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QoS-Adaptive Approximate Real-Time Computation
for Mobility-Aware IoT Lifetime Optimization
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Abstract—In recent years, the Internet of Things (IoT) has
promoted many battery-powered emerging applications such as
smart home, environmental monitoring, and human healthcare
monitoring, where energy management is of particular impor-
tance. Meanwhile, there is an accelerated tendency towards
mobility of IoT devices, either being transported by humans or
being mobile by itself. Existing energy management mechanisms
for battery-powered IoT fail to consider the two significant char-
acteristics of IoT: the approximate real-time computation, and the
mobility of IoT devices, resulting in unnecessary energy waste and
network lifetime decay. In this paper, we explore mobility-aware
network lifetime maximization for battery-powered IoT appli-
cations that perform approximate real-time computation under
the Quality-of-Service (QoS) constraint. The proposed scheme is
composed of offline and online stages. At offline stage, an optimal
mobility-aware task schedule that maximizes network lifetime
is derived by using mixed-integer linear programming (MILP)
technique. Redundant executions due to mobility-incurred over-
lapping of a single task on different IoT devices are avoided
for energy savings. At online stage, a performance-guaranteed
and time-efficient QoS-adaptive heuristic based on cross-entropy
method is developed to adapt task execution to the fluctuating
QoS requirements. Extensive simulations based on synthetic
applications and real-life benchmarks have been implemented to
validate the effectiveness of our proposed scheme. Experimental
results demonstrate that the proposed technique can achieve
up to 169.52% network lifetime improvement compared to
benchmarking solutions.

Index Terms—Internet of Things (IoT), network lifetime
optimization, approximate real-time computation, Quality-of-
Service (QoS), mobility.

I. INTRODUCTION

Internet of Things (IoT), providing ubiquitous connectivity

for anyone and anything at any time and any place, has

been envisioned as one of the most promising networking

paradigms for the information society [1]. In the past few

years, IoT has promoted a variety of emerging applications,

such as intelligent transportation, smart home, environmental

monitoring, etc. According to a report from McKinsey Global

Institute, the potential economic impact of IoT applications

could be as much as $11.1 trillion per year in 2025 [2].

Nonetheless, various challenges in IoT remain to be addressed,
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one of them being the efficient energy management [3]. Due

to the considerations of either portability requirements, or

the low-cost installation, deployment and maintenance, many

IoT devices are powered by batteries that usually provide

only a limited supply of energy. Therefore, efficient energy

management is a key concern in battery-powered IoT, which

aims at prolonging the network lifetime while meeting the

Quality-of-Service (QoS) requirement.
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(b) The current distribution of device locations
due to device mobility.

Fig. 1: An illustration to demonstrate IoT device mobility.

Several novel energy-efficient management mechanisms for

battery-powered IoT have been proposed in literatures [4]–

[7]. Colistra et al. [4] presented a consensus protocol for

a distributed decision on resource allocation in a simulated

IoT scenario. The proposed consensus protocol can improve

network lifetime while preserving the required QoS. Luo

et al. [5] introduced the concept of “equivalent node” to

select relay node for optimal data transmission and energy

conservation in WSN-based IoT. A probabilistic dissemination

algorithm is designed to choose the optimal energy strategy

and prolong the lifetime of whole network. Samie et al. [6] put

forward a technique of computation offloading in a local IoT

network for network lifetime optimization under bandwidth

constraints. A hierarchical clustering approach was presented

by Li et al. [7] to maximize the network lifetime of battery-

powered IoT. This approach assigns different duty cycle ratios

to the IoT devices that are located at different layers, resulting

in the balance of energy consumption among these devices.
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(a) Existing energy management mechanisms
perform redundant execution of overlapping
tasks τ3, τ5, τ8, τ10, τ11, and τ13. It is clear
that these mechanisms lead to unnecessary
energy waste.
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(b) Our proposed MILP-based offline method
avoids redundant execution of overlapping
tasks τ3, τ5, τ8, τ10, τ11, and τ13. Any
overlapping task is only executed once for
energy saving.
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(c) According to the fluctuating QoS require-
ment at runtime, our proposed online method
quickly reallocates overlapping task τ3 from
IoT device ψ1 to ψ2 for achieving further
energy saving.

Fig. 2: An illustration of existing mechanisms and our proposed solution to deal with the mobility of IoT devices shown in

Fig. 1. Overlapping tasks are marked with red rectangles, while exclusive tasks are marked with rectangles of other colors that

are consistent with the colors used in Fig. 1.

All the above works [4]–[7] on IoT energy management

fail to consider two significant characteristics of IoT. One is

the approximate task execution of IoT applications, and the

other is the mobility of IoT devices. In real-world, many IoT

applications can accept an inaccurate or approximate result

in addition to a guaranteed accurate result [8]. For an ap-

proximate computation modeled task, its execution cycles are

logically decomposed into two parts: one is a mandatory part

and the other is an optional part [9], [10]. The mandatory part

must execute to completion before the deadline and generate

an acceptable result. The optional part refines and improves

the result produced by the mandatory part. Some works [11]–

[13] have utilized the concept of approximate computation to

design task scheduling schemes for system QoS maximization.

However, these works are tailored to maximize system QoS

for an individual IoT device, and thus they cannot be directly

applied to the lifetime optimization of the network consisting

of multiple IoT devices.

Mobility of IoT devices is another important characteristic

of IoT. There is an accelