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Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability
for laser cooling and magneto-optical trapping
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More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F) is being experimentally
preformed [Appl. Phys. Express 8, 092701 (2015) and Opt. Express 22, 28645 (2014)] and was also studied
theoretically [Phys. Rev. A 91, 042511 (2015)]. However, some important problems still remain unsolved,
so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the
24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the
closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively.
Afterwards, we investigate the lower X 2�+

1/2 hyperfine manifolds using a quantum effective Hamiltonian
approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ∼ 5 μK compared
with the experimental results, and then find out that one cooling beam and one or two repumping beams with their
first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F. Meanwhile,
we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2�+

1/2,N = 1) and
briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of
preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between
the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that,
besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2�1/2, and lighter mass,
the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.
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I. INTRODUCTION

Considerable progress has been achieved in laser cooling
and magneto-optical trapping (MOT) of diatomic molecules,
which should open the way to discover new physics and
chemistry, such as the researches in the fields of cold chemistry,
precision measurement, quantum simulation, and so forth
[1–4]. In the past three decades, the laser cooling techniques
to produce ultracold atoms [5–7] have made tremendous
achievements, but usually they are difficult to be applied to
neutral molecules due to their more complex internal structure
and lack of a closed cooling transition cycle. Even so, besides
some polar molecules (SrF, YO, CaF) [8–12] that have been
demonstrated, there are some candidates suitable for laser
cooling such as the ongoing YbF [13], BH [14], CaH [15],
and even polyatomic SrOH [16]. For molecular complex
structures, one of the main difficulties in laser cooling is to
address various rotational and hyperfine levels of the electronic
and vibrational (vibronic) states to provide the closure of
the rotational ladder. Meanwhile, unlike atoms, controlling
over vibrational transitions is particularly problematic because
there is not a strict selection rule dominating the branching
ratios for the decay of an electronic state into different
vibrational states. The branching ratios of the vibrational
levels are governed by the molecular Franck-Condon factors
(FCFs); highly diagonal FCFs can reduce significantly the
number of laser beams required experimentally to keep the
molecule in a closed scattering cooling cycle and get repetitive
momentum kicks. Generally speaking, any spontaneous decay
from the electronically excited state can return inevitably to
almost all of the vibrational states, several rotational states, and
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even many hyperfine structures (HFS) of the lower electronic
state, but therein the rotational and HFS transitions still
follow a strict angular momentum and parity selection rules
fortunately.

Here the reason that we choose MgF to study its feasibility
for laser cooling and MOT is because, in addition to its
properties, some accurate spectroscopic constants for several
electronic states are available. For example, the measurement
of the absorption spectra of MgF molecules can be traced
back to the 1930s, when the spectrum constants of the X 2�+

1/2

and A 2�1/2 states were obtained from MgF absorption
bands [17,18]. The first rotational structure of the 0-0 and
1-0 bands of the A-X system of MgF was measured and
analyzed for λ00 = 359.33 nm and λ10 = 368.76 nm [19]; then
the bands of the MgF molecule were found in the disk and
spot spectra and as such are important in astrophysics [20].
In 1994, the pure rotational spectrum of the MgF molecules
in the X 2�+

1/2 state was used to analyze the rotational
and hyperfine constants of this state [21,22]. In particular,
the MgF molecule as a laser cooling candidate has the
following characteristics: (i) a strong spontaneous radiation
decay (� = 2π × 22 MHz) due to its short lifetime of the
excited state A 2�1/2 [23], and a relative large scattering
force with lighter mass; (ii) the FCFs of the vibrational main
transitions very close to unity; (iii) the simple and special
HFS due to electron spin (S = 1/2), nuclear rotation, and
nuclear spin (I = 1/2) interactions for the rotational N = 1
energy level of the ground state of MgF, and thus it is easy to
match the hyperfine intervals of the state X 2�+

1/2 with proper
detuning by letting the cooling and repumping lasers pass
through an electro-optic modulator (EOM) to split them into
two frequency sidebands, respectively. More recently, laser
cooling of MgF is being performed experimentally [24,25]
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and was theoretically studied [26]. However, some problems
in theoretical calculations are still not well solved, such as
the accurate FCFs, the relevant special HFS of MgF, and the
influence of the external fields on the hyperfine structure in
its MOT, and so on. So it would be interesting, worthwhile,
and necessary to precisely calculate the vibrational branching
ratios and the HFS of MgF and discuss its feasibility for laser
cooling and MOT.

Usually, ab initio quantum chemical methods are used to
calculate the potential energy curves of molecules, the vibra-
tional transitions, and the FCFs in laser cooling of molecules,
but they don’t involve the hyperfine levels of molecules and
their interaction with the external fields. Here we will perform
the precise calculation of vibrational branching ratios for
MgF by three different methods, use an quantum effective
Hamiltonian approach to investigate the HFS of 24Mg19F,
and discuss its feasibility for laser cooling and trapping. The
paper is organized as follows. In Sec. II, the simple quantum
description of the 24Mg19F molecule is introduced for the
following calculations. In Sec. III, we calculate vibrational
transition wavelengths and the FCFs between the ground state
X 2�+

1/2 and the first excited state A 2�1/2. Then the laser
scheme for the closure of vibrational branchings is proposed.
In Sec. IV, we introduce a quantum effective Hamiltonian
for MgF and deduce its matrix representation, and then
diagonalize it to obtain the zero-field energy spectrum of
MgF in the lower manifolds. Next, the relevant energy levels
and the experimental schemes are given for laser cooling
and trapping this radical. Section V deals with the effects
of applied electric and magnetic fields, that is, the Stark and
Zeeman effects in MgF. We calculate the Stark and Zeeman
shifts independently and get the accurate hyperfine magnetic g

factors of the rotational state (X 2�+
1/2,N = 1) due to J mixing.

