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Abstract: We demonstrate an interferometric method to measure the topological charges of 
the vortex beams carrying orbital angular momentums (OAMs). The petal interference 
patterns are generated by combining modulated vortex beams and an unmodulated incident 
Gaussian beam reflected by a spatial light modulator. The number of petals is in agreement 
with the value of OAM that the modulated beam carries, by which we analyze the 
characteristic of interference patterns of integer OAM beams, including intensity profiles, 
phase profiles, and hologram structures. We also uncover the principle of how radial 
parameter l influences the hollow radius of OAM beams. Beams carrying non-integer orbital 
angular momentums are visualized with our method, from which we observe the evolution of 
a speckle generated by the decimal part of holograms. A kind of hologram is designed to 
prove that the petal near the singularity line is separated owing to the diffraction 
enhancement. All the experiment results agree well with the simulated results. 
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1. Introduction 
In recent years, optical vortex beams carrying orbital angular momentums (OAMs) have 
attracted considerable attention [1,2], owing to their applications in optical information 
communications [3–5], particle manipulation [6–10], optical imaging [11] and etc. Light 
beams with an azimuthal phase structure exp(ilφ) carry OAM of lħ per photon [12]. The 
presence of this phase factor causes the null intensity at the point of screw wavefront 
dislocation. The beams can be generated in the laboratory by many devices, such as spiral 
phase plates [13,14], forked holograms [15] and mode converters [16]. 

Although OAM beams have a helical phase structure, we can only observe a ring structure 
on intensity profiles. One issue is how to measure the value of OAM of the light, which has 
been performed in several kinds of methods. The first kind is the interference approach, 
yielding up phase information of the OAM beams. In 1996, Padgett et al. used a Mach-
Zehnder interferometer to make a Gaussian beam interfere with a collinear OAM beam, 
observing spiral fringes whose number is in agreement with the value of OAM [17], and then 
Leach et al. added a Dove prism in each arm of a Mach-Zehnder interferometer to sort OAM 
at the single photon-level [18]. A robust method was proposed by reconfiguring the Mach-
Zehnder interferometer as a Sagnac interferometer to provide high sorting efficiency and 
stability [19]. In 2011, Lavery et al. presented a compact, robust interferometer to remove 
many of the previously required degrees of freedom [20]. Almost all interferometric methods 
have to split a beam into two parts modulated by different optical devices. The interference 
optical path, however, should be precisely controlled and carefully preserved, since any tiny 
fluctuation or unbalance in polarization, phase difference and intensity associated with the 
laser beams could lead to the instability of the interference pattern. The second kind 
mentioned here used the diffraction effects through apertures [21–23]. An elegant example of 
this was that Hickmann et al. generated a truncated triangular optical lattice to diffract beams 
with OAM through a triangular aperture, acquiring the number and orientation of OAM [21]. 
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Another method based on a single stationary cylindrical lens can quantitatively measure both 
integer and non-integer average OAM of a laser beam [24,25]. Furthermore, some other 
methods such as optical transformation [26,27] and complex holograms [28,29] were 
proposed to measure the value of OAM. 

In this paper, we propose a simple interferometric method to measure the OAM of optical 
vortex beams. The basic principle is that due to the incomplete phase modulation of the 
phase-only reflective spatial light modulator (SLM), the reflected beam contains unmodulated 
portion of an incident Gaussian beam that can interfere with the modulated OAM beam to 
generate petal patterns. The number of petals is in agreement with the value of OAM the 
modulated beam carries, by which we analyze the characteristic of interference patterns of 
integer OAM beams, including intensity profiles, phase profiles, and hologram structures. To 
confirm the power ratio of the unmodulated and modulated incident Gaussian beam, petal 
patterns of four different power ratios in both experiment and simulation are also discussed. 
Furthermore, we obviously visualize the evolution of light beams carrying non-integer OAM 
by using the interferometric method with holograms designed. Although the optical vortex 
structure has been discussed many times, we discover something novel and make efforts to 
confirm our thoughts. This work extends and consolidates previous studies on the 
measurement of integer OAM beams and the evolution of fractional OAM beams. 

