlocal KPII equation, whose characters are similar to the corresponding KPI equation, it is shown in Fig. 2
respectively.

Based on the idea to the generate the lump solution for the general equations, we obtain the lump solution to the nonlocal
KPI equation by taking a long wave limit to the general two-soliton solution. Putting

k1 = l1ε, k2 = l2ε, η0
1 = Iπ, η0

2 = −Iπ, (9)

in Eq. (5) when N = 2 and setting the limit ε = 0, then the function g can be changed into

g =

√
(p2 − p1)2

4
l1l2(ω1ω2 + ω0), (10)
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Fig. 2. The breather to corresponding KPII equation, (a) is the line breather, (b) is the normal breather, (c) and (d) are the corresponding density plots to (a)
and (c) respectively by choosing the same parameters.

Fig. 3. The lump solution to Eq. (12) by choosing p1 = 1 + I, p2 = 1 − I, x0 = 0, y0 = 0, t0 = 0, (a) is the 3D plot, (b) is the corresponding density plot.

Fig. 4. The evolution plots to the interaction of two-soliton by choosing p1 = 0.9 − 2I, p2 = −0.9 + 2I, x0 = 0, y0 = 0, t0 = 0, at times (a) t = −0.18,
(b) t = 0, (c) t = 0.18.

where
ω1 = 2x − x0 + (2y − y0)p1 + (2t − t0)p21,

ω2 = 2x − x0 + (2y − y0)p2 + (2t − t0)p22,

ω0 = −
12

(p1 − p2)2
.

(11)

Then the rational solution of |A| can be written as

|A| =

⏐⏐⏐⏐−8(ω2
1 + ω2

2 − 2ω0)
(ω1ω2 + ω0)2

⏐⏐⏐⏐ . (12)

Setting the parameter constraint p2 = p∗

1 can guarantee the solution |A| in Eq. (12) is nonsingular. Then the lump solution
can be obtained by choosing p1 = a1 + b1I, p2 = a1 − b1I and the solution |A| in Eq. (12) is a constant along a trajectory
determined by [x(t), y(t)],

2x − x0 + a(2y − y0) + (a2 − b2)(2t − t0) = 0,
b(2y − y0) + 2ab(2t − t0) = 0.

(13)

Furthermore, when (x, y) goes to infinity, the corresponding |A| will approach to 0 when t is an arbitrary value, whose
dynamical behavior is shown in Fig. 3.

In addition, when p2 = −p1 = a2 + b2I , then a2 < b2 can guarantee Eq. (12) is nonsingular. Now another interesting
interaction between two-soliton solutions is depicted in Fig. 4.

It is obvious that the two-solitons are parabolic solitary and they are symmetric about y direction, similar to a crescent
moon, as time goes on, these two parabolic solitary decompose into a full moon and their amplitude is lower than any other
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Fig. 5. The corresponding density plots to Fig. 4.
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Fig. 7. The corresponding density plots of Fig. 6.

time, after the decomposition, they continue to move with the same speed, which can also be called a progress from the first
quarter to the last quarter, its corresponding density plots are shown in Fig. 5.

Furthermore, taking the long wave limit to the breather, the evolution plots of two-soliton to nonlocal KPII equation are
depicted in Fig. 6 with the parameters p2 = −p1 = a3 + b3I . In this case we must set a3 > b3 in order to guarantee the
corresponding solution is nonsingular.

It can be seen that this kind of solution is still symmetric about y direction, and they will decompose into a X soliton
when t = 0, whose amplitude is lower than any time. This progress can be called the mechanism of X soliton aroused by
two parabolic solitary. Similar to the KPI equation, this progress is also an elastic collision, its corresponding density plots
are shown in Fig. 7.

But it is a pity that we cannot find the lump solution to nonlocal KPII equation, the solution |A| cannot be guaranteed
nonsingular no matter what the values of the parameters p1 and p2.

3. Lump solution to nonlocal KPI equation

Section 2 has given the lump solution to nonlocal KPI equation with the long wave limit to the breather, this section, we
want to present the lump solution by using the positive quadratic function, assume g as

g = m2
+ n2

+ a7, (14)

where

m = a1
(
x −

x0
2

)
+ a2

(
y −

y0
2

)
+ a3

(
t −

t0
2

)
, (15a)

n = a4
(
x −

x0
2

)
+ a5

(
y −

y0
2

)
+ a6

(
t −

t0
2

)
, (15b)
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where ai(1 ≤ i ≤ 7) are real parameters to be determined. A direct Maple symbolic calculation to g can generate the
following constraint equation

a3 =
a1a22 − a1a25 + 2a2a4a5

a21 + a24
, a6 =

a4a25 − a4a22 + 2a1a2a5
a21 + a24

, a7 =
3(a61 + 3a41a

2
4 + 3a21a

4
4 + a64)

(a1a5 − a2a4)2
, (16)

which should be satisfied a1a5 − a2a4 ̸= 0, then the corresponding solution |A| can be written as

|A| =

⏐⏐⏐⏐4(a21 + a24)g − 8(a1m + a4n)2

g2

⏐⏐⏐⏐ (17)

where g,m, n are determined by Eqs. (15a), (15b) and (14). In this class of lump solutions, 4 parameters are arbitrary provided
that ai(1 ≤ i ≤ 7) satisfy a1a5 − a2a4 ̸= 0. It is observed that when (x, y) goes to infinity, the corresponding solution |A|

still goes to 0, whose dynamical character is shown in Fig. 8. It is important to emphasize the characters of this class of lump
solutions are similar to the lump solution given by the long wave limit of breather.

In Fig. 8, we can know that the location of lump soliton will be changed due to the different values of x0, y0, which can
also be regarded as the evolution plots, that is, as the time goes, Fig. 8(a) may be turn into Fig. 8(b) and (c). Therefore, the
values of x0 and y0 play an important role to the evolution character. Its corresponding density plots are depicted in Fig. 9.

4. Conclusion

In this paper, the line breather and period normal breather to the nonlocal KPI and KPII equations are obtained by the
bilinear transformation and demonstrated by 3D figures. Especially, these obtained line breathers are composed by a series
of parallel line waves and these line waves are merged into together, which are different from the classical KP equation.
Furthermore, the lump solution to nonlocal KPI equation is given by using two methods, localized analytical solution in
rational form. Thenwe discuss the influence of x0 and y0 to the character of the lump solution. Apart from that, an interesting
interaction between two-soliton is found, this phenomena is symmetric about the y direction and will decompose into a X
soliton when t = 0, its energy becomes less than any other time accordingly, which can be regarded as the formation
mechanism of the X soliton. However, it is a pity thatwe cannot find the roguewave to these nonlocal KPI and KPII equations,
no matter it is line rogue wave or localized 2D rogue wave. In our further work, maybe we can use other methods to get the
rogue wave and discuss more dynamics properties to these nonlocal KP equations, in addition, based on the theory of the
classical integrable system [31,32] we can study these Hamiltonian structures of these nonlocal equations.
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