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Up-conversion luminescence polarization control in
Er3*-doped NaYF, nanocrystals*
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We propose a femtosecond laser polarization modulation scheme to control the up-conversion (UC) luminescence in
Er3*-doped NaYF, nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed
when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield
the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization
modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state
absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorp-
tion. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth

ions by applying a two-color femtosecond laser field.

Keywords: up-conversion luminescence, laser polarization, nanocrystal

PACS: 32.80.Qk, 33.80.-b, 61.46.Hk

1. Introduction

Recently, the up-conversion (UC) luminescence of lu-
minescent material doped with rare-earth ions, which con-
verts the low-frequency stimulation into high-frequency emis-
sion via two-photon or multi-photon absorption process,
has attracted considerable attention because of its unique
optical properties, such as narrow emission spectrum, in-
tense luminescence intensity, high conversion efficiency, good
optical stability, and long luminescence lifetime, and has
been widely used in various related fields, such as light-

L2l fiber optic communication,?* laser

[9,10

emitting diodes,!
sources, >0 color display,!”®! medical imaging,[®!°! biolog-
ical labels,11-12] etc. If the UC luminescence can be con-
trolled, such as in enhancement, suppression or multi-color
tuning, its relevant applications can be greatly extended. By
now, several schemes have been proposed to experimentally
realize the UC luminescence enhancement, suppression, and
tuning. For example, a common method is to adjust the ma-

terial property by varying its dopant-host combination,[!3-13]

16,17

nanoparticle size,!'®!”l and dopant concentration!!®!1°! in the

synthesis process, and the other common method is to control

the laser parameter by varying the excitation wavelength, 2]

21 23,24] or

power density,[>!l pulse duration,?*! spectral phase!

polarization.[?>?0] In addition, applying an electric or mag-
netic field has also been proved to be an available method to

control the UC luminescence. [27-28

DOI: 10.1088/1674-1056/25/2/023201

Because of the surface effect, volume effect, quantum size
effect, and macroscopic quantum tunnel effect, the nanocrys-
tal material shows different performances in magnetic, optic,
electric, and chemical properties compared with normal bulk

material. 2930

| The nanocrystal material doped with rare-earth
ions combines the unique optical properties of both nanocrys-
tals and rare-earth ions, and therefore is shown to be a promis-
ing alternative to luminescent materials, such as NaGdF4-
based nanocrystals for biological fluorescence imaging,3!]
NaYbF;:Tm3*/Ho*>*/Er’** and NaYF,;:Yb*>* used as biolog-
ical markers.!*?! In the present work, we experimentally and
theoretically show that the UC luminescence in Er**-doped
NaYF, nanocrystals dispersed in the silicate glass can be con-
trolled by varying the femtosecond laser polarization. Our ex-
perimental results show that the UC luminescence intensity
can be reduced when the laser polarization is changed from
linear through elliptical to circular, but the control efficiency
will be affected by the laser repetition rate, and the lower repe-
tition rate will yield the higher control efficiency. Our theoret-
ical studies indicate that the polarization modulation depends
on the near-resonant two-photon absorption but is independent
of the on-resonant two-photon absorption, energy transfer up-
conversion, and excited state absorption. In addition, a two-
color femtosecond laser field is-proposed to improve the po-
larization control efficiency of UC luminescence by keeping
the near-resonant two-photon absorption process but exclud-

*Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304396), the National Natural Science Foun-
dation of China (Grant Nos. 11474096 and 51132004), and the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401500).

fCorresponding author. E-mail: sazhang @phy.ecnu.edu.cn
© 2016 Chinese Physical Society and IOP Publishing Ltd
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ing the other excitation processes.

2. Experimental arrangement

Our experimental arrangement is shown in Fig. 1, where
a Ti-sapphire mode-locked regenerative amplifier (Spectra-
Physics, Spitfire) with a pulse duration of about 50 fs, cen-
tral wavelength of 800 nm, and repetition rate of 1 kHz and
a mode-locked Ti-sapphire laser oscillator (Spectra-Physics,
Tsunami) with a pulse duration of about 35 fs, central wave-
length of 800 nm, and repetition rate of 80 MHz are used
as the excitation sources, and two removable mirrors are uti-

femtosecond
pump oscillator
source 800 nm 80 MH
i
* EEN o
M1 ptd BYE!
femtosecond
pump e
amplifier
source !
800 nm 1 kHz

lized to switch the two laser sources. A quarter wave plate
(Thorlabs, AQWP05M-980, 690-1120 nm) is used to vary
the laser polarization from linear through elliptical to circu-
lar. The polarization-modulated femtosecond laser pulse is
focused into the experimental sample with a lens of 50-mm
focal length, and the laser intensities at the focus area are esti-
mated to be 4x10'3 W/cm? for the 1-kHz laser amplifier and
about 2x 10" W/cm? for the 80-MHz laser oscillator respec-
tively. All luminescence signals emitted from the sample are
collected perpendicularly by a telescope system and recorded
by a spectrometer with charge-coupled device (CCD).

