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Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

李晓光 教授
中国科学技术大学物理系, 合肥 230026

Prof. Li Xiao-Guang
Department of Physics, University of Science and Technology of China,
Hefei 230026, China

沈元壤 教授 Prof. Shen Yuan-Rang
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

王亚愚 教授
清华大学物理系, 北京 100084

Prof. Wang Ya-Yu
Department of Physics, Tsinghua University, Beijing 100084, China

王玉鹏 研究员
中国科学院物理研究所, 北京 100190

Prof. Wang Yu-Peng
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

王肇中 教授 Prof. Wang Zhao-Zhong
Laboratory for Photonics and Nanostructures(LPN) CNRS–UPR20,
Route de Nozay, 91460 Marcoussis, France

闻海虎 教授
南京大学物理学院系, 南京 210093

Prof. Wen Hai-Hu
School of Physics, Nanjing University, Nanjing 210093, China

徐至展 研究员, 院士
中国科学院上海光学精密机械研究所,
上海 201800

Prof. Academician Xu Zhi-Zhan
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of
Sciences, Shanghai 201800, China

许岑珂 助理教授 Assist. Prof. Xu Cen-Ke
Department of Physics，University of California, Santa Barbara, CA 93106,
USA

叶 军 教授 Prof. Ye Jun
Department of Physics, University of Colorado, Boulder, Colorado
80309-0440, USA

张振宇 教授 Prof. Z. Y. Zhang
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6032, USA

2015–2020
Prof. J. Y. Rhee Department of Physics, Sungkyunkwan University, Suwon, Korea
Prof. Robert J. Joynt Physics Department, University of Wisconsin-Madison, Madison, USA

程建春 教授
南京大学物理学院, 南京 210093

Prof. Cheng Jian-Chun
School of Physics, Nanjing University, Nanjing 210093, China

戴 希 研究员
中国科学院物理研究所，北京 100190

Prof. Dai Xi
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

郭光灿 教授, 院士

中国科学技术大学物理学院,
合肥 230026

Prof. Academician Guo Guang-Can
School of Physical Sciences, University of Science and Technology of China,
Hefei 230026, China

刘朝星 助理教授 Assist. Prof. Liu Chao-Xing
Department of Physics, Pennsylvania State University, PA 16802-6300, USA

刘 荧 教授
上海交通大学物理与天文系,
上海 200240

Prof. Liu Ying
Department of Physics and Astronomy, Shanghai Jiao Tong University,
Shanghai 200240, China

龙桂鲁 教授
清华大学物理系, 北京 100084

Prof. Long Gui-Lu
Department of Physics, Tsinghua University, Beijing 100084, China

牛 谦 教授 Prof. Niu Qian
Department of Physics, University of Texas, Austin, TX 78712, USA

欧阳颀 教授, 院士
北京大学物理学院, 北京 100871

Prof. Academician Ouyang Qi
School of Physics, Peking University, Beijing 100871, China

孙秀冬 教授
哈尔滨工业大学物理系, 哈尔滨 150001

Prof. Sun Xiu-Dong
Department of Physics, Harbin Institute of Technology, Harbin 150001, China

童利民 教授
浙江大学光电信息工程学系,
杭州 310027

Prof. Tong Li-Min
Department of Optical Engineering, Zhejiang University,
Hangzhou 310027, China

童彭尔 教授
香港科技大学物理系, 香港九龍

Prof. Tong Penger
Department of Physics, The Hong Kong University of Science and Technology,
Kowloon, Hong Kong, China

王开友 研究员
中国科学院半导体研究所, 北京 100083

Prof. Wang Kai-You
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083,
China

魏苏淮 教授
中国工程物理研究院北京计算科学研究
中心, 北京 100094

Prof. Wei Su-Huai
Beijing Computational Science Research Center, China Academy of
Engineering Physics, Beijing 100094, China

解思深 研究员, 院士
中国科学院物理研究所, 北京 100190

Prof. Academician Xie Si-Shen
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

