Research Article

Bell Polynomials Approach
Applied to (2 + 1)-Dimensional Variable-Coefficient
Caudrey-Dodd-Gibbon-Kotera-Sawada Equation

Wen-guang Cheng, 1 Biao Li, 1 and Yong Chen1,2

1 Nonlinear Science Center, Ningbo University, Ningbo 315211, China
2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

Correspondence should be addressed to Biao Li; libiao@nbu.edu.cn

Received 28 May 2014; Revised 12 August 2014; Accepted 18 August 2014; Published 14 October 2014

Academic Editor: Changbum Chun

Copyright © 2014 Wen-guang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The bilinear form, bilinear Bäclund transformation, and Lax pair of a (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived through Bell polynomials. The integrable constraint conditions on variable coefficients can be naturally obtained in the procedure of applying the Bell polynomials approach. Moreover, the \(N \)-soliton solutions of the equation are constructed with the help of the Hirota bilinear method. Finally, the infinite conservation laws of this equation are obtained by decoupling binary Bell polynomials. All conserved densities and fluxes are illustrated with explicit recursion formulae.

1. Introduction

It is well known that investigation of integrable properties of nonlinear evolution equations (NEEs) can be considered as a pretest and the first step of its exact solvability. The integrability features of soliton equations can be characterized by Hirota bilinear form, Lax pair, infinite symmetries, infinite conservation laws, Painlevé test, Hamiltonian structure, Bäcklund transformation (BT), and so on. The bilinear form of a soliton equation can not only be used to produce many of the known families of multisoliton solutions, but also be employed to derive the bilinear BT, Lax pair, and infinite sets of conserved quantities [1–6]. However, it relies on a particular skill and tedious calculation. In the early 1930s, the classical Bell polynomials were introduced by Bell which are specified by a generating function and exhibiting some important properties [7]. Recently, Lambert and coworkers have proposed a relatively convenient procedure based on Bell polynomials which enables us to obtain bilinear forms, bilinear BTs, Lax pairs, and Darboux covariant Lax pairs for NEEs [8–11]. It is shown that Bell polynomials play an important role in the characterization of bilinearizable equations and a deep relation between the integrability of an NEE and the Bell polynomials. Furthermore, Fan [12], Fan and Chow [13], and Wang and Chen [14, 15] developed the approach to construct infinite conservation laws by decoupling binary-Bell-polynomial-type BT into a Riccati type equation and a divergence type equation. Afterwards, Fan [16] and Fan and Hon [17] extended this method to supersymmetric equations. On the basis of their work, we apply the bell polynomials approach to the high-dimensional variable-coefficient NEEs.

Many physical and mechanical situations are governed by variable-coefficient NEEs, which might be more realistic than the constant coefficient ones in modeling a variety of complex nonlinear phenomena in physical and engineering fields [18–20].

The (2 + 1)-dimensional analogue of the Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation is in the form of

\[
36u_t = - u_{5x} - 15(uu_{2x})_x - 45u^2u_x + 5u_{2x,y} + 15uu_y + 15u_x \tilde{\sigma}^{-1}u_y + 5\tilde{\sigma}^{-1}u_{2y},
\]

with \(\tilde{\sigma}^{-1} = \int \frac{1}{\sigma} \, dx \). Equation (1) is first proposed by Konopelchenko and Dubrovsky [21] and then considered by many
authors in various aspects such as its quasiperiodic solutions [22], algebraic-geometric solution [23], N-soliton solutions [24], nonlocal symmetry [25], and symmetry reductions [26]. Based on (1), we will consider a (2 + 1)-dimensional variable-coefficient CDGKS equation as

\[u_t + a_1 u_{xx} + a_2 u_x u_{xx} + a_3 u u_{3x} + a_4 u^2 u_x + a_5 u_{2xx} + a_6 u_{2x} u_y + \frac{a_7}{a_8} u_{x} u_{y}^{-1} u_y + a_9 u u_y = 0, \]

(2)

where \(a_i = a_i(t), i = 1, \ldots, 9 \), are analytic functions with respect to \(t \). The aim of this paper is applying the Bell polynomials approach to systematically investigate the integrability of (2), which includes bilinear form, bilinear BT, Lax pair, and infinite conservation laws.

The layout of this paper is as follows. Basic concepts and identities about Bell polynomials will be briefly introduced in Section 2. In Section 3, by virtue of Bell polynomials and the Hirota bilinear method, the bilinear form and N-soliton solutions of (2) are obtained. In Sections 4 and 5, with the aid of Bell polynomials, the bilinear BT, Lax pair, and infinite conservation laws of (2) are systematically presented, respectively. Section 6 will be our conclusions.