N4 24 L1

sample

L2
o PC
* L3

spectrometer
with CCD

2. -l

Fig. 1. (color online) Schematic diagram of experimental arrangement for polarization control of UC luminescence in Er’*-doped
NaYF4 nanocrystals. Here, M1 and M3 are removable mirrors, which are used to switch the 1-kHz femtosecond laser amplifier and

80-MHz femtosecond laser oscillator.

In our experiment, the glass ceramic containing Er’*-
doped NaYFs nanocrystals is used as our study example,
which is synthesized via modification from melt-quenching to
subsequent heat treatment. The precursor sample is prepared
with the molar ratio of 40Si0,-25A1,03-18Na;CO3-10YF3-
7NaF-1ErF;. The original material is mixed and melted in
a covered platinum crucible at a temperature of 1450 °C for
45 min in the ambient atmosphere and then cast into a brass
mold followed by annealing at a temperature of 450 °C for
10 h. The synthesized glass is heated to a temperature of
600 °C in steps of 10 K/min, kept at this temperature for 2 h,
and then cooled to room temperature to form the glass ceramic
through crystallization. The glass ceramic sample is cut and
polished for optical measurement in our experiment. X-ray
diffraction (XRD) analysis is performed to identify the crys-
tallization phase with a power diffractometer (Bruker D8 Ad-
vance) operated at 40 kV and 40 mA, and the measured result
is shown in Fig. 2, where Cu K¢ is used as a radiation source,
and 26 is scanned in a range of 20°-90° in steps of 0.01°. Mul-
tiple sharp peaks are observed in the XRD curve, which can be
attributed to cubic «-NaYF;, crystalline phase, indicating the

crystallization of a-NaYF, during thermal treatment.

6l (111)
P (220)
R
2
& 4 (311)
>
=4
géj 3r (200)
i
B 2 (331)
=
<
—_— 1_
&
0 1 1 1 1 1 1
20 30 40 500 60 70 80 . 90
20/(°)

Fig. 2. (color online) XRD curve of glass ceramic containing Erdt-
doped NaYFy nanocrystals. Here, those peaks from ¢-NaYFy are in-
dexed.

Transmission electron microscopy (TEM) images of the
sample are provided in Fig. 3(a), which show that nanocrystals
with an average size of 20 nm—30 nm disperse densely in the
glass matrix. Besides, the high-resolution TEM (HRTEM) of
an individual a-NaYF, in Fig. 3(b) displays the lattice fringe

023201-2
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with a distance of 0.3 nm.

Fig. 3. (color online) The TEM (a) and HRTEM (b) images of the glass
ceramic containing Er3*:NaYF, nanocrystals.

3. Results and discussion

The UV-VIS-NIR absorption spectrum of Er’*-doped
NaYF, nanocrystals is shown in Fig. 4(a). As can be seen,
six main absorption peaks appear around the wavelengths of
377, 407, 487, 545, 651, and 799 nm, which can be attributed
to the absorptions of these excited states Gy, /25 ’H, /2 4F, /25
4S3/2. *Fg), and *Ig 5. The measured UC luminescence spec-
trum in the visible light region is shown in Fig. 4(b). One
can see that five luminescence signals are observed around
the wavelengths of 408, 475, 527, 547, and 656 nm, which
can be attributed to the state transitions from the five excited
states Hy /25 4F, /25 ’Hy, /25 4S8, /2> and 4F, /2 to the ground state
s /2, respectively. It is easy to observe that the green and red
UC luminescence signals dominate the visible light spectrum,
and therefore our goal in this work is to control the green and
red UC luminescence by varying the femtosecond laser polar-
ization.
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Fig. 4. (color online) The UV-VIS-IR absorption (a) of the glass ce-
ramic containing Er’*:NaYF, nanocrystals and UC luminescence spec-
trum (b) of the sample excited by 800-nm femtosecond laser with a rep-
etition rate of 1 kHz.
Figure 5(a) shows the green (546 nm) (green triangles)
and red (656 nm) (red circles) UC luminescence intensities
each as a function of quarter wave plate angle excited by the