From the perspective of parity and time reversal symmetry,
we also give an explanation for the difference between the
Stark and Zeeman effects in molecular system. Then we close
in the final section, Sec. VI, with some main results and
conclusions.

II. A SIMPLE QUANTUM DESCRIPTION
FOR THE 24Mg19F RADICAL

Our model to describe the MgF molecule is composed of a
magnesium nucleus, a fluorine nucleus, and 21 electrons, and
the total kinetic energy operator is given by

T̂ = − ∇2
Mg

2MMg
− ∇2

F

2MF
−

21∑
i=1

∇2
i

2me

, (1)

where MMg, MF, and me are the masses of a magnesium
nucleus, a fluorine nucleus, and an electron, respectively, and
∇Mg, ∇F, and ∇i are the gradient operators with respect to
the space coordinates of the magnesium nucleus RMg, fluorine
nucleus RF, and electron Ri . In this paper, we shall choose
units such that � = 1 unless quoting an energy in frequency
units. Setting the center of mass of the magnesium nucleus
and the fluorine nucleus as the origin of the coordinate system,
that is, molecule-fixed coordinate system, we can rewrite the

kinetic energy operator as

T̂ = −∇2
M

2M
− 1

2mr2

∂

∂r

(
r2 ∂

∂r

)

− 1

2mr2

[
1

sinθ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]

−
21∑
i=1

∇′2
i

2me

− 1

2(MMg + MF)

21∑
i,j=1

∇′
i · ∇′

j , (2)

with the total mass of the molecule M = MMg + MF +
21me and the reduced mass of the two nuclei m =
MMgMF/(MMg + MF). The ∇M and ∇′

M are gradient oper-
ators with respect to the coordinate of the center of mass
of the molecule RM = (MMgRMg + MFRF + ∑21

i=1 meRi)/M
and the electronic coordinates r ′

i is defined from the center
of mass of the two nuclei, and r is the relative coordinate
of the magnesium nucleus and fluorine nucleus in the polar
coordinate (r,θ,φ). The first term in Eq. (2) describes the
translational motion of the molecule, which will be neglected
in our single molecular spectra study. The second and third
terms represent vibration and rotation of the molecule, and
the fourth and fifth terms are the kinetic operators of the
electrons and the mass polarization term, respectively. Because
of the large mass difference between electrons and nuclei,
me � MMg,MF, neglecting the mass polarization term is a very
good approximation [27]. Thus, we will define the electronic
Hamiltonian of the MgF molecule including the Coulomb
repelling potential as

Ĥel = −
21∑
i=1

∇′2
i

2me

+ e2

4πε0

⎡
⎣∑

i<j

1

rij

−
21∑
i=1

(
ZMg

rMgi

+ ZF

rFi

)

+ ZMgZF

r

⎤
⎦, (3)

where rij is the distance between electrons i and j , and
rMgi (rFi) is the distance between the electron i and the
magnesium nucleus (fluorine nucleus). The electric charges of
an electron, the magnesium nucleus, and the fluorine nucleus
are e, ZMge, and ZFe, respectively, and ε0 is the permittivity of
vacuum. Then nuclear vibrational and rotational Hamiltonians
of MgF are given by

Ĥvib = − 1

2mr2

∂

∂r

(
r2 ∂

∂r

)
, (4)

and

Ĥrot = − 1

2mr2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
. (5)

In principle, a full solution of the MgF molecular
structure accounts for the motion of a magnesium nu-
cleus, a fluorine nucleus, and 21 electrons. However,
it is convincing that a typical diatomic molecule has
the following relationship: �Evib/�Eel ≈ �Erot/�Evib ≈
(me/m)1/2 ≈ 1/100, where �Eel, �Evib, and �Erot are the
energy separations between the ground state and the first
excited state in electronic, vibrational, and rotational energy
levels, respectively [27]. As we know, the molecule has very
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TABLE I. Spectroscopic constants for the X 2�+
1/2 and A 2�1/2 electronic states of MgF from the experimental data.

State Te (cm−1) ωe (cm−1) χeωe (cm−1) Re (Å) Be (cm−1) Lifetime (ns)

X 2�+
1/2 0 721.6 [19] 4.94 [19] 1.7500 [19] 0.5192 [19]

720.14 [29] 4.26 [29] 1.7499 [29] 0.5193 [29]

A 2�1/2 27 816.1 [30] 740.12 [30] 3.97 [30] 1.7469 [30] 0.5210 [30] 7.16 [23]

complex intercouplings of degrees of freedom, whose energy
differences are very large actually. Since there is very accurate
and abundant spectroscopic information about this molecule,
and the quantum chemistry method is very complicated and
may be inaccurate, it is wise to take this radical as a vibratory
rotor surrounded by electrons phenomenologically. Born and
Oppenheimer [28] showed that the electrons move locally in an
adiabatic potential generated by the slow motion of the nuclei,
and hence a separable electronic-nuclear description with
proper correction is an excellent approximation. So according
to Eqs. (3)–(5), we can calculate the wavelengths of vibrational
transitions and the FCFs between the X 2�+

1/2 and A 2�1/2

states, which will be shown in the next section.