2. Bell Polynomials

The Bell polynomials [7, 9, 10] used here are defined as

\[Y_{nx} (f) = Y_n \left(\{ f_{rx} (1 \leq r \leq n) \} \right) = e^{-f} \partial_x^n e^f, \quad Y_{0x} \equiv 1, \]

(3)

where \(f(x) \) is a \(C^\infty \) function and \(f_{rx} = \partial_x f ; \) according to formula (3), the first three are

\[Y_x (f) = f_x, \quad Y_{2x} (f) = f_{2x} + f_x^2, \quad Y_{3x} (f) = f_{3x} + 3f_{2x} f_x + f_x^3. \]

(4)

Based on one-dimensional Bell polynomials, the multidimensional Bell polynomials are expressed as

\[Y_{n_1 x_1, \ldots, n_l x_l} (f) = Y_{n_1, \ldots, n_l} \left(\{ f_{r_1 x_1, \ldots, r_l x_l} (1 \leq r_i \leq n_i, 0 \leq i \leq l) \} \right) = e^{-f} \partial_{x_1}^{n_1} \cdots \partial_{x_l}^{n_l} e^f, \]

(5)

with \(f = f(x_1, \ldots, x_i) \) being a \(C^\infty \) function and \(f_{r_1 x_1, \ldots, r_l x_l} = \partial_{x_1}^{r_1} \cdots \partial_{x_l}^{r_l} f ; \) the associated two-dimensional Bell polynomials can be written as

\[Y_{mx, nx} (f) = Y_{m, n} \left(\{ f_{rx, sx} (1 \leq r \leq m, 1 \leq s \leq n) \} \right) = e^{-f} \partial_x^m \partial_s^n e^f. \]

(6)

The most important multidimensional binary Bell polynomials, namely, \(\mathcal{Y} \)-polynomials, can be defined as

\[\mathcal{Y}_{n_1 x_1, \ldots, n_l x_l} (v, w) = Y_{n_1, \ldots, n_l} (\{ f_{r_1 x_1, \ldots, r_l x_l} \}) = Y_{n_1, \ldots, n_l} (\{ f_{r_1 x_1, \ldots, r_l x_l} \}) \]

(7)

for

\[f_{r_1 x_1, \ldots, r_l x_l} = \begin{cases} \sum_{i=0}^{r_1} \frac{r_1!}{i!} v_i w_{r_1-i} & \text{if } r_1 \text{ is odd} \\ \sum_{i=0}^{r_1} \frac{r_1!}{i!} w_i v_{r_1-i} & \text{if } r_1 \text{ is even} \end{cases} \]

(8)

with the first few lowest order binary Bell polynomials being

\[\mathcal{Y}_{x} (v) = v_x, \quad \mathcal{Y}_{2x} (v, w) = w_{2x} + v_x^2, \quad \mathcal{Y}_{x_1, x_2} (v, w) = w_{x_1 x_2} + v_{x_1} w_{x_2}, \]

(9)

\[\mathcal{Y}_{2x_1, x_2} (v, w) = w_{2x_1} x_2 + 2w_{x_1} x_2 v_{x_1} + v_{x_1}^2 v_{x_2}, \ldots. \]

The \(\mathcal{Y} \)-polynomials can be linked to the standard Hirota expressions through the identity \[10\]

\[\mathcal{Y}_{n_1 x_1, \ldots, n_l x_l} (v) = \ln \left(\frac{F}{G} \right), \quad w = \ln (FG) \]

(10)

in which \(\sum_{i=1}^{l} n_i \geq 1 \) and the operators \(D^n_{x_1} \cdots D^n_{x_l} \) are classical Hirota bilinear operators defined by \[1\]

\[D^n_{x_1} \cdots D^n_{x_l} F \cdot G = (\partial_{x_1} - \partial_{x'_1})^{n_1} \cdots (\partial_{x_l} - \partial_{x'_l})^{n_l}, \]

(11)

Introducing a new field \(q = w - v \), in the particular case \(F = G \) one has

\[G^{-2} D^n_{x_1} \cdots D^n_{x_l} F \cdot G = \mathcal{Y}_{n_1 x_1, \ldots, n_l x_l} (0, q = w - v) = \begin{cases} 0 & \text{if } \sum_{i=0}^{l} n_i \text{ is odd,} \\ \mathcal{P}_{n_1 x_1, \ldots, n_l x_l} (q) & \text{if } \sum_{i=0}^{l} n_i \text{ is even,} \end{cases} \]

(12)

in which the even-order \(\mathcal{Y} \)-polynomials is called \(\mathcal{P} \)-polynomials; that is,

\[\mathcal{P}_{n_1 x_1, \ldots, n_l x_l} (q) = \mathcal{Y}_{n_1 x_1, \ldots, n_l x_l} (0, q = w - v), \]

(13)

with

\[\mathcal{P}_{2x} (q) = q_{2x}, \quad \mathcal{P}_{x_1 x_2} (q) = q_{x_1 x_2}, \quad \mathcal{P}_{x_1} (q) = q_{x_1} + 3q_{2x}, \]