叶朝辉 研究员, 院士
中国科学院武汉物理与数学研究所,
武汉 430071

Prof. Academician Ye Chao-Hui
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences,
Wuhan 430071, China

郁明阳 教授 Prof. Yu Ming-Yang
Theoretical Physics I, Ruhr University, D-44780 Bochum, Germany

张富春 教授
香港大学物理系, 香港

Prof. Zhang Fu-Chun
Department of Physics, The University of Hong Kong, Hong Kong, China

张 勇 教授 Prof. Zhang Yong
Electrical and Computer Engineering Department, The University of North
Carolina at Charlotte, Charlotte, USA

郑 波 教授
浙江大学物理系, 杭州 310027

Prof. Zheng Bo
Physics Department, Zhejiang University, Hangzhou 310027, China

周兴江 研究员
中国科学院物理研究所, 北京 100190

Prof. Zhou Xing-Jiang
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

编编编 辑辑辑 Editorial Staff
王久丽 Wang Jiu-Li 章志英 Zhang Zhi-Ying 蔡建伟 Cai Jian-Wei 翟 振 Zhai Zhen 郭红丽 Guo Hong-Li



Chin. Phys. B Vol. 25, No. 2 (2016) 023201

Up-conversion luminescence polarization control in
Er3+-doped NaYF4 nanocrystals∗

Hui Zhang(张晖)1, Yun-Hua Yao(姚云华)2, Shi-An Zhang(张诗按)2,†,
Chen-Hui Lu(卢晨晖)3, and Zhen-Rong Sun(孙真荣)2

1Institute of Science, Information Engineering University, Zhengzhou 450001, China
2State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China

3College of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

(Received 8 August 2015; revised manuscript received 9 October 2015; published online 20 December 2015)

We propose a femtosecond laser polarization modulation scheme to control the up-conversion (UC) luminescence in
Er3+-doped NaYF4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed
when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield
the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization
modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state
absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorp-
tion. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth
ions by applying a two-color femtosecond laser field.

Keywords: up-conversion luminescence, laser polarization, nanocrystal

PACS: 32.80.Qk, 33.80.–b, 61.46.Hk DOI: 10.1088/1674-1056/25/2/023201

1. Introduction
Recently, the up-conversion (UC) luminescence of lu-

minescent material doped with rare-earth ions, which con-
verts the low-frequency stimulation into high-frequency emis-
sion via two-photon or multi-photon absorption process,
has attracted considerable attention because of its unique
optical properties, such as narrow emission spectrum, in-
tense luminescence intensity, high conversion efficiency, good
optical stability, and long luminescence lifetime, and has
been widely used in various related fields, such as light-
emitting diodes,[1,2] fiber optic communication,[3,4] laser
sources,[5,6] color display,[7,8] medical imaging,[9,10] biolog-
ical labels,[11,12] etc. If the UC luminescence can be con-
trolled, such as in enhancement, suppression or multi-color
tuning, its relevant applications can be greatly extended. By
now, several schemes have been proposed to experimentally
realize the UC luminescence enhancement, suppression, and
tuning. For example, a common method is to adjust the ma-
terial property by varying its dopant-host combination,[13–15]

nanoparticle size,[16,17] and dopant concentration[18,19] in the
synthesis process, and the other common method is to control
the laser parameter by varying the excitation wavelength,[20]

power density,[21] pulse duration,[22] spectral phase[23,24] or
polarization.[25,26] In addition, applying an electric or mag-
netic field has also been proved to be an available method to
control the UC luminescence.[27,28]

Because of the surface effect, volume effect, quantum size
effect, and macroscopic quantum tunnel effect, the nanocrys-
tal material shows different performances in magnetic, optic,
electric, and chemical properties compared with normal bulk
material.[29,30] The nanocrystal material doped with rare-earth
ions combines the unique optical properties of both nanocrys-
tals and rare-earth ions, and therefore is shown to be a promis-
ing alternative to luminescent materials, such as NaGdF4-
based nanocrystals for biological fluorescence imaging,[31]

NaYbF4:Tm3+/Ho3+/Er3+ and NaYF4:Yb3+ used as biolog-
ical markers.[32] In the present work, we experimentally and
theoretically show that the UC luminescence in Er3+-doped
NaYF4 nanocrystals dispersed in the silicate glass can be con-
trolled by varying the femtosecond laser polarization. Our ex-
perimental results show that the UC luminescence intensity
can be reduced when the laser polarization is changed from
linear through elliptical to circular, but the control efficiency
will be affected by the laser repetition rate, and the lower repe-
tition rate will yield the higher control efficiency. Our theoret-
ical studies indicate that the polarization modulation depends
on the near-resonant two-photon absorption but is independent
of the on-resonant two-photon absorption, energy transfer up-
conversion, and excited state absorption. In addition, a two-
color femtosecond laser field is proposed to improve the po-
larization control efficiency of UC luminescence by keeping
the near-resonant two-photon absorption process but exclud-

∗Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304396), the National Natural Science Foun-
dation of China (Grant Nos. 11474096 and 51132004), and the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401500).
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ing the other excitation processes.

2. Experimental arrangement
Our experimental arrangement is shown in Fig. 1, where

a Ti-sapphire mode-locked regenerative amplifier (Spectra-
Physics, Spitfire) with a pulse duration of about 50 fs, cen-
tral wavelength of 800 nm, and repetition rate of 1 kHz and
a mode-locked Ti-sapphire laser oscillator (Spectra-Physics,
Tsunami) with a pulse duration of about 35 fs, central wave-
length of 800 nm, and repetition rate of 80 MHz are used
as the excitation sources, and two removable mirrors are uti-

lized to switch the two laser sources. A quarter wave plate
(Thorlabs, AQWP05M-980, 690–1120 nm) is used to vary
the laser polarization from linear through elliptical to circu-
lar. The polarization-modulated femtosecond laser pulse is
focused into the experimental sample with a lens of 50-mm
focal length, and the laser intensities at the focus area are esti-
mated to be 4×1013 W/cm2 for the 1-kHz laser amplifier and
about 2×1011 W/cm2 for the 80-MHz laser oscillator respec-
tively. All luminescence signals emitted from the sample are
collected perpendicularly by a telescope system and recorded
by a spectrometer with charge-coupled device (CCD).
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M4
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L3
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spectrometer

with CCD
M2

M3M1

Fig. 1. (color online) Schematic diagram of experimental arrangement for polarization control of UC luminescence in Er3+-doped
NaYF4 nanocrystals. Here, M1 and M3 are removable mirrors, which are used to switch the 1-kHz femtosecond laser amplifier and
80-MHz femtosecond laser oscillator.

In our experiment, the glass ceramic containing Er3+-
doped NaYF4 nanocrystals is used as our study example,
which is synthesized via modification from melt-quenching to
subsequent heat treatment. The precursor sample is prepared
with the molar ratio of 40SiO2-25Al2O3-18Na2CO3-10YF3-
7NaF-1ErF3. The original material is mixed and melted in
a covered platinum crucible at a temperature of 1450 ◦C for
45 min in the ambient atmosphere and then cast into a brass
mold followed by annealing at a temperature of 450 ◦C for
10 h. The synthesized glass is heated to a temperature of
600 ◦C in steps of 10 K/min, kept at this temperature for 2 h,
and then cooled to room temperature to form the glass ceramic
through crystallization. The glass ceramic sample is cut and
polished for optical measurement in our experiment. X-ray
diffraction (XRD) analysis is performed to identify the crys-
tallization phase with a power diffractometer (Bruker D8 Ad-
vance) operated at 40 kV and 40 mA, and the measured result
is shown in Fig. 2, where Cu Kα is used as a radiation source,
and 2θ is scanned in a range of 20◦–90◦ in steps of 0.01◦. Mul-
tiple sharp peaks are observed in the XRD curve, which can be
attributed to cubic α-NaYF4 crystalline phase, indicating the

crystallization of α-NaYF4 during thermal treatment.
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Fig. 2. (color online) XRD curve of glass ceramic containing Er3+-
doped NaYF4 nanocrystals. Here, those peaks from α-NaYF4 are in-
dexed.