III. THE VIBRATIONAL TRANSITIONS AND
FRANCK-CONDON FACTORS BETWEEN THE X 2�+

1/2

AND A 2�1/2 STATES

Table I gives the electronic, vibrational, and rotational
constants for MgF in the X 2�+

1/2 and A 2�1/2 states. The
total energy of a given state of a diatomic molecule is defined
by the formula, T = Te + G + F , where Te, G, and F are the
electronic energy, the vibrational energy, and the rotational
energy, respectively. A transition frequency from the state
X 2�+

1/2 at energy T to the state A 2�1/2 at energy T ′ will
be given (in cm−1) by

�T = T ′ − T = (T ′
e − Te) + (G′ − G) + (F ′ − F ). (6)

Since, in general, the rotational energy change is much smaller
than either the vibrational or electronic energy changes, we
have after neglecting rotational energy,

�T = T ′
e + [

ω′
e

(
v′ + 1

2

) − ω′
ex

′
e

(
v′ + 1

2

)2

+ω′
ey

′
e

(
v′ + 1

2

)3 + · · · ] − [
ωe

(
v + 1

2

)
−ωexe

(
v + 1

2

)2 + ωeye

(
v+ 1

2

)3 + · · · ], (7)

where v is the vibrational quantum number, and ωe, ωexe,
and ωeye are the harmonic vibrational constant, and the first
and second anharmonic corrections to the harmonic oscillator,
respectively.

According to the molecular constants of MgF in Table I, we
can directly calculate the vibrational transition wavelengths

(or frequencies), and the results are shown in Table II. It is
clear that our calculated results are in good agreement with
the experimental ones in Ref. [19]. Note that theoretically
calculated and cited experimental values of the second and
third wavelengths (λ10 and λ21) in Table II of Ref. [26] are
ones of the transition wavelengths (λ01 and λ12) actually.
So the three wavelengths (λ10, λ21, and λ31) in Fig. 5 of
Ref. [26] were labeled wrongly, because they violate a natural
law, that is, the shorter the distance between the two energy
levels is, the lower the transition frequency will be, and then
the longer the transition wavelength should be, so we should
have relationships of λ31 > λ21 and λ10 > λ00, not λ31 < λ21

and λ10 < λ00. In addition, our calculated precise wavelength
values are very important for calculating FCFs and carrying
out the forthcoming experiment.

These laser wavelengths (λ00 = 359.3 nm, λ10 = 368.7 nm,
and λ21 = 368.4 nm) which will be used in laser cooling
and trapping are in the UV region and can be generated by
three continuous-wave (cw) frequency-doubled, frequency-
stabilized, and single-frequency Ti:sapphire lasers or dye
lasers, which have already been realized in our experiments
with a narrow linewidth of 100–200 kHz and an extraordinary
long-term frequency stability of 2.8 MHz [24,25].

The molecular FCFs are proportional to the square of the
integral between the vibrational wave functions of the two
states that are involved in the transition and represent the
intensity of vibrational transitions for a molecular system,
which imply the overlap of the vibrational wave functions
for two different electronic states. According to the Franck-
Condon principle, the electronic transition tends to occur
vertically in the potential energy curve, which indicates therein
almost invariable internuclear distance between the two states.
Since the difference of equilibrium nuclear separation between
the states X 2�+

1/2 and A 2�1/2 of the MgF molecule is
very small (about 0.0031 angstrom) [30], first we employ a
closed-form approximation to estimate the relevant FCFs by
the following formulas [31]:

f0v = fv0 = μve−μ/v!(v � 0), (8a)

f1v = fv1 = μv−1e−μ(u − v)/v!(v � 1), (8b)

· · ·

TABLE II. The comparisons between theoretical and experimental results for the transition wavelengths from the X 2�+
1/2 (v = 0, 1, and

2) to A 2�1/2 (v′ = 0 and 1) states of MgF.

Transition wavelength λ00 (cm−1) λ10 (cm−1) λ21 (cm−1)

Our calculation results 359.38 368.81 368.41
Experiment results 359.33 [19] 368.76 [19]
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TABLE III. The calculated FCFs fv′v of MgF by the methods of the closed-form estimation, Morse potential, and RKR inversion,
respectively, in contrast with the results of other groups. The transitions happen between the A 2�1/2(v′) and X 2�+

1/2(v) states of MgF.

f00 f01 f02 f03

Method f10 f11 f12 f13

The closed-form 0.9989 0.0011 0.0000 0.0000

approximation 0.0011 0.9967 0.0022 0.0000

Morse potential 0.9985 0.0013 0.0020 0.0000
0.0013 0.9954 0.0027 0.0006

RKR inversion 0.9978 0.0022 0.0000 0.0000
0.0022 0.9904 0.0074 0.0000
0.986 [23] 0.014 [23] 0.000 [23] 0.000 [23]