(14)

\[\mathcal{P}_{6x} (q) = q_{6x} + 15q_{2x} q_{4x} + 15q_{2x}^3, \ldots. \]
Moreover, the binary Bell polynomials \(\mathcal{B}_{n_1, x_1; n_2, x_2}(v, w) \) can be written as the combination of \(\mathcal{P} \)-polynomials and \(Y \)-polynomials:

\[
(FG)^{-1} D_{x_1}^{n_1} \cdots D_{x_2}^{n_2} F \cdot G
= \mathcal{B}_{n_1, x_1; n_2, x_2}(v, w) \bigg|_{v=\ln(F/G), w=\ln(FG)}
= \mathcal{B}_{n_1, x_1; n_2, x_2}(v, v + q) \bigg|_{v=\ln(F/G), a=2 \ln G}
= \sum_{p_r=0}^{n_1} \cdots \sum_{p_s=0}^{n_2} \left(\frac{n_1}{p_1} \right) \cdots \left(\frac{n_2}{p_2} \right) \mathcal{P}_{n_1, x_1; n_2, x_2}(q)
\times Y_{n_1, x_1 \cdots n_2, x_2}(v).
\]

(15)

Under the Hopf-Cole transformation \(v = \ln \psi \), the \(Y \)-polynomials can be linearized into the form

\[
Y_{n_1, x_1 \cdots n_2, x_2}(v) \bigg|_{v=\ln \psi} = \frac{\Psi_{n_1, x_1 \cdots n_2, x_2}}{\psi},
\]

(16)

which provides a straightforward way for the related Lax systems of NEEs.

3. Bilinear Form and N-Soliton Solutions for (2)

Firstly, introduce a dimensionless potential field \(q \) by setting

\[
u = c q_{2x},
\]

(17)

with \(c = c(t) \) to be determined. Substituting (17) into (2), integration with respect to \(x \) yields the following potential version of (2):

\[
\left(\frac{\xi}{c} + a_g \right) q_x + q_{xx} + \frac{1}{2} c (a_2 - a_g) \partial_x^{-1} \partial_y (q_{xx} + 3q_{2x}^2)
+ a_1 q_{xx} + \frac{1}{2} c (a_2 - a_g) q_{3x}^2 + c a_3 q_{2x} q_{4x} + \frac{1}{3} c^2 a_4 q_{2x}^3
+ \left[a_5 + \frac{1}{6} c (a_2 - a_g) \right] q_{3x,y} + a_6 q_{2y} + c a_7 q_{2x} q_{x,y} = 0;
\]

(18)

on account of the dimension of \(u \) (dim \(u = -2 \)), we find that setting \(c = c_0 e^{-\int a_{0} dt} \), where \(c_0 \) is an arbitrary constant. In order to write (18) in local bilinear form, here are two cases which are considered to eliminate the effect of the integration \(\partial_x^{-1} \). The bilinear form and \(N \)-soliton solutions for each case will be discussed by selecting appropriate constraints on variable coefficients \(a_i, i = 1, \ldots, 9 \).

3.1. Case 1. Let \(a_2 = a_6 \); (18) becomes

\[
q_{xx} + a_1 q_{xx} + \frac{1}{2} c (a_2 - a_g) q_{3x}^2 + c a_3 q_{2x} q_{4x} + \frac{1}{3} c^2 a_4 q_{2x}^3
+ a_5 q_{3x,y} + a_6 q_{2y} + c a_7 q_{2x} q_{x,y} = 0.
\]

(19)

This equation can be viewed as a homogeneous \(\mathcal{P} \)-condition [8] of weight 6 (the weight of each term being defined as minus its dimension, a weight 3 to \(y \)). That means (19) can be written as a linear combination of \(\mathcal{P} \)-polynomials of weight 6:

\[
\mathcal{P}_{xx} (q) + a_1 \mathcal{P}_{xx} (q) + a_2 \mathcal{P}_{3x,y} (q) + a_6 \mathcal{P}_{2y} (q) = 0;
\]

(20)

under the following constraint condition:

\[
a_{2} - a_{g} = 0, \quad a_{6} = 0,
\]

(21)

namely,

\[
a_{2} = a_{6} = \frac{15 a_{1}}{c_{0}} e^{-\int \alpha_{a dt}}, \quad a_{6} = \frac{45 a_{1}}{c_{0}} e^{-\int \alpha_{a dt}},
\]

(22)

According to the property (12), via the following transformation:

\[
q = 2 \ln G \iff \nu = c q_{2x} = 2 c_{0} e^{-\int \alpha_{a dt}} \ln (1 + e^{\alpha_{a t}}),
\]

(23)

\(\mathcal{P} \)-polynomials expression (20) produces the bilinear form of (2) as follows:

\[
\left(D_{x} D_{y} + a_{1} D_{x}^{6} + a_{2} D_{y}^{6} - 5 c_{1} a_{1} D_{x}^{2} D_{y} - 5 c_{2} a_{1} D_{y}^{2} \right) G \cdot G = 0.
\]

(24)

Starting from this bilinear equation, the one-soliton solution of (2) can be easily obtained by regular perturbation method

\[
u = 2 c_{0} e^{-\int \alpha_{a dt}} \ln (1 + e^{\alpha_{a t}}),
\]

(25)

with

\[
\eta_{1} = k_{1} x + l_{1} y + a_{1} (t) + \xi_{1},
\]

(26)