Transmission electron microscopy (TEM) images of the
sample are provided in Fig. 3(a), which show that nanocrystals
with an average size of 20 nm–30 nm disperse densely in the
glass matrix. Besides, the high-resolution TEM (HRTEM) of
an individual α-NaYF4 in Fig. 3(b) displays the lattice fringe
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with a distance of 0.3 nm.

100 nm 10 nm

0.3 nm

(a) (b)

Fig. 3. (color online) The TEM (a) and HRTEM (b) images of the glass
ceramic containing Er3+:NaYF4 nanocrystals.

3. Results and discussion
The UV-VIS-NIR absorption spectrum of Er3+-doped

NaYF4 nanocrystals is shown in Fig. 4(a). As can be seen,
six main absorption peaks appear around the wavelengths of
377, 407, 487, 545, 651, and 799 nm, which can be attributed
to the absorptions of these excited states 4G11/2, 2H9/2, 4F7/2,
4S3/2, 4F9/2, and 4I9/2. The measured UC luminescence spec-
trum in the visible light region is shown in Fig. 4(b). One
can see that five luminescence signals are observed around
the wavelengths of 408, 475, 527, 547, and 656 nm, which
can be attributed to the state transitions from the five excited
states 2H9/2, 4F7/2, 2H11/2, 4S3/2, and 4F9/2 to the ground state
4I15/2, respectively. It is easy to observe that the green and red
UC luminescence signals dominate the visible light spectrum,
and therefore our goal in this work is to control the green and
red UC luminescence by varying the femtosecond laser polar-
ization.
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Fig. 4. (color online) The UV-VIS-IR absorption (a) of the glass ce-
ramic containing Er3+:NaYF4 nanocrystals and UC luminescence spec-
trum (b) of the sample excited by 800-nm femtosecond laser with a rep-
etition rate of 1 kHz.

Figure 5(a) shows the green (546 nm) (green triangles)
and red (656 nm) (red circles) UC luminescence intensities
each as a function of quarter wave plate angle excited by the
1-kHz laser amplifier. The quarter wave plate angle has no

effect on the intensity of the laser past the λ/4 plate, which
is confirmed experimentally. As can be seen, both the green
and red UC luminescence intensities can be controlled by the
laser polarization modulation, which decreases when the laser
polarization changes from linear through elliptical to circular.
But their control efficiencies are different, which are, respec-
tively, 13% and 6%, and the green UC luminescence obtains
the higher control efficiency. Here, the control efficiency is
defined as η = 1− Imin/Imax, where Imax and Imin represent
the maximum and minimum luminescence intensities (in units
of a.u., i.e., atomic unit), respectively. However, when the ex-
citation source is switched to the 80-MHz laser oscillator, as
shown in Fig. 5(b), both the green and red UC luminescence
intensities almost remain constant, that is to say, the green and
red luminescence are independent of the laser polarization.
Obviously, the laser repetition rate will affect the polarization
control efficiency of UC luminescence intensity, and a higher
repetition rate will yield a lower control efficiency. Therefore,
to obtain the effective polarization control of the green and red
UC luminescence in the Er3+-doped NaYF4 nanocrystals, it is
critical to utilize the low laser repetition rate, such as 1 kHz.
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Fig. 5. (color online) Variations of experimental green (546 nm) (green
triangles) and red (656 nm) (red circles) up-conversion luminescence
intensities with λ/4 wave plate angle with using a 1-kHz laser ampli-
fier (a) and an 80-MHz laser oscillator (b), together with the theoretical
simulations (solid lines).