Results of 0.9170 [26] 0.0790 [26] 0.0040 [26] 0.000 095 [26]

other groups 0.014 [23] 0.961 [23] 0.026 [23] 0.000 [23]
0.0800 [26] 0.7760 [26] 0.1380 [26] 0.0058 [26]

where μ = S2/2, S is the transition parameter
(mω̃)1/2�re/5.807; m and v are the reduced mass of
the diatomic molecule (in units of a.u.) and vibrational
quantum number; ω̃ = 2ω1ω2/(ω1 + ω2) describes an
average of ωe in the ground and excited states (in units of
cm−1); �re is the difference between the internuclear distance
re. The number 5.807 is equal to the value of

√
h/(4π2ca)

(in angstrom), h is Planck’s constant (in J · s), c is the speed
of light (in cm/s), and a = 1 amu (in kg). Afterwards, we
calculate and analyze the FCFs by the methods of the Morse
potential approximation [32,33] and the Rydberg-Klein-Rees
(RKR) inversion [34], respectively, and the results are shown
in Table III. We know that the MgF molecule is one of
the molecules whose accurate spectroscopic constants for
several electronic states are available, and the accuracy of the
calculated FCFs depends critically on the potential energy

v′=0

v′=1

v=0
v=1 v=2

v=3

λ00=359.3nm
λ10=368.7nm λ21=368.4nm

f 00
=0

.9
97

8

f 01
=0

.0
02

2 f
02 =0.0000

f
03 +

-4

<10
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=0
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22

f 11
=0

.9
90

4 f12 =0.0074

f
13 +

-4

<10

X2 +Σ 1/2

A2Π1/2

λ32=367.9nm

FIG. 1. The proposed scheme to create a quasicycling transition
for laser cooling of MgF. Solid black lines indicate relevant electronic
and vibrational structure in MgF. Solid upward lines indicate laser-
driven transitions at the wavelengths λvv′ . Solid wavy lines indicate
spontaneous decays from the A 2�1/2 state with FCFs fv′v as shown.

curves employed. In the RKR method, the potential energy
curves are constructed from the observed vibrational and
rotational spectroscopic constants rather than by imposing an
analytic form on the potential energy curves, so the RKR is
more reliable. Meanwhile, when molecules are in the lower
vibrational state, its real potential energy function tallies with
the potential energy curve of Morse potential, so, the Morse
approximation cannot only greatly reduce the complexity of
the problem to some extent, but also ensure the calculation
accuracy.

As shown in Table III, our three calculated results are
basically consistent with each other and the ones in Ref. [23]
and better than ones in Ref. [26] which may be due to
the poor calculated accuracy of the potential energy curves,
etc. We notice that by the Morse potential method the f02

is 0.0020, not 0.0000 by the other methods, which may
originate from its slight aberrations for the vibrational state
(v = 2). Based on the above calculated vibrational transition
wavelengths λvv′ and the corresponding FCFs fvv′ , the laser
scheme and spontaneous decays (red wavy lines) are depicted
in Fig. 1. The use of the first excited state A 2�1/2 can
ensure that no other electronic states participate in the cycles,
meanwhile, we choose the transition (v′ = 0)←(v = 0) (solid
red lines) as a main cooling transition because of its favorable
FCFs (f00=0.9978). Because the off-diagonal transitions are
suppressed intensely and the FCF f02 is less than 10−4, we can
efficiently cover the vibrational levels by using only two laser
beams (one cooling laser λ00 = 359.3 nm and one repumping
laser λ00 = 368.7 nm) and obtain more than 104 scattering
photons, which is sufficient to stop and cool MgF in the buffer
gas source. If another repumping laser (λ10 = 368.4 nm) is
added, more transition cooling cycles for MgF can be obtained,
which are more than that for SrF, YO, or CaF under the same
condition, and even nearly similar to the case of laser cooling
of Rb atoms. Thus we have achieved the closure of vibrational
branching.

IV. HYPERFINE STRUCTURE OF THE MgF RADICAL

In laser cooing of molecules, the lowest rovibrational levels
of the ground electronic state play key roles to eliminate dark
states and implement nearly closed optical transitions, which
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was not studied in Ref. [26]. Meanwhile, it is important to
take its HFS into account when we explore physics of cold
molecules at micro-Kelvin (mK) temperatures and below [35].
For this, we will investigate HFS of the ground state X 2�+

1/2
of the MgF radical by the method of matrix diagonalization
which is more accurate than perturbation theory.

According to the above FCFs and the selection rule
of the rotational levels, we only care about several lower
rovibrational structures of the ground electronic state X 2�+

1/2
of MgF in laser cooling and trapping. Throughout this paper,
we assume that the vibrational state is a very small perturbation
with respect to the electronic state, and nuclear rotation is
also a very small perturbation with respect to vibration. In
matrix mechanics, we take the vibronic energy as the diagonal
elements in the constructed matrix.