2. Basic principles 
First, we describe the generation of OAM beams. For a paraxial monochromatic Gaussian 
laser beam, the transversal distribution of its electric field at z = 0 can be expressed as 

 ( )
2 2

0 2
0

, ,0 exp
ω

 += − 
 

x y
E x y   (1) 

where ω0 is the beam waist. 
The laser beam is incident on the SLM screen. After reflected by the hologram, the 

generated OAM beam carries a phase factor of exp(ilφ) where φ is the azimuthal angle 
acquired from the holograms, and the light field is therefore given by 
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In the observation plane with a distance of z after the SLM, the field distribution can be 
calculated according to Fresnel diffraction integral, as follows 
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where k = 2π/λ is the wave vector. 
Next, there is interference between the generated OAM beam and the unmodulated 

incident Gaussian beam on the screen because of their coherence. Thus, we define a 
parameter η denoting the power ratio of unmodulated and modulated incident Gaussian beam 

 Gauss

OAM

η = I

I
  (4) 

with IGauss and IOAM denoting the intensity of unmodulated Gaussian beam and modulated 
OAM beam, respectively. 
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Fig. 1. Generation of an OAM beam and an interference pattern. The first row: a hologram 
(b) transforms an incident Gaussian beam (a) into an OAM beam (c). The second row: the 
unmodulated weak Gaussian beam (d) reflected by the SLM interferes with an integer OAM 
beam, generating a petal pattern (e). The third row: the same as the second row, but for a 
fractional OAM beam (f) and the interference pattern (g). 

We can observe the interference patterns on the CCD. The three schematic diagrams are 
shown in Fig. 1. The Gaussian beam [Fig. 1(a)] is transformed to an OAM beam [Fig. 1(c)] 
by a hologram designed for the quantum number of the OAM of light l = 3 [Fig. 1(b)], which 
is uploaded on the SLM. Then, the modulated beam interferes with the unmodulated weak 
Gaussian beam [Fig. 1(d)] reflected by the SLM, generating an interference pattern [Fig. 
1(e)]. We note an interesting phenomenon that there are three petals in the interference 
pattern, different from the ring structure of the OAM beam, and the three petals correspond to 
the hologram with l = 3. So this rule can be used as a criterion of whether it is an integer or 
fractional angular momentum of light, and of its specific quantum number. The last row 
illustrates that an OAM beam with l = 3.5 [Fig. 1(f)] interferes with the unmodulated weak 
Gaussian beam. On the petal pattern [Fig. 1(g)], we observe the phase information and 
visualize the evolution of fractional OAM beams. Similar behavior are observed for all 
holograms. Therefore, OAM beams can be generated by holograms on SLM and we can 
observe petal patterns on CCD without any other optical operator. 

It is important to note that there are subtle difference in the phase profiles of modulated 
OAM beams and hybrid beams constituting of these OAM beams and the unmodulated 
incident Gaussian beam. Figure 2 shows examples of phase profiles of l = 10 and l = 6.5. The 
figure of OAM beam of l = 10 [Fig. 2(a)] shows the disorder in the center of the phase profile, 
denoting the undefined phase of an OAM beam. The center of the phase profile of the hybrid 
beam [Fig. 2(b)] only has a little disorder, mainly keeping red with an addition of the fixed 
phase of unmodulated Gaussian beam. The figure of l = 6.5 [Fig. 2(c)] shows the broken 
symmetry in the center of the phase profile due to the singularity line. The significant impact 
of the unmodulated Gaussian beam on the phase profile of the hybrid beam is shown in Fig. 
2(d). 
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Fig. 2. Phase profiles of an OAM beam and a hybrid beam of l = 10 and 6.5. The OAM beam 
is generated by the modulation of an incident Gaussian beam with different holograms, and the 
hybrid beam constitutes of the modulated OAM beam and a unmodulated incident Gaussian 
beam. 