According to the absorption and luminescence spectra of
Er3+-doped NaYF4 nanocrystals in Fig. 4, we present the ex-
citation and detection scheme in our experiment as shown in
Fig. 6. The population in the ground state 4I15/2 is pumped
to the excited state 2H9/2 through a resonance-mediated two-
photon absorption (TPA) process, which contains on- and
near-resonant two-photon absorption. The on-resonant two-
photon absorption means that the population in the ground
state 4I15/2 is pumped to the intermediate state 4I9/2 by ab-
sorbing one photon and then is further pumped to the excited
state 2H9/2 by absorbing another photon, whereas the near-
resonant two-photon absorption means that the population in
the ground state 4I15/2 is directly pumped to the excited state
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2H9/2 by simultaneously absorbing two photons without pass-
ing through the intermediate state 4I9/2. The population in
the excited state 2H9/2 can spontaneously decay to the ground
state 4I15/2 through these lower excited states 2H11/2, 4S3/2,
and 4F9/2, and emits the green and red up-conversion lumi-
nescence. The population in the intermediate state 4I9/2 by
single photon absorption (SPA) process can also relax to the
two lower excited states 4I11/2 and 4I13/2, and then is further
pumped to the higher excited states 4F7/2 and 4F9/2 by en-
ergy transfer up-conversion (ETU) process due to the higher
dopant concentration. Generally, the excited state lifetime of
rare-earth ions is relatively long in the range of microseconds.
If the time separation between the laser pulses is shorter than
the excited state lifetime, the populations in the excited states
4I9/2, 4I11/2, and 4I13/2 can be further pumped to these higher
excited states 2H9/2, 4F3/2, and 4S3/2 by absorbing the photons
from subsequent laser pulses (see Fig. 6(b)), which is called
excited state absorption (ESA) process, and also emits green
and red UC luminescences.
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Fig. 6. (color online) Energy levels of Er3+ ions and possible pathways
of green and red UC luminescences generated by a 1-kHz laser ampli-
fier (a) and an 80-MHz laser oscillator (b).

As can be seen in Fig. 6, the green or red UC lumi-
nescence produced by the on-resonant TPA, ETU, and ESA
processes depends on the population in the intermediate state
4I9/2, and thus their intensities cannot be controlled by vary-
ing the laser polarization since the absorption in the interme-
diate state 4I9/2 is a single photon process, which is indepen-
dent of the laser polarization. Consequently, the polarization
modulations of green and red UC luminescence should result
from the near-resonant TPA process. Thus, the experimental
observation in Fig. 5 can be well explained. In the case of
the low repetition rate of 1 kHz, corresponding to the laser
pulse separation of 1 ms, only one laser pulse arrives within
the lifetime of the excited state since the excited state lifetime
is far smaller than the laser pulse separation (see Fig. 6(a)).
Compared with the green UC luminescence, the red UC lumi-
nescence generation additionally contains the ETU2 process,
which will suppress the polarization control efficiency of red

UC luminescence, and therefore the polarization control ef-
ficiency of red UC luminescence is lower than that of green
UC luminescence (see Fig. 5(a)). However, for the case of
the high repetition rate of 80 MHz, corresponding to the laser
pulse separation of 12.5 ns, multiple laser pulses arrive within
the lifetime of the excited state because the excited state life-
time is far longer than the laser pulse separation (see Fig. 6(b)).
The green and red UC luminescence contain the contribution
of the ESA process, and thus their polarization control effi-
ciencies will be greatly suppressed since the ESA process is
independent of the laser polarization (see Fig. 5(b)).

As discussed above, the polarization modulations of
green and red UC luminescence come from the contribu-
tion of the near-resonant TPA process. In order to demon-
strate the effect of the femtosecond laser polarization on
the near-resonant TPA process, we theoretically simulate the
resonance-mediated TPA in the Er3+ ions by a time-dependent
perturbation theory.[33] Usually, the multi-photon absorption
in a quantum system with a broad absorption line can be sim-
plified into the sum of all individual transitions. Based on the
theoretical model of the atom system with narrow absorption
line limit,[34,35] the resonance-mediated two-photon transition
probability S(1+1) in the Er3+ ions can be approximated as