J. H. Brown’s book [27] told us that all kinds of inter-
couplings of angular momenta in a molecular system can be
given by the effective Hamiltonian which should act only on a
subspace spanned by the vibronic states of the nonrelativistic
kinetic, vibrational, and electrostatic Coulomb Hamiltonian,
while reproducing the eigenenergy of the full Hamiltonian,
for a typical diatomic molecule,

Ĥeff = T̂0 + ĤSO + ĤSS + ĤSR + ĤRot + ĤCD + ĤLD

+ ĤM + ĤQ, (9)

where T̂0, ĤSO, ĤSO, ĤSR, ĤRot, ĤCD, ĤLD, ĤM , and ĤQ

denote the vibronic energy, the electronic spin-orbit coupling,
the electronic spin-spin coupling, the electronic spin-nuclear
rotation coupling, the nuclear rigid rotation energy, the cen-
trifugal distortion energy, �-doubling splitting, the magnetic
hyperfine interactions, and the nuclear electric quadruple
interactions, respectively. In the X 2�+

1/2 configuration of the
MgF radical, the total spin S = 1/2 indicates that an unpaired
valence electron forms an open shell structure, meanwhile, due
to the projection component of the electronic orbital angular

momentum onto the internuclear z axis � = 0, we can remove
the three terms ĤSO, ĤSS, and ĤLD reasonably. Since we only
consider the lowest vibronic state, it is convenient to take
T̂0 = 0. For our isotope, 24Mg19F, the nuclear spins of the
magnesium nucleus and fluorine nucleus are IMg = 1/2 and
IF = 1/2, respectively, so the electric quadruple interactions
in this diatomic radical is exactly zero. For the MgF radical,
the X 2�+

1/2 state can be described well by Hund’s case (b), so
an appropriate nonparity basis set in the absence of external
field is given by |η,�,N,S,J,I,F,MF 〉, where the symbol η

denotes all other quantum numbers not expressed explicitly,
for example, electronic and vibrational ones, the letters N, J,
I, and F are the total angular momentum excluding electron
spin, the total angular momentum, the total nuclear spin, and
the total angular momentum of molecule, respectively, and MF

is the projective component of F in a space-fixed Z direction
and it is an important quantum number when we discuss the
effects of the external magnetic or electric fields in the next
section. As we all know, the spherical tensor method is very
useful to describe the angular momenta and their interactions,
both with each other and with applied external fields [36].
Here using Frosch and Foley constants [21,37], the effective
Hamiltonian for the ground state of MgF can be expressed by

Ĥ0 = BvN̂
2 − DvN̂

4 + γvT
1(Ŝ)T 1(N̂ ) + bFvT

1(Î )T 1(Ŝ)

+ cvT
1
q=0(Î )T 1

q=0(Ŝ) + CvNT 1(Î )T 1(N̂ ), (10)

where Bv , Dv , γv , bFv , and cv are the molecular rotational
constant, the centrifugal distortion constant, the spin-rotational
coupling constant, the Fermi contact interaction constant,
and the dipole-dipole interaction constant, respectively. Note
that bFv = bv + (1/3)cv , where bv contains contributions
from two different magnetic interactions, the Fermi contact
and the electron-nuclear dipolar interaction. The constant
CvN is negligibly small generally but it is included in
Eq. (10) just for completeness. Based on the Hund’s case
(b) basis, by using the total effective Hamiltonian and
spherical tensor algebra, we can derive the following four

TABLE IV. The experimental spectral data and our theoretically calculated results and their comparisons for MgF. The first three columns
are the permissible transitions between the rotational hyperfine levels of the X 2�+

1/2 (v = 0) state. The fourth column is observational spectrum
data in Ref. [21]. Our theoretical results are included in the fifth column and the differences between experimental data and theoretically
calculated results are given in the last column.

N → N ′ J → J ′ J → J ′ vexp (MHz) vcalc(MHz) vexp − vcalc(MHz)

0 → 1 1/2 → 1/2 0 → 1 – 30 987.767
1/2 → 3/2 1 → 2 – 31 012.894

1 → 2 1/2 → 3/2 0 → 1 – 61 990.617
3/2 → 5/2 1 → 2 – 61 996.892

2 → 3 3/2 → 5/2 1 → 2 92 957.991 92 957.985 0.006
5/2 → 7/2 2 → 3 92 991.900 92 991.882 0.018

4 → 5 7/2 → 9/2 3 → 4 154 928.024 154 928.029 −0.005
9/2 → 11/2 4 → 5 154 971.214 154 971.189 0.025

5 → 6 9/2 → 11/2 4 → 5 185 909.344 185 909.372 −0.028
11/2 → 13/2 5 → 6 185 954.406 185 954.433 −0.027

6 → 7 11/2 → 13/2 5 → 6 216 886.282 216 886.297 −0.015
13/2 → 15/2 6 → 7 216 932.633 216 932.632 0.001
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matrix representations for the effective Hamiltonian,

〈η′,�′,N ′,S,J ′,I,F ′,M ′
F |BvN̂

2 − DvN̂
4|η,�,N,S,J,I,F,MF 〉 = δη′ηδ�′�δN ′NδJ ′J δF ′F δM ′

F MF
N (N + 1)[Bv − DvN (N + 1)],

(11)
〈η′,�′,N ′,S,J ′,I,F ′,M ′

F |γvT
1(Ŝ) · T 1(N̂)|η,�,N,S,J,I,F,MF 〉

= δη′ηδ�′�δN ′NδJ ′J δF ′F δM ′
F MF

γv(−1)N+J+S[S(S + 1)(2S + 1)]1/2[N (N + 1)(2N + 1)]1/2

{
S N J

N S 1

}
, (12)