However, the multisoliton solutions cannot be derived by means of bilinear equation (24). For the sake of obtaining multisoliton solutions of (2), we take

\[
a_{5} = 5 c_{1} a_{1}, \quad a_{6} = -5 c_{1}^{2} a_{1},
\]

(27)

where \(c_{1} \) is an arbitrary constant; the bilinear equation can be expressed as

\[
\left(D_{x} D_{y} + a_{1} D_{x}^{6} + 5 c_{1} a_{1} D_{y}^{6} - 5 c_{2} a_{1} D_{y}^{2} \right) G \cdot G = 0.
\]

(28)

with the conditions (22) and (27); that is,

\[
a_{2} = a_{6} = \frac{15 a_{1}}{c_{0}} e^{-\int \alpha_{a dt}}, \quad a_{6} = \frac{45 a_{1}}{c_{0}} e^{-\int \alpha_{a dt}},
\]

(29)
Based on the bilinear equation (28), the \(N \)-soliton solutions for (2) can be constructed as

\[
u = 2c_0e^{-\int a_{\ell}dt} \left[\ln \left(\sum \frac{e^{\sum_{j=1}^{N} \eta_j + \sum_{j=1}^{N} \mu_j \eta_j}}{k_j} \right) \right]_{2x},
\]

where

\[
\eta_j = k_j x + l_j y + \omega_j(t) + \xi_j,
\]

\[
\omega_j(t) = -c_j \int a_{\ell}dt,
\]

\[
e^{A_j} = \left\{ (k_j - k_l) \left[c_1k_j^2l_j \left(2k_j - k_l \right) + c_2k_j^2l_l \left(k_l - 2k_j \right) + k_j^2k_l^2 \left(k_l^2 - k_j k_l + k_j^2 \right) \right] + c_1^2(k_jl_j - k_l l_l) \right\}^{-1},
\]

with \(k_j, l_j, \) and \(\xi_j (j = 1, 2, \ldots, N) \) being arbitrary constants; \(\sum_{\mu=0,1} \) indicates a summation over all possible combinations of \(\mu_j = 0, 1 \) (\(j = 1, 2, \ldots, N \)). For \(N = 1 \), the one-soliton solution for (2) can be written as follows:

\[
u = \frac{1}{2} c_0 k_1^2 e^{-\int a_{\ell}dt}
\times \left[\frac{1}{2} \left(k_1 x + l_1 y - k_1^2 + 5c_1 k_1^2 l_1 - 5c_1^2 l_1^2 \right) \right]
\times \left[\int a_{\ell}dt + \xi_1 \right].
\]

For \(N = 2 \), we can obtain the two-soliton solution for (2) as

\[
u = 2c_0 e^{-\int a_{\ell}dt} \left[\ln \left(1 + e^{\eta_1} + e^{\eta_2} + e^{\eta_1+\eta_2} \right) \right]_{2x}.
\]

3.2. Case 2. As another case, we introduce an auxiliary variable \(s \) and a subsidiary condition

\[
q_{sx} + 3q_{sx}^2 + q_{xx} = 0,
\]

in virtue of which, similarly, (18) can be written as a linear combination of \(\mathcal{P} \)-polynomials of weight 6 (a weight 3 to 3):

\[
\mathcal{P}_{xx}(q) + \beta \mathcal{P}_{3x}(q) + \gamma \mathcal{P}_{3x}(q)
+ a_6 \mathcal{P}_{2x}(q) - \frac{1}{6} \mathcal{P}_{y,s}(q)
+ \delta \mathcal{P}_{3x}(q) + \alpha \mathcal{P}_{y,s} = 0,
\]

with the following constraint:

\[
ca_2 - 3y = 0, \quad a_5 - y + \frac{1}{6} c (a_7 - a_8) = 0,
\]

\[
ca_2 - 15\beta + 9\delta - 12\alpha = 0, \quad a_1 - \beta + \delta - \alpha = 0,
\]

\[
\frac{1}{3} c_2 a_4 - 15\beta + 9\delta - 12\alpha = 0,
\]

\[
\frac{1}{2} c (a_2 - a_3) + 6\delta - 3\alpha = 0.
\]

Solving for (36) yields

\[
\begin{align*}
y &= \frac{1}{3} c_0 e^{-\int a_{\ell}dt} a_7, \\
\beta &= -\frac{3}{2} a_1 + \frac{1}{6} c_0 e^{-\int a_{\ell}dt} a_3 - \frac{1}{2} a, \\
\alpha &= \frac{5}{2} a_1 + \frac{1}{6} c_0 e^{-\int a_{\ell}dt} a_3 + \frac{1}{2} a, \\
a_2 &= a_3 + \frac{30a_1}{c_0} e^{\int a_{\ell}dt}, \\
a_4 &= \frac{3a_3}{c_0} e^{\int a_{\ell}dt}, \\
a_5 &= \frac{1}{6} c_0 e^{-\int a_{\ell}dt} (a_7 + a_8).
\end{align*}
\]