3. Experiment setup 
Our experimental setup for visualizing the interference patterns is shown in Fig. 3. A 
Gaussian beam is generated from a He-Ne laser (λ = 632.8nm). Two spherical lens and an 
aperture are used to collimate the light beam and to remove any other higher-order diffracted 
terms. The light beam then passes through a half wave plate that changes the polarization 
direction of the beam to satisfy the requirement of SLM. Next, the beam splitter (BS) divides 
the beam into two parts, one of which can be reflected and transformed into an OAM beam. 
In our experiment, the SLM (Holoeye) is a phase-only reflective liquid crystal device with a 
resolution of 1920 × 1080 pixels and 8.0μm of pixel pitch. Finally, the OAM beam and the 
unmodulated Gaussian beam are imaged onto a CCD camera where interference patterns can 
be observed. 

 

Fig. 3. Experiment setup to produce the interference patterns. Acronyms are λ/2: half wave 
plate; L1, L2: spherical lens; A: aperture; BS: beam splitter; SLM: spatial light modulator; 
CCD: CCD camera. 
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4. Experimental results and discussions 
Using the proposed method, an arbitrary OAM beam and an interference pattern can be 
generated. The series of graphs in Fig. 4 shows interference patterns of weak unmodulated 
Gaussian beam and generated OAM beams of l = 10, 20, 30, 40, 50 and their negative values. 
The first and second row illustrates the experimental and simulated intensity profiles of 
hybrid OAM beams, respectively. Corresponding phase profiles of hybrid OAM beams in 
simulations are shown in the third row. The fourth row shows holograms we use on the SLM 
in both experiments and simulations. 

The holograms are designed for the idea that both integer and fractional OAMs change 
smoothly so that we can visualize the evolution of all OAM beams, the same as [3]. The 
phase in holograms changes continually from 0 to 2π and undergoes a step of 2π, and the 
cycle repeats l times where l denotes the value of OAM. 

Some features in Fig. 4 arouse great sights. Taking l = 5 as a simple example, we observe 
the petal structure instead of a ring structure in the intensity profile of the hybrid beam in 
experiment due to the interference between unmodulated and modulated beams. The number 
of petals equals five, agreeing with the value of OAM. The simulation result of l = 5 is in 
accordance with the experiment result except the slightly stronger diffraction. In addition, the 
phase profiles in simulations also reveal the value of OAM and the rotation of the light 
carrying OAM. All these interesting traits are showed in the other figures in Fig. 4. 

Overviewing all experimental results, values of OAM designed on the holograms are in 
correspondence with the numbers of petals in the patterns, by which we can measure the 
value of OAM. The number of cycles in the phase profiles also agrees with the value of 
OAM. The hollow radius in intensity profiles increases with the rise of quantum number l, 
which can prove that l is the radial parameter of vortex beams. We merely cite the principle 
behind l = 50 as typical of the common sense. Due to fifty phase cycles from 0 to 2π, each 
sector on the circle possess only a small angle. The beams with different phase are so close 
that coherent cancellation emerges in the inner circle. However, beams in the outer circle 
have enough area to form complete intensity distribution modulated by the large-quantum-
number hologram. To sum up, the phase profiles in Fig. 4 have a bigger circular area with the 
quantum number l arising, causing the same phenomenon that intensity profiles in both 
experiments and simulations have an increasing hollow area. The red circular area in the 
center of phase profiles denotes the phase of hybrid beam, where the disorder results from the 
phase singularity of the OAM beams. These figures of phase profiles also indicate the rotation 
of OAM beams, for positive values counter-clockwise and for negative values clockwise [30]. 

To confirm the power ratio of unmodulated and modulated incident Gaussian beams, we 
add a plane mirror and a variable attenuator along one of the two beams split by a beam 
splitter to reflect the Gaussian beam and to adjust the intensity of the beam, and keep other 
optical devices constant. After detecting the power of two beams respectively, we find out the 
change of interference patterns as the ratio of unmodulated and modulated beam decreases. 
Taking l = 4 as an example, Fig. 5 illustrates the interference patterns of η = 100%, 66.7%, 
25%, 12.5%, in which η denotes the power ratio of the unmodulated Gaussian beam, as 
shown in Eq. (4). 

Both experiments and simulations show that when η = 100%, interference patterns have 
four spiral petals and the strong Gaussian beam separates these petals. As the power ratio 
decreases, the Gaussian beam becomes increasingly weak so that four petals gradually fold 
and finally become a ring structure that means the effect of interference on the OAM beam 
can be almost ignored. With the comparison between the intensity profiles of hybrid beams 
and these four interference patterns, we confirm that the power ratio of unmodulated and 
modulated incident Gaussian beams is about 25%. It has to be mentioned that the Gaussian 
beam in simulations has an additional term of exp(iπ/2) because of the different propagation 
distances of two beams split by the BS, namely the phase of the unmodulated Gaussian beam 
π/2 earlier than the other Gaussian beam going to be modulated. Although the figure of η = 
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100% in simulation agrees with the experiment, other three figures in the second row don't 
exactly match the experiments. The petal rotation of corresponding figures becomes greater 
with η decreasing, the possible reason of which is that the variable attenuator changes not 
only the intensity of the unmodulated Gaussian beam, but also the phase of the beam. 

 

Fig. 4. The first and second row: intensity profiles of different OAM beams in both 
experiments and simulations; the third row: corresponding phase profiles in simulations; the 
fourth row: holograms of different OAMs; the fifth-eighth rows: corresponding cases of 
negative values. 
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Fig. 5. Experimental and simulated interference patterns of the OAM beam (l = 4) under four 
different power ratios of unmodulated and modulated incident Gaussian beams. 

Next, we discuss the generation of fractional OAM beams. It is well-established that 
fractional OAM beams can be described by introducing a singularity line into the phase 
holograms. Holograms used in researches to generate fractional OAM beams are mainly 
forked gratings. The advantage of employing this holographic approach is that the envisaged 
beam is easily isolated in the first-order diffraction from the other higher modes, because the 
combination of phase patterns and a plane wave carrier will bring the Gaussian beam phase 
information and separate the unmodulated Gaussian beam, respectively. However, the 
holograms we use are phase patterns without overlapping with a plane wave carrier because 
there is no need to separate the unmodulated Gaussian beam, which is just what we want. 
Furthermore, these holograms are generated from another idea that the phase changes 
continually except the singularity line on the left. To ensure the accuracy of the designed 
holograms, we calculate the z-component of the OAM density of the beams [31,32]: 
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2z z
z

i
r p r u u u uj

ε ω ∗ ∗ = = ∇ − ∇× 
 

×     (5) 

where r = (x2 + y2)1/2, ε0 is the permittivity in vacuum, ω is the frequency of the laser beam, k 
is the wave vector, and u is the complex scalar function describing the distribution of the field 
amplitude. Figure 6 shows the relationship between the measured OAMs of fractional OAM 
beams and the designed OAMs for holograms. This result is to ensure the reliability of our 
discussion. 

 

Fig. 6. The relationship between the measured OAMs and the designed OAMs.  
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Fig. 7. The first and second row: intensity profiles of fractional OAM beams in both 
experiments and simulations; the third row: phase profiles in simulations; the fourth row: 
holograms of fractional OAMs; the fifth-eighth rows: corresponding cases of negative values. 

Then, we analyze interference patterns and holograms of generated OAM beams of l = 
4.0, 4.2, 4.4, 4.6, 4.8, 5.0 and their negative values, as shown in Fig. 7. Fractional holograms 
have a special feature that there is a singularity line in a certain position, leading to the split 
ring structures in intensity profiles. The above side of the singularity line always keeps white 
which denotes the phase of 2π, but the other side becomes gloomy with the value of OAM 
increasing. When the singularity line is the same as other steps, the value of OAM becomes 
an integer. 