〈η′,�′,N ′,S,J ′,I,F ′,M ′
F |bFvT

1(Î ) · T 1(Ŝ)|η,�,N,S,J,I,F,MF 〉
= δη′ηδ�′�δN ′NδF ′F δM ′

F MF
bFv(−1)J

′+F+I+J+N+1+S[(2J ′ + 1)(2J + 1)]1/2[S(S + 1)(2S + 1)I (I + 1)(2I + 1)]1/2

×
{

I J ′ F
J I 1

}{
J S N
S J ′ 1

}
, (13)

and

〈η′,�′,N ′,S,J ′,I,F ′,M ′
F |cvT

1
q=0(Î )T 1

q=0(Ŝ)|η,�,N,S,J,I,F,MF 〉
= δη′ηδ�′�δN ′NδF ′F δM ′

F MF
(−

√
30/3)cv(−1)J

′+F+I+N [(2J ′ + 1)(2J + 1)]1/2[S(S + 1)(2S + 1)I (I + 1)(2I + 1)]1/2(2N + 1)

×
(

N 2 N

0 0 0

)⎧⎨
⎩

J J ′ 1
N N 2
S S 1

⎫⎬
⎭

{
I J ′ F

J I 1

}
, (14)

〈η′,�′,N ′,S,J ′,I,F ′,M ′
F |CvNT 1(Î )T 1(N̂)|η,�,N,S,J,I,F,MF 〉

= δη′ηδ�′�δN ′NδF ′F δM ′
F MF

CvN (−1)2J+F ′+I+N ′+1+S
√

N (N + 1)(2N + 1)(2J ′ + 1)(2J + 1)

×
√

I (I + 1)(2I + 1)

{
I J F ′
J ′ I 1

}{
N J S

J ′ N ′ 1

}
(15)

where δi ′i , called the Kronecker delta function, is defined
as having the properties that δi ′i = 0 for i ′ �= i and δi ′i = 1
for i ′ = i. We can obtain the state eigenvectors and the
energy eigenvalues by diagonalizing the constructed matrix
numerically, and then gain the transition frequencies between
the rotational hyperfine levels (see Table IV). For these
hyperfine states, the eigenvectors imply that as a result of the
mixing between the J states in the same N, the good quantum
number N and F have definite values but J does not, as shown in
Table V.

The experimental observational spectral data and our
theoretically calculated results for the X 2�+

1/2 (v = 0) state
of MgF are tabulated in Table IV. The fifth column denotes
our calculated results, which are in perfect agreement with the
observational transition frequencies (see the fourth column)
between the higher rotational hyperfine levels [21] by an
accuracy of less than 30 kHz ∼ 5 μK, so our theoretical

results and thus the methods are very reliable. The lower
rotational transitions (especially for the N = 1 state) are very
important for the closure of rotational branchings, but they
have not yet been measured, so our calculated results for these
lower levels have great significance for experimentally laser
cooling and trapping the MgF molecules.

The closure of the rotational structures for MgF is plotted
in Fig. 2. The MgF molecule has an unpaired electron spin
S = 1/2 that splits the X 2�+

1/2 (N=1) level into J = N ± S
levels through spin-rotation interaction. The X 2�+

1/2 state
is well described by Hund’s case (b) while the A 2�1/2

state is best described by Hund’s case (a); the parity of
the rotational ladder in the X 2�+

1/2 states is given by
(−1)N , and for half-integral J in the A 2�1/2 state, levels
with parities (−1)J−1/2 or (−1)J+1/2 are designated e or f ,
respectively [27]. We choose a ground state with R = 1

TABLE V. The g factors of the X 2�+
1/2 (v = 0,N = 1) state of MgF. The first three columns include the nominal label, and the actual

labels due to J mixing and J composition; the last two columns are the g factors without and with mixing of the states with the different J taken
into account. The g factors below are valid for B fields which cause energy level shifts that are small compared to hyperfine structure splits.

Nominal label Actual label J composition g (without J mixing) g (with J mixing)

|J = 3/2,F = 2〉 |J = 3/2〉 100% J = 3/2 0.50 0.50
|J = 3/2,F = 1〉 0.6989|J = 3/2〉 48.85% J = 3/2 0.83 0.71

+0.7152|J = 1/2〉 51.15% J = 1/2
|J = 1/2,F = 0〉 |J = 1/2〉 100% J = 1/2 0.00 0.00
|J = 1/2,F = 1〉 −0.7152|J = 3/2〉 51.15% J = 3/2 −0.33 −0.21

+0.6989|J = 1/2〉 48.85% J = 1/2
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R N=0( =0)  +

R N=1( =1)  -

J=3/2

J=1/2

J=1/2

F=2

F=1

F=0

F=1

F=1

F=0

9.268MHz

120.327MHz

109.732MHz

30773.567MHz

214.200MHz

R′= 0
J ′=1/2  +

( =1,2,3 )v

F ′=0,1

A2Π1/2

X2 +Σ 1/2 (v=0)

(v′=0)

(b)(a)