Thus, the \(\mathcal{P} \)-polynomials expression of (2) and (34) reads

\[
\mathcal{P}_{xx}(q) + \mathcal{P}_{3x}(q) = 0,
\]

\[
\mathcal{P}_{xx} + \left(-\frac{3}{2} a_1 + \frac{1}{6} c_0 e^{-\int a_{\ell}dt} a_3 - \frac{1}{2} a \right) \mathcal{P}_{xx}(q)
+ \frac{1}{3} c_0 e^{-\int a_{\ell}dt} a_7 \mathcal{P}_{3x}(q)
+ a_6 \mathcal{P}_{2x}(q) + \frac{1}{6} c_0 e^{-\int a_{\ell}dt} (a_7 - a_8) \mathcal{P}_{y,s}(q)
+ \left(\frac{5}{2} a_1 + \frac{1}{6} c_0 e^{-\int a_{\ell}dt} a_3 + \frac{1}{2} a \right) \mathcal{P}_{3x}(q)
+ \alpha \mathcal{P}_{y,s} = 0,
\]

in which \(\alpha = \alpha(t) \) is an arbitrary function.
Figure 1: One-soliton solution via solution (32) with $a_9 = 0.01$, $k_1 = 1$, $l_1 = 2$, $c_0 = 1$, $c_1 = 1$, $a_1 = \sin(t)$, and $\xi_1 = 0$. (a) $t = -2$; (b) $t = -1$; (c) $t = 2$.

System (38) produces the bilinear form of (2) as follows:

\[
\begin{align*}
(D_x^4 + D_x D_y)G \cdot G &= 0, \\
[D_x D_t + \left(-\frac{3}{2} a_1 + \frac{1}{6} c_0 e^{-\int a_0 dt} a_3 - \frac{1}{2} a \right) D_x^6 \\
&+ \frac{1}{3} c_0 e^{-\int a_0 dt} a_7 D^3_x D_y \\
&+ a_6 D_y^3 + \frac{1}{6} c_0 e^{-\int a_0 dt} (a_7 - a_8) D_y D_z \\
&+ \left(-\frac{5}{2} a_1 + \frac{1}{6} c_0 e^{-\int a_0 dt} a_3 + \frac{1}{2} a \right) \\
&\times D_x^2 D_y + a D_x^2 \right] G \cdot G &= 0,
\end{align*}
\]

(39)

by property (12) and transformation (23). From the bilinear equation (39), we can only get the one-soliton solution which is the same as the above formulae (25) and (26). Therefore, (2) under the constraint conditions (37) is not integrable since its multisoliton solutions cannot be obtained.

4. Bilinear BT and Lax Pair for (2)

In order to search for the bilinear BT and Lax pair of (2), under the integrable constraint condition (29) in case 1, we have

\[
E(q) = q_{xx} + a_1 \left(q_{6x} + 15 q_{2x} q_{4x} + 15 q_{2x}^3 \right) \\
+ 5 c_1 a_1 \left(q_{3x,y} + 3 q_{2x} q_{x,y} \right) - 5 c_1^2 a_1 q_{2y} = 0.
\]

(40)

Let

\[
q = 2 \ln G, \quad q' = 2 \ln F
\]

(41)

be two solutions of (40), respectively. On introducing two new variables

\[
v = \frac{q' - q}{2} = \ln \left(\frac{F}{G} \right),
\]

(42)

\[
w = \frac{q' + q}{2} = \ln (FG),
\]
Figure 2: Two-soliton solution via solution (33) with $a_9 = 0.01, k_1 = 1, k_2 = 2, l_1 = 2, l_2 = 8, c_0 = 1, c_1 = 0.02, a_t = 0.2$, and $\xi_1 = \xi_2 = 0$. (a) $t = -2$; (b) $t = 0$; (c) $t = 2$.

Figure 3: Two-soliton solution via solution (33) with $a_9 = 0.01, k_1 = 1, k_2 = 2, l_1 = 2, l_2 = 7, c_0 = 1, c_1 = 0.02, a_t = t$, and $\xi_1 = \xi_2 = 0$. (a) $t = -0.8$; (b) $t = 0$; (c) $t = 0.8$.
Thus, the two-field condition (43) becomes
\[E'(q') - E(q) = E(w + v) - E(w - v) \]
\[= 2 \left[v_{x,x} + 15a_1 v_{x,x}^2 + 45a_1 v_{x,x}^2 + 15c_1w_{x,y} v_{2,x} - 5c_1 a_1 v_{2,y} + a_1 v_{6,x} + 15a_1 w_{2,x} v_{4,x} + 5c_1 a_1 v_{3,x,y} + 15c_1 a_1 w_{2,x} v_{3,y} \right] \]
\[+ 2\partial_x \left[\mathcal{Y}(v) + a_1 \mathcal{Y}(v, w) + 5c_1 a_1 \mathcal{Y}(v, w) \right] + 2R(v, w) = 0, \tag{43} \]

with
\[R(v, w) = -5a_1 \left(v^3 v_{2,x} + 2w v^3 v_{x} + 6w v^3 v_{x} v_{2,x} + c_1 v_{x,x} v_{x} + 2 v_{4,x} v_{x} + 2c_1 v_{2,x} v_{x} v_{y} + 2 c_{w_{2,xy}} v_{x} + 4v_{3,xy} v_{2,xy} + 6w v_{2,x} v_{x} w_{3,xy} + w_{5,xy} v_{x} + c_1 w_{3,xy} v_{x} - 3v_{3,xy} - 6 w_{2,xy} v_{2,x} - c_1 v_{2,xy} v_{2,xy} + 2v_{4,xy} v_{2,xy} - 2 c_{w_{2,xy}} v_{2,xy} + c_1^2 v_{y} v_{x} w_{x,2} + 2 v_{3,xy} w_{3,xy} \right). \tag{44} \]

The simplest possible choice is a homogeneous \(\mathcal{Y} \)-constraint[8] of weight 2; it can only be of form
\[\mathcal{Y}(v, w) + a \mathcal{Y}(v) = \lambda. \tag{45} \]

It is easy to find that eliminating \(w_{3,x} \) (and its derivatives) by means of form (45) does not enable one to express the remainder \(R(v, w) \) as the \(x \)-derivative of a linear combination of \(\mathcal{Y} \)-polynomials. However, a homogeneous \(\mathcal{Y} \)-constraint of weight 3
\[\mathcal{Y}_{2,x}(v, w) + c_1 \mathcal{Y}(v) = \lambda, \tag{46} \]
\[\lambda = \text{arbitrary parameter of weight 3}, \]

can be used to express \(R(v, w) \) as follows:
\[R(v, w) = -\frac{5}{2} \partial_x \left[\mathcal{Y}_{2,xy}(v, w) - c_1 \mathcal{Y}_{2,xy}(v, w) \right]. \tag{47} \]

Thus, the two-field condition (43) becomes
\[\partial_x \left[\mathcal{Y}(v) - \frac{3}{2} a_1 \mathcal{Y}_{5,x}(v, w) + \frac{15}{2} c_1 a_1 \mathcal{Y}_{2,xy}(v, w) \right] - \frac{15}{2} a_1 \lambda \mathcal{Y}_{2,xy}(v, w) = 0 \tag{48} \]

where we prefer the equation in the conserved form, which is useful to construct conservation laws later. It is seen that the two-field condition (43) can be decoupled into a pair of parameter-dependent \(\mathcal{Y} \)-constraints (of weight 3 and weight 5):
\[\mathcal{Y}_{3,x}(v, w) + c_1 \mathcal{Y}(v) - \lambda = 0, \]
\[\mathcal{Y}(v) - \frac{3}{2} a_1 \mathcal{Y}_{5,x}(v, w) + \frac{15}{2} c_1 a_1 \mathcal{Y}_{2,xy}(v, w) \]
\[- \frac{15}{2} a_1 \lambda \mathcal{Y}_{2,xy}(v, w) = 0. \tag{49} \]

In view of (10), the bilinear BT for (2) is obtained:
\[(D_x + c_1 D_y - \lambda) F \cdot G = 0, \tag{50} \]
\[(D_t - \frac{3}{2} a_1 D_y + \frac{15}{2} c_1 a_1 D_x^2 D_y - \frac{15}{2} a_1 \lambda D_x^2) F \cdot G = 0. \]

By application of formulae (15) and (16), the system (50) is linearized to be the Lax pair of (2) as
\[\psi_{3,x} + 3q \psi = c_1 \psi, \]
\[\psi_t - 9a_1 \psi_{3,x} - 45a_1 q_{2,xy} \psi_{3,x} - 45q_{3,x} \psi_{2,x} - (30a_1 q_{4,x} + 45a_1 q_{2,2} - 15c_1 a_1 q_{3,xy}) \psi_{3,x} = 0. \tag{51} \]

Starting from this Lax pair with \(a_1 = -1, \ a_1 = 0, \ c_0 = 1, \) and \(c_1 = 1, \) the Darboux transformation and nonlocal symmetry of the equation can be established [25]. Checking that the compatibility condition of system (51) is just the potential of (40).

5. Infinite Conservation Laws for (2)

In what follows, we present the infinite conservation laws by recursion formulae for (2). The conservation laws actually have been hinted in the binary-Bell-polynomial-type BT (46) and (48), which can be rewritten in the conserved form
\[v_{3,x} + 3v_{x,x} w_{2,x} + v_{3} + c_1 v_{y} = \lambda, \]
\[\partial_t(v_x) + \partial_x \left[-\frac{3}{2} a_1 (v_{5,x} + 5w_{4,x} v_{x} + 10v_{3,x} w_{2,x} + 10w_{3,x} v_{x} + 15w_{2,x} v_{x} + v_{5}) \right] \]
\[+ \partial_y \left(\frac{15}{2} c_1 a_1 v_{3,x} \right) = 0, \tag{52} \]
by using the relation
\[\partial_t(v_x) = \partial_x(v_y) = v_{x,y}, \tag{53} \]
\[\partial_y(v_x) = \partial_x(v_y) = v_{x,y}. \]
By introducing a new potential function

\[\eta = \frac{q'_x - q_x}{2}, \tag{54} \]

in this way, there are

\[v_x = \eta, \quad w_x = q_x + \eta. \tag{55} \]