S(1+1)
∝

∫ +∞

−∞

dω f A
(
ω f
)∣∣∣∣∫ +∞

−∞

A(ωi)

×
∫ +∞

−∞

E (t1)exp
[
i
(
ω f −ωi

)
t1
]

×
∫ t1

−∞

E (t2)exp(iωit2) dt2 dt1 dωi

∣∣∣∣2, (1)

where ωi and ω f are the resonant frequencies of intermediate
state |i〉 (i.e., 4I9/2) and final excited state | f 〉 (i.e., 2H9/2), and
A(ωi) and A(ω f ) are the absorption line-shape functions of in-
termediate state |i〉 and final excited state | f 〉. By transforming
Eq. (1) into the frequency domain, the transition probability
S(1+1) can be rewritten as

S(1+1)
∝

∫ +∞

−∞

dω f A
(
ω f
)∣∣∣P(1+1)

On−Res.+P(1+1)
Near−Res.

∣∣∣2 , (2)

with

P(1+1)
On−Res.=iπ

∫ +∞

−∞

dωiA(ωi)E
(
ω f −ωi

)
E (ωi), (3)

and

P(1+1)
Near−Res. =℘

∫ +∞

−∞

dωE
(
ω f −ω

)
E (ω)/(ωi−ω), (4)

where P(1+1)
On−Res. and P(1+1)

Near−Res. are, respectively, the on-
and near-resonant two-photon transition amplitudes, E(ω) =

E0(ω)exp[iΦ(ω)] is the Fourier transform of E(t), and E0(ω)

and Φ(ω) are the spectral amplitude and phase respectively.
As can be seen from Eq. (2), the resonance-mediated TPA
process can be decomposed into on- and near-resonant com-
ponents P(1+1)

On−Res. and P(1+1)
Near−Res.. The on-resonant component
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P(1+1)
On−Res. involves all on-resonant two-photon excitation path-

ways with the frequencies of ωi and ω f –ωi, whereas the near-
resonant component P(1+1)

Near−Res. involves all other near-resonant
two-photon excitation pathways with the frequencies of ω and
ω f –ω . The on-resonant component is excluded from the near-
resonant component by Cauchy’s principal value operator ℘.
Obviously, the laser spectral width or pulse width will affect
both the on- and near-resonant components, but the effect is
greater for the near-resonant component since more photon
pairs are absorbed by the near-resonant two-photon excitation
process under the femtosecond laser field. For the transform-
limited femtosecond laser pulse (i.e., Φ(ω) = 0), the value of
laser field E(ω) is a positive real number for any laser fre-
quency, and thus the value of on-resonant component P(1+1)

On−Res.
is an imaginary number while the value of near-resonant com-
ponent P(1+1)

Near−Res. is a real number. In this case, the transition
probability S(1+1) can be further simplified into

S(1+1)
∝ S(1+1)

On−Res.+S(1+1)
Near−Res., (5)

with

S(1+1)
On−Res. =

∫ +∞

−∞

dω f A
(
ω f
)∣∣∣P(1+1)

On−Res.

∣∣∣2, (6)

and

S(1+1)
Near−Res. =

∫ +∞

−∞

dω f A
(
ω f
)∣∣∣P(1+1)

Near−Res.

∣∣∣2. (7)

When a linearly polarized laser field is modulated by the
quarter wave plate, its polarization status will be changed.
Mathematically, the polarization-modulated laser field can be
defined by the function of

𝐸λ/4 (t) = cos(θ)E (t)𝑒x + sin(θ)E (t)𝑒y, (8)

where 𝑒x and 𝑒y represent the polarization directions in a rect-
angular coordinate system, and θ is the angle between the
input laser polarization direction and the optical axis of the
quarter wave plate. It is easy to verify that the output laser
fields are linear polarization for θ = mπ/2 (m = 0,1,2, . . .),
circular polarization for θ = (2m+1)π/4 and elliptical polar-
ization for other angle θ , respectively. The two photons via
on-resonant absorption can come from the same polarization
direction (i.e., 𝑒x𝑒x and 𝑒y𝑒y) or different polarization direc-
tions (i.e., 𝑒x𝑒y and 𝑒y𝑒x), whereas the two absorbed photons
via near-resonant absorption can only come from the same
polarization direction (i.e., 𝑒x𝑒x and 𝑒y𝑒y).[36] Thus, the on-
resonant term S(1+1)