( )e

FIG. 2. The relevant energy-level structure, laser frequencies, spontaneous radiations, and fluorescence spectra for MgF. (a) Rotational
branching is addressed by driving a R′ = 0 ← R = 1 transition. Due to the even parity rotational state J = 1/2(e) of the A 2�1/2, the angular
momentum and parity selection rules allow a spontaneous decay only back to the odd parity rotational state R = 1 of X 2�+

1/2. Here the vertical
energies are not to scale. (b) The theoretically calculated molecular fluorescence spectra (black curved line) are shown with a natural linewidth
� and its central frequencies (solid blue lines). To cover all sublevels of X 2�+

1/2(R = 1), the main cooling laser beam should be modulated by
an EOM with a modulated frequency of about 115 MHz into two sidebands (solid red lines).

and drive a transition to an excited electronic state where
J ′ = 1/2(e), R′ = 0 with a wavelength of λ00 = 359.3 nm.
Due to strict parity and angular momentum selection rules
of �R = 0, ± 1 for dipole transitions, molecules can only
spontaneous decay back to the R=1 level of the ground state.
However, 19F has a nuclear spin I = 1/2 that splits J into
F = J ± 1/2 levels through magnetic and electric hyperfine
interaction, and then the lower two rotational levels are split
into two (|J = 1/2,F = 0〉 and |J = 1/2,F = 1〉) and four
(|J = 3/2,F = 1〉, |J = 3/2,F = 2〉, |J = 1/2,F = 0〉, and
|J = 1/2,F = 1〉) hyperfine energy levels, respectively. All
these HFS sublevels of N=1 will be significantly populated
in the whole cooling process. We can use an EOM with a
modulated frequency of about 115 MHz to modulate the main
cooling laser λ00 into two sidebands. Due to the small interval
about 0.4� between |J = 3/2,F = 1〉 and |J = 3/2,F = 2〉,
the two sidebands and fundamental frequency laser itself can
cover the four hyperfine sublevels of the X 2�+

1/2 (v = 0,N =
1) with a detuning about −1.5�, which also is required for
the other two repumping lasers λ10 and λ21. Here all dark
states of the rotational and HFS branching will be eliminated
perfectly and a quasiclosed transition cycle will be formed
by only using one cooling laser and one or two repumping
lasers for MgF molecules experimentally. In addition, the
A 2�1/2 state has a short radiative lifetime (τ = 7.16 ns) and
a large spontaneous decay rate (� = 2π × 22 MHz), so we
can obtain a strong scattering force and realize an efficient
Doppler laser slowing and cooling of MgF with a fast cooling
rate.

V. THE INTERACTION BETWEEN EXTERNAL FIELDS
AND HYPERFINE LEVELS OF MgF

In this section, we will add the effects of the external fields
to Eq. (9) in order to study the MOT properties of MgF at cold
or ultracold temperature. The manipulation of polar diatomic
molecules with external field is also very necessary in some
specific experiments, such as the Stark or Zeeman deceleration.
The Hamiltonians of Stark and Zeeman interactions are given,
respectively, by

ĤStark = −T 1
q=0(μ̂e)T 1

p=0(Ê) = −μeEZ cos θ, (16)

and

ĤZeeman = −T 1(μ̂M )T 1
p=0(B̂)

= gsμBT 1(Ŝ)T 1
p=0(B̂) + gLμLT 1(L̂)T 1

p=0(B̂)

− gIμNT 1(Î )T 1
p=0(B̂), (17)

where μe and μM are the molecular permanent electric dipole
along the internuclear z axis (q = 0) [23] and the total
magnetic dipole moment in a given state, respectively. Here the
electron g factor is gs ≈ 2.002, the electron orbital g factor is
gL ≈ 1, and the nuclear g factor is gI ≈ 5.585; μB is the Bohr
magneton, and μN is the nuclear magneton. Since μN/μB =
1/1836 and � = 0, the first term in Eq. (17) is the most
important. The subscripts p and q refer to the components of
the space- and molecule-fixed coordinate system in spherical
tensor. Then we can obtain two matrix representations as
follows:

〈η′,�′,N ′,S,J ′,I,F ′,M ′
F | − T 1

q=0(μ̂e)T 1
p=0(Ê)|η,�,N,S,J,I,F,MF 〉

= δη′ηδ�′�δM ′
F MF

μeEZ(−1)F
′+F+1−MF +J+I+J ′+S+N [(2N + 1)(2N ′ + 1)]1/2[(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)]1/2

×
(

N 1 N ′
0 0 0

){
J N S

N ′ J ′ 1

}{
F J I

J ′ F ′ 1

}(
F 1 F ′

−MF 0 MF

)
, (18)
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FIG. 3. (a) The Zeeman effect of MgF in the X 2�+
1/2 (v = 0,N = 1) state, and the closeups of hyperfine structure as follows: (b) for the two

levels |J = 3/2,F = 2〉 and |J = 3/2,F = 1〉 (red lines), (c) for the state |J = 1/2,F = 0〉 (black line), and (d) for the state |J = 1/2,F = 1〉
(blue lines). The energy levels are labeled by their MF values at zero field.