Both experimental and simulated patterns illustrate the generation of a new petal. The 
pattern of l = 4.2 shows that an emerging petal is formed outside the inner ring, and the petal 

                                                                                                            Vol. 1, No. 2 | 15 Oct 2018 | OSA CONTINUUM 458 



becomes stronger and comes into the inner ring in the figure of l = 4.4. The singularity line 
occurs obviously when l = 4.6 and gradually disappears with a new petal formed when l = 4.8. 
These figures show the development of a new petal, meaning the OAM plus one (l = 5.0). The 
reason why the petal is formed in the higher-order diffraction is that the decimal part of phase 
modulation in the inner ring is too weak to be observed. Only in the outer ring can the 
modulation be visualized with the enough area, which can also explain the large radial hollow 
area in the pattern of l = 50. 

Apart from this, two interesting features can be observed in the intensity profiles of the 
patterns. The first one is that all petals are pushed to another adjacent petals and only the petal 
above the singularity line keeps still, which is also showed in the holograms, verifying the 
interference theory. The second one is that the petal (top left corner) seems to be separated 
owing to the diffraction enhancement induced by the singularity line when the value of OAM 
is fractional, which will be proved by another kind of hologram in the following discussion. 
The whole discussion above can be visualized in the phase profiles of simulated patterns. 

After reversing the gray scale, we get the holograms for l = −4.0, −4.2, −4.4, −4.6, −4.8, 
−5.0. Consequently, we acquire the intensity profiles and phase profiles for negative 
fractional OAM beams in experiments and simulations. To our surprise, the experimental and 
simulated figures (the fifth and sixth row in Fig. 7) have differences from positive OAM 
patterns. First, the emerging petal is produced above the singularity line, and the diffraction 
enhancement separating a petal to two speckles locates below the line, both of which are 
reasonable because of the reverse of holograms. However, the biggest difference is the 
location of petals and the conjunction of the top petal and the emerging one, which results 
from the incomplete symmetry of the phases in the holograms. 

To further confirm the nature of fractional OAM patterns, we design a kind of hologram 
which changes the phase from 0 to π as a cycle instead of the 2π cycle in fractional holograms 
mentioned above. The intensity profiles have a peculiar property due to the phase 
singularities, which enable the diffraction along the singularity lines become unexpectedly 
strong. 

 

Fig. 8. The first and second row: intensity profiles of different beams in both experiments and 
simulations; the third row: holograms of different beams. 

The strong diffraction brought by singularity lines lead to the separation of beam patterns. 
As depicted in Fig. 8, we can visualize the effect of diffraction and the evolution of different 
beams. There are four and five speckles in the figures of m = 4.0 and 5.0. With the value of m 
increasing, only the left speckle and the emerging one change. The intensity of first-order 
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diffraction speckles along the singularity line become increasingly high and the weak zeroth-
order speckles separate from the origin petal when m = 4.4, except the biggest zeroth-order 
speckle. These separated speckles produce new diffraction in two directions and finally are 
turned into a new strong speckle and its diffraction speckles, proving the discussion above 
that the emerging petal is generated from outer ring. It is important to mention that the 
diffraction produced by the singularity lines is so strong that the weak Gaussian beam has no 
effect on the pattern. 

5. Conclusion 
We have shown that arbitrary OAM beams can be measured with the interference between a 
vortex beam and a weak unmodulated Gaussian beam reflected by the SLM. The interference 
patterns have petals in correspondence with the values of OAM. The power ratio of 
unmodulated and modulated Gaussian beam has been discussed. Fractional OAM beams can 
also be generated by similar holograms with a singularity line. Our work has demonstrated 
the evolution of fractional OAM beams based on the petal patterns and has uncovered the 
principle of how radial parameter l influences the hollow radius of OAM beams. Both 
experiments and simulations reveal that the fractional OAM beams are generated by uneven 
modulation owing to the decimal part of holograms, and the diffraction enhancement 
separates a petal into two speckles. 

The simple interferometric method is attractive for measurement of OAM beams owing to 
the use of only one hybrid beam including weak incident Gaussian beam and modulated 
OAM beam. The visualization of evolution apparently shows the nature of fractional OAM 
beams. The holograms used in this paper have potential application in the manipulation of 
particles. 
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