Substituting (55) into system (52), we obtain

\[\eta_{2x} + 3\eta (q_{2x} + \eta_x) + \eta^3 + c_1 \partial_x^{-1} \eta_y = \lambda = \epsilon^3, \tag{56} \]

\[\eta + \partial_x \left[-\frac{3}{2} a_1 \left(\eta_{4x} + 5q_{4x}\eta + 5\eta_{3x}\eta + 10q_{2x}\eta_{2x} \right. \right. \]
\[\left. \left. + 10\eta_x\eta_{2x} + 10\eta^2\eta_{2x} + 15q_{2x}^2\eta \right. \right. \]
\[\left. \left. + 30q_{2x}\eta_x\eta + 15\eta^2\eta + 10q_{2x}\eta^3 \right. \right. \]
\[\left. \left. + 10\eta_x\eta^3 + \eta^5 \right) \right] - \frac{15}{2} a_1 \epsilon^3 \left(q_{2x} + \eta_x + \eta^2 \right) \]
\[+ \frac{15}{2} c_1 a_1 \left(q_{2x} \partial_x^{-1} \eta_y + \eta_x \partial_x^{-1} \eta_y + 2q_{xy}\eta \right) \]
\[+ 2\eta_x\eta + \eta^2 \partial_x^{-1} \eta_y \right] \right] \frac{3}{2} \right] \]
\[+ \partial_y \left(\frac{15}{2} c_1 a_1 \eta_{2x} \right) = 0. \tag{57} \]

It may be noticed that (56) is not a Riccati-type equation. Similar to [27], inserting expansion

\[\eta = \epsilon + \sum_{n=1}^{\infty} I_n \left(q, q_x, q_{xy}, \ldots \right) \epsilon^n \tag{58} \]

into (56) would lead to

\[\sum_{n=1}^{\infty} I_{n,2x} \epsilon^{n-3} + 3 \left(\epsilon + \sum_{n=1}^{\infty} I_n \epsilon^{-n} \right) \left(q_{2x} + \sum_{n=1}^{\infty} I_{nx} \epsilon^{-n} \right) \]
\[+ 3\epsilon^2 \sum_{n=1}^{\infty} I_n \epsilon^{-n} + 3\epsilon \left(\sum_{n=1}^{\infty} I_n \epsilon^{-n} \right)^2 \]
\[+ \left(\sum_{n=1}^{\infty} I_n \epsilon^{-n} \right)^3 + c_1 \sum_{n=1}^{\infty} \partial_x^{-1} I_{nx} \epsilon^{-n} = 0; \tag{59} \]

collecting the coefficients for the power of \(\epsilon \), we explicitly obtain the recursion relations for the conserved densities \(I_n \):

\[I_1 = -q_{2x}, \]
\[I_2 = q_{3x}, \]
\[I_3 = -\frac{1}{3} (2q_{4x} - c_1 q_{sx}), \]

\[I_4 = \frac{1}{3} (q_{5x} - 2c_1 q_{2x,y}), \]

\[I_{n+1} = -\frac{1}{3} \left(I_{n-1,2x} + 3I_{n,x} + 3q_{2x} I_{n-1} \right) \]
\[+ 3 \sum_{k=1}^{n-2} I_k I_{n-1-k, x} + 3 \sum_{k=1}^{n-1} I_k I_{n-k} \]
\[+ \sum_{i+j+k=n-1} I_i I_j I_k + c_1 \partial_x^{-1} I_{n-1,y}, \quad (n \geq 4). \tag{60} \]

Applying (58) to divergence-type equation (57) and comparing the power of \(\epsilon \) provide us with an infinite sequence of conservation laws:

\[I_{n,x} + F_{n,x} + G_{n,y} = 0, \quad (n = 1, 2, \ldots), \tag{61} \]