and

〈η′,�′,N ′,S,J ′,I,F ′,M ′
F |gsμBT 1(Ŝ)T 1

p=0(B̂)|η,�,N,S,J,I,F,MF 〉
= δη′ηδ�′�δN ′NδM ′

F MF
gsμBBZ(−1)F−MF +F ′+2J+I+N+S[(2J + 1)(2J ′ + 1)S(S + 1)]1/2

× [(2S + 1)(2F + 1)(2F ′ + 1)]1/2

{
J S N

S J ′ 1

}{
F J I

J ′ F ′ 1

}(
F 1 F ′

−MF 0 MF

)
. (19)

From Eqs. (18) and (19), we can obtain the HFS Zeeman
or Stark shifts of the X 2�+

1/2 (v = 0,N = 1) state for MgF
under static magnetic or electric fields as well as the g factors
with taking the mixing of the states with the different J into
account, and the results are plotted in Figs. 3 and 4 and Table V,
respectively. It can be seen from Fig. 3(a) that each sublevel of
the total angular momentum F will be shifted completely. In a
typical MOT, the magnitude of magnetic field is about several
Gauss. The two states |J = 3/2,F = 1〉 and |J = 3/2,F = 2〉
(red lines) have positive magnetic g factor g1 = 0.71 and
g2 = 0.50 and they are split symmetrically and linearly into the
eight magnetic sublevels, which are very favorable to realize
the MOT. However, the |J = 1/2,F = 1〉 has a negative
value g = −0.21 and the g factor of |J = 1/2,F = 0〉 is
close to zero, and thus their magnetic sublevels have a small
Zeeman shift, which would have a little contribution to the
MOT, as shown in Figs. 3(b)–3(d). The rotational structure
used in cooling and trapping MgF requires their cycling
transitions to correspond to a type-II MOT system where
F ′ � F [10]. Due to a different sign g factors for the HFS of

X 2�+
1/2 (v = 0,N = 1), we need a special optical polarization

to match them experimentally [9,38,39].
It is worth noting in Figs. 3 and 4 that the Stark shift of

each sublevel MF in the electric field is entirely different from
its Zeeman shift in the magnetic field; the Stark sublevels
|F, ± MF 〉 are exactly degenerate under the electronic field.
This is because of the following reasons: First, as shown
in Eq. (16) and (18), the cos θ operator mixes Hund’s case
(b) basis vectors with the same MF but N’s which differ by
±1 and thus have opposite parity. On the other hand, under
parity inversion, the electric dipolar moment vector changes
its direction, so the states coupled with each other due to Stark
effect must be the opposite parities, and then the parity P, N,
and J cease to be a good quantum number except for MF .
However, as shown in Eqs. (17) and (19), the SZ operator
couples Hund’s case (b) basis functions with the same MF

and with the same N’s (in the weak magnetic field) and
thus have the same parity. On the other hand, the magnetic
dipolar moment keeps unchanged under parity inversion, so
the states coupled with each other due to the Zeeman effect

013408-8
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FIG. 4. The Zeeman effect of MgF in the X 2�+
1/2 (v = 0,N = 1)

state. There are always twofold degeneracies with ±MF except for
MF = 0, so the energy levels are labeled by their |MF | values at zero
field.

must be the same parities, and then the parity P and MF

are still good quantum numbers. Second, the electric dipolar
moment vector commutes with the time reversal operator,
but the magnetic dipolar moment vector does not have this
property. So the effective Hamiltonian (including the Stark
effect) remains unchanged under time reversal. Since the two
states |F,MF 〉 and |F, − MF 〉 in the field E are time reversals
of each other (forward and reverse) and the Hamiltonian is
invariant under time reversal, the energy sublevels |F, ± MF 〉
are exactly degenerate in the whole electric field. This situation
will not occur in the magnetic field, because the Hamiltonian
(including the Zeeman effect) in the magnetic field is changed
under time reversal.

VI. CONCLUSIONS

In this paper, we have performed further theoretical study
for the feasibility of laser cooling and trapping of the

24Mg19F radical. First, we calculated the vibrational transition
wavelengths between the ground and first excited electronic
states and their FCFs by three different methods, and found
that our calculated results are in good agreement with the
experimental data and more precise than the calculated results
by the ab initio quantum chemistry method [26]. In particular,
the highly diagonal FCFs indicate that two or three laser
beams are enough to realize an efficient Doppler laser slowing
and cooling of a buffer-gas cooled MgF molecular beam.
Afterwards, using an effective Hamiltonian approach and
irreducible tensor theory, we have calculated the hyperfine
levels of the lower rotational states in the ground electric
and vibrational state X 2�+

1/2 (v = 0,N = 1) and obtained the
hyperfine splitting spectrum with an accuracy of less than
30 kHz ∼ 5 μK compared with the experimental data, which
is very important to eliminate the HFS dark states in the laser
cooling and trapping of MgF. Finally, we have calculated the
Zeeman and Stark shifts of the hyperfine levels of MgF and the
exact HFS g factors of the lower rotational states in the ground
state, and briefly discussed the feasibility of preparing MOT
of MgF. According to parity and time reversal symmetry, we
also explained the difference between the Stark and Zeeman
effects in the molecular system. Our study shows that the MgF
radical has available pumping wavelengths, highly diagonal
FCFs, small and special splits of HFS, and a short lifetime of
the excited state, which together make it a better candidate
molecule than SrF and CaF for laser cooing and trapping
(MOT) in principle.
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