1-kHz laser amplifier. The quarter wave plate angle has no

effect on the intensity of the laser past the A /4 plate, which
is confirmed experimentally. As can be seen, both the green
and red UC luminescence intensities can be controlled by the
laser polarization modulation, which decreases when the laser
polarization changes from linear through elliptical to circular.
But their control efficiencies are different, which are, respec-
tively, 13% and 6%, and the green UC luminescence obtains
the higher control efficiency. Here, the control efficiency is
defined as ) = 1 — I™" /™3 where I™* and /™™ represent
the maximum and minimum luminescence intensities (in units
of a.u., i.e., atomic unit), respectively. However, when the ex-
citation source is switched to the 80-MHz laser oscillator, as
shown in Fig. 5(b), both the green and red UC luminescence
intensities almost remain constant, that is to say, the green and
red luminescence are independent of the laser polarization.
Obviously, the laser repetition rate will affect the polarization
control efficiency of UC luminescence intensity, and a higher
repetition rate will yield a lower control efficiency. Therefore,
to obtain the effective polarization control of the green and red
UC luminescence in the Er¥*-doped NaYF, nanocrystals, it is
critical to utilize the low laser repetition rate, such as 1 kHz.
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Fig. 5. (color online) Variations of experimental green (546 nm) (green
triangles) and red (656 nm) (red circles) up-conversion luminescence
intensities with A /4 wave plate angle with using a 1-kHz laser ampli-
fier (a) and an 80-MHz laser oscillator (b), together with the theoretical
simulations (solid lines).

According to the absorption and luminescence spectra of
Er3*-doped NaYF, nanocrystals in Fig. 4, we present the ex-
citation and detection scheme in our experiment as shown in
Fig. 6. The population in the ground state *I;5 /2 1s pumped
to the excited state >Hy /2 through a resonance-mediated two-
photon absorption (TPA) process, which contains on- and
near-resonant two-photon absorption. The on-resonant two-
photon absorption means that the population in the ground
state *Iys /2'1s pumped to the intermediate state 1o /2 by ab-
sorbing one photon.and-then is further pumped to the excited
state 2Ho /2 by absorbing another photon, whereas the near-
resonant two-photon absorption means that the population in
the ground state *1;5 /2 1s directly pumped to the excited state
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’H, /2 by simultaneously absorbing two photons without pass-
ing through the intermediate state *Io /2. The population in
the excited state Hg /2 can spontaneously decay to the ground
state 15 /2 through these lower excited states ’Hy, /20 48, /29
and *F, /2, and emits the green and red up-conversion lumi-
nescence. The population in the intermediate state *Ig /2 by
single photon absorption (SPA) process can also relax to the
two lower excited states *I;, /2 and I /2, and then is further
pumped to the higher excited states *F, /2 and 4Fy /2 by en-
ergy transfer up-conversion (ETU) process due to the higher
dopant concentration. Generally, the excited state lifetime of
rare-earth ions is relatively long in the range of microseconds.
If the time separation between the laser pulses is shorter than
the excited state lifetime, the populations in the excited states
Iy /25 Iy, /2, and i3 /2 can be further pumped to these higher
excited states 2Hy /25 4F, /2> and 48, /2 by absorbing the photons
from subsequent laser pulses (see Fig. 6(b)), which is called
excited state absorption (ESA) process, and also emits green
and red UC luminescences.

2Hy)z - 25
T — - T
*H, s V. A v, Ay 20
1S4 v T v — T v: -
3/ X | % | : i \E
iR v | V& =1 | A4 [3)
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. Sl ol 2 1 2
4o/ l S A.. T >
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11/2 . . N .
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,1115/2 V \( Z V 0
(2) (b)

Fig. 6. (color online) Energy levels of Er>* ions and possible pathways
of green and red UC luminescences generated by a 1-kHz laser ampli-
fier (a) and an 80-MHz laser oscillator (b).

As can be seen in Fig. 6, the green or red UC lumi-
nescence produced by the on-resonant TPA, ETU, and ESA
processes depends on the population in the intermediate state
1o /2, and thus their intensities cannot be controlled by vary-
ing the laser polarization since the absorption in the interme-
diate state *I, /2 1s a single photon process, which is indepen-
dent of the laser polarization. Consequently, the polarization
modulations of green and red UC luminescence should result
from the near-resonant TPA process. Thus, the experimental
observation in Fig. 5 can be well explained. In the case of
the low repetition rate of 1 kHz, corresponding to the laser
pulse separation of 1 ms, only one laser pulse arrives within
the lifetime of the excited state since the excited state lifetime
is far smaller than the laser pulse separation (see Fig. 6(a)).
Compared with the green UC luminescence, the red UC lumi-
nescence generation additionally contains the ETU2 process,
which will suppress the polarization control efficiency of red

UC luminescence, and therefore the polarization control ef-
ficiency of red UC luminescence is lower than that of green
UC luminescence (see Fig. 5(a)). However, for the case of
the high repetition rate of 80 MHz, corresponding to the laser
pulse separation of 12.5 ns, multiple laser pulses arrive within
the lifetime of the excited state because the excited state life-
time is far longer than the laser pulse separation (see Fig. 6(b)).
The green and red UC luminescence contain the contribution
of the ESA process, and thus their polarization control effi-
ciencies will be greatly suppressed since the ESA process is
independent of the laser polarization (see Fig. 5(b)).

As discussed above, the polarization modulations of
green and red UC luminescence come from the contribu-
tion of the near-resonant TPA process. In order to demon-
strate the effect of the femtosecond laser polarization on
the near-resonant TPA process, we theoretically simulate the
resonance-mediated TPA in the Er’" ions by a time-dependent
perturbation theory.*3! Usually, the multi-photon absorption
in a quantum system with a broad absorption line can be sim-
plified into the sum of all individual transitions. Based on the
theoretical model of the atom system with narrow absorption

it [34,35]

line limit, the resonance-mediated two-photon transition

probability SU+1) in the Er** ions can be approximated as

SO0 o [T 4o Ao
. Wy (wf) . (o)

< [ E@)e]i (0 o))
2

1
X/ E(tz)exp(ia)itz)dtzdt]dwi s (1)

where @; and @ are the resonant frequencies of intermediate
state |i) (i.e., “Io /2) and final excited state [f) (i.e., 2H, /2), and
A(w;) and A(wy) are the absorption line-shape functions of in-
termediate state |7) and final excited state | f). By transforming
Eq. (1) into the frequency domain, the transition probability
SU+1) can be rewritten as

S(1+1) o< /+ dwa ’

+P (141) 7 2)

Near—Res.

(141)
‘ P On— Res
with

(1+1) te
POn Res. *lﬂ:/ dwl‘A(wi)E(wffwi)E(wi)a (3)
and

o0

Pt ks =9 | dOE (0 - 0)E (@)] (0 — ), @)

—o0

(141)
POn Res.

and near-resonant two-photon transition amplitudes, E(®) =
Eo(w)exp[i®(w)] is the Fourier transform of E(¢), and Ep(®)
and @ (o) are the spectral amplitude and phase respectively.

and P(IH)

where Near—Res.

are, - respectively, the on-

As can be seen from Eq. (2), the resonance-mediated TPA

process can be decomposed into on- and near-resonant com-

P(1+1) nd P(1+1)

p onents On—Res. Near—

Res. The on-resonant component
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P(()L+ lR)es involves all on-resonant two-photon excitation path-

ways with the frequencies of ®; and w;—®;, whereas the near-

1)

car_Res, INvOlves all other near-resonant

resonant component PIEI
two-photon excitation pathways with the frequencies of @ and
@ y—@. The on-resonant component is excluded from the near-
resonant component by Cauchy’s principal value operator .
Obviously, the laser spectral width or pulse width will affect
both the on- and near-resonant components, but the effect is
greater for the near-resonant component since more photon
pairs are absorbed by the near-resonant two-photon excitation
process under the femtosecond laser field. For the transform-
limited femtosecond laser pulse (i.e., &(w) = 0), the value of
laser field E(®) is a positive real number for any laser fre-
quency, and thus the value of on-resonant component P(()LHR)%

is an imaginary number while the value of near-resonant com-
1)

ear—Res.
probability SU+1) can be further simplified into

ponent PIEI is a real number. In this case, the transition

S o Stou Res, + Sewes. (5)

with
Sorh = [ dopa(on) B ©

and
Sl(\ll;rlzRes. = /_ - doA (of ‘P Nle:rl Res. ’ ™)

When a linearly polarized laser field is modulated by the
quarter wave plate, its polarization status will be changed.
Mathematically, the polarization-modulated laser field can be
defined by the function of

Ej 4(t) =cos(0)E (t)e,+sin(0)E (1) ey, (8)

where e, and e, represent the polarization directions in a rect-
angular coordinate system, and 6 is the angle between the
input laser polarization direction and the optical axis of the
quarter wave plate. It is easy to verify that the output laser
fields are linear polarization for 0 = mm/2 (m =0,1,2,...),
(2m+ 1) /4 and elliptical polar-
ization for other angle 0, respectively. The two photons via

circular polarization for 6 =

on-resonant absorption can come from the same polarization
direction (i.e., ere, and eye,) or different polarization direc-
tions (i.e., exe, and eyex), whereas the two absorbed photons
via near-resonant absorption can only come from the same
polarization direction (i.e., ee, and eye,).3¢! Thus, the on-
resonant term S(Ol:J &es‘ and near-resonant term SS;BRQ& in-
duced by the polarization-modulated laser field can be written

as

SS:I})zeq = [cos*(8) +sin* (6) +2cos? () sin® (6)]

o0 2
(141)
X / dwa ‘POn Res.

—o0

+oo (1) |2
_ / dayA (or) |5 e | ©)
and
1+1 :
SNewt Res, = [c0s* (8) +sin’ (6)]
te (1+1)
X L dwa oy ‘ Near—Res. (10)

As can be seen from Egs. (9) and (10), the on-resonant term

SS: ]l%eq is independent of the laser polarization, whereas the

near-resonant term SI(\Ilf:;lRes. is related to the laser polariza-
tion (i.e., 8), which is consistent with the above discussion.
One can see that SU*1) is a maximal value for 6 = mz /2 (lin-
ear polarization) and a minimal value for 6 = 2m+ 1)n/4
(circular polarization). Therefore, when the laser polarization
is changed from linear through elliptical to circular, the tran-
sition probability S(!'*1) decreases. Obviously, the theoretical
result is in good agreement with the experimental observation.
In Fig. 5, we also show the theoretical simulation, and here
the weight of the near-resonant two-photon absorption in the
whole excitation process is taken into account.

Since the polarization modulations of green and red UC
luminescence result from the near-resonant TPA process, it
is necessary to increase the weight of the near-resonant TPA
component in the whole excitation process in order to improve
the polarization control efficiency. One simple way is to keep
the near-resonant TPA process and exclude other excitation
processes. In this experiment, the on-resonant TPA, ESA and
ETU processes are correlated with the absorption in the inter-
mediate state “Iy /2> and thus a two-color laser field may be
a well-established tool to eliminate these excitation processes
but keep the near-resonant TPA process. In the two-color ex-
citation process, both laser fields should be far from the reso-
nant absorption of intermediate state *Io /2, but the sum of their
frequencies should be equal to the transition frequency of ex-
cited state *Ho /2. By such a two-color laser field excitation,
the green and red UC luminescence may be suppressed, but
their polarization control efficiencies should be improved, and
the polarization modulation should not be affected by the laser
repetition rate.

4. Conclusions

In this study, we experimentally and theoretically demon-
strate that the femtosecond laser polarization can control the
UC luminescence in Er**-doped NaYF, nanocrystals dis-
persed in the silicate glass. ‘It is shown that the circular po-
larization will suppress the UC luminescence, but the polar-
ization control is affected by the laser repetition rate, and a
higher repetition rate leads to a lower control efficiency. It is
also shown that the UC luminescences come from the TPA,
ETU, and ESA processes, but the polarization modulation
Further-
more, the two-color femtosecond laser field is shown to be

only results from the near-resonant TPA process.
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a feasible method to keep the near-resonant TPA process and
exclude other excitation processes, and consequently can im-
prove the polarization control efficiency. The study presents
a clear physical process for the polarization control of UC lu-
minescence in Er3+-d0ped NaYF, nanocrystals, which is very
useful for further understanding and controlling the UC lumi-
nescences in various luminescent materials. The laser polar-
ization modulation provides a very simple method to control
various nonlinear optical processes, and therefore these theo-
retical and experimental results can be used as the study basis
in related fields.
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