where the first fluxes \(F_n \)'s are given explicitly by

\[F_1 = -q_{6x} a_1 + \frac{5}{2} c_1 a_1 q_{3x,y} - 15 a_1 q_{2x}^3 \]
\[- 15 c_1 a_1 q_{2x, y} q_{xy} + 5 c_1^2 a_1 q_{y}, - 15 a_1 q_{2x} q_{4x}, \]
\[\vdots \]
\[F_n = -\frac{3}{2} a_1 \left[I_{n,4x} + 5q_{4x} I_n + 5 \sum_{k=1}^{n-1} I_{k,3x} I_{n-k} \right. \]
\[\left. + 5 I_{n+1,3x} + 10 q_{2x} I_{n,2x} \right] \]
\[+ 10 \sum_{k=1}^{n-1} I_k I_{n-k,2x} + 10 I_{n+2,2x} \]
\[+ 20 \sum_{k=1}^{n} I_k I_{n+1-k,2x} + 10 \sum_{i+j+k=n} I_i I_j I_{k,2x} \]
\[+ 15 q_{2x}^2 I_n + 30q_{2x} \left(\sum_{k=1}^{n-1} I_k I_{n-k} + I_{n+1},x \right) \]
\[+ 15 \sum_{i+j+k=n} I_{i,x} I_{j,y} I_{k} + 15 \sum_{k=1}^{n} I_{k,x} I_{n+1-k,x} \]
\[+ 10 q_{2x} \left(\sum_{i+j+k=n} I_i I_j I_k + 3 \sum_{k=1}^{n} I_k I_{n+1-k} + 3 I_{n+2} \right) \]
\[+ 10 \sum_{i+j+k+l=n+1} I_i I_j I_k I_l + 30 \sum_{i+j+k+l=n+1} I_{i,x} I_{j,y} I_{k} \]
\[+ 30 \sum_{k=1}^{n} I_{k,x} I_{n+2-k} + 10 I_{n+3,x} \]
Abstract and Applied Analysis

With the recursion formulae (60), (62), and (63) presented above, the infinite conservation laws for (2) can be constructed. In particular, the first conservation law is

\[+ \sum_{i+j+k+l+m=n} I_{i}I_{j}I_{k}I_{l}I_{m} + 5 \sum_{i+j+k+l+m=n+1} I_{i}I_{j}I_{k}I_{l}I_{m} + 10 \sum_{i+j+k+l+m=n+2} I_{i}I_{j}I_{k}I_{l}I_{m} + 10 \sum_{i+j+k+l+m=n+3} I_{i}I_{j}I_{k}I_{l}I_{m} + 5I_{m+4} \]

\[- \frac{15}{2} a_{1} \left(I_{n-3,x} + \sum_{k=1}^{n+2} I_{n-3+k} + 2I_{n+4} \right) \]

\[+ \frac{15}{2} c_{1} a_{1} \left(q_{2x} x^{-1} I_{n,y} + \sum_{k=1}^{n-1} \partial_{x}^{-1} I_{k,y} I_{n-k,x} + 2q_{x,y} I_{n,1,y} + 2I_{n+1,y} + 2 \sum_{k=1}^{n-1} I_{n-k,y} I_{k} + \sum_{i+j+k+n} I_{i}I_{j}I_{k}I_{n-k,y} \right) \]

\[+ 2 \sum_{k=1}^{n} \partial_{x}^{-1} I_{k,y} I_{n+1-k} + \partial_{x}^{-1} I_{n+2,y} \right), \]

(62)

and the second fluxes \(G_{1} \) are

\[G_{1} = - \frac{15}{2} c_{1} a_{1} q_{4x}, \]

..,

\[G_{n} = \frac{15}{2} c_{1} a_{1} I_{n,2x}, \quad n = 2, 3, \ldots \]

(63)

With the recursion formulae (60), (62), and (63) presented above, the infinite conservation laws for (2) can be constructed. In particular, the first conservation law is

\[q_{2x} + a_{1} q_{7x} + 15a_{1} q_{4x} q_{4x} + 15a_{1} q_{2x} q_{5x} + 45a_{1} q_{2x} q_{3x} - 5c_{1} a_{1} q_{4x} q_{2x} + 15c_{1} a_{1} q_{3x} q_{2x} + 15c_{1} a_{1} q_{2x} q_{5x} = 0, \]

(64)

or equivalently

\[u_{t} + a_{1} u_{2x} + \frac{15a_{1}}{c_{0}} \frac{e^{a_{d} t}}{c_{0}} u_{x} u_{2x} + \frac{15a_{1}}{c_{0}} \frac{e^{a_{d} t}}{c_{0}} u_{x} u_{2x} + 5c_{1} a_{1} u_{2x} - 5c_{1} a_{1} \partial_{x}^{-1} u_{2y} + 15c_{1} a_{1} \frac{e^{a_{d} t}}{c_{0}} u_{x} \partial_{x}^{-1} u_{y} + 15c_{1} a_{1} \frac{e^{a_{d} t}}{c_{0}} u_{y} + a_{2} u = 0, \]

(65)

which is exactly (2) under the constraint conditions (29).

6. Conclusion

In this paper, a (2 + 1)-dimensional variable-coefficient CDGKS equation has been investigated by the Bell polynomials approach. For case 1, the CDGKS equation is completely integrable in the sense that it admits bilinear BT, Lax pair, and infinite conservation laws which are derived in a direct and systematic way. By means of the bilinear equation, the \(N \)-soliton solutions for the variable-coefficient CDGKS equation are presented. Different parameters and functions are selected to obtain some soliton solutions and also analyze their graphics in Figures 1–3. However, for case 2, the variable-coefficient CDGKS equation under the constraint conditions (37) is not integrable since its multisoliton solutions cannot be obtained. In addition, the integrable constraint conditions on variable coefficients of the equation can be naturally found in the procedure of applying the Bell polynomials approach.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant nos. 11271211, 11275072, and 11435005 and K. C. Wong Magna Fund in Ningbo University.

References

10 Abstract and Applied Analysis