On−Res. and near-resonant term S(1+1)
Near−Res. in-

duced by the polarization-modulated laser field can be written
as

S(1+1)
On−Res. =

[
cos4 (θ)+ sin4 (θ)+2cos2 (θ)sin2 (θ)

]
×
∫ +∞

−∞

dω f A
(
ω f
)∣∣∣P(1+1)

On−Res.

∣∣∣2

=
∫ +∞

−∞

dω f A
(
ω f
)∣∣∣P(1+1)

On−Res.

∣∣∣2 , (9)

and

S(1+1)
Near−Res. =

[
cos4 (θ)+ sin4 (θ)

]
×
∫ +∞

−∞

dω f A
(
ω f
)∣∣∣P(1+1)

Near−Res.

∣∣∣2. (10)

As can be seen from Eqs. (9) and (10), the on-resonant term
S(1+1)

On−Res. is independent of the laser polarization, whereas the

near-resonant term S(1+1)
Near−Res. is related to the laser polariza-

tion (i.e., θ ), which is consistent with the above discussion.
One can see that S(1+1) is a maximal value for θ = mπ/2 (lin-
ear polarization) and a minimal value for θ = (2m+ 1)π/4
(circular polarization). Therefore, when the laser polarization
is changed from linear through elliptical to circular, the tran-
sition probability S(1+1) decreases. Obviously, the theoretical
result is in good agreement with the experimental observation.
In Fig. 5, we also show the theoretical simulation, and here
the weight of the near-resonant two-photon absorption in the
whole excitation process is taken into account.

Since the polarization modulations of green and red UC
luminescence result from the near-resonant TPA process, it
is necessary to increase the weight of the near-resonant TPA
component in the whole excitation process in order to improve
the polarization control efficiency. One simple way is to keep
the near-resonant TPA process and exclude other excitation
processes. In this experiment, the on-resonant TPA, ESA and
ETU processes are correlated with the absorption in the inter-
mediate state 4I9/2, and thus a two-color laser field may be
a well-established tool to eliminate these excitation processes
but keep the near-resonant TPA process. In the two-color ex-
citation process, both laser fields should be far from the reso-
nant absorption of intermediate state 4I9/2, but the sum of their
frequencies should be equal to the transition frequency of ex-
cited state 2H9/2. By such a two-color laser field excitation,
the green and red UC luminescence may be suppressed, but
their polarization control efficiencies should be improved, and
the polarization modulation should not be affected by the laser
repetition rate.

4. Conclusions
In this study, we experimentally and theoretically demon-

strate that the femtosecond laser polarization can control the
UC luminescence in Er3+-doped NaYF4 nanocrystals dis-
persed in the silicate glass. It is shown that the circular po-
larization will suppress the UC luminescence, but the polar-
ization control is affected by the laser repetition rate, and a
higher repetition rate leads to a lower control efficiency. It is
also shown that the UC luminescences come from the TPA,
ETU, and ESA processes, but the polarization modulation
only results from the near-resonant TPA process. Further-
more, the two-color femtosecond laser field is shown to be
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a feasible method to keep the near-resonant TPA process and
exclude other excitation processes, and consequently can im-
prove the polarization control efficiency. The study presents
a clear physical process for the polarization control of UC lu-
minescence in Er3+-doped NaYF4 nanocrystals, which is very
useful for further understanding and controlling the UC lumi-
nescences in various luminescent materials. The laser polar-
ization modulation provides a very simple method to control
various nonlinear optical processes, and therefore these theo-
retical and experimental results can be used as the study basis
in related fields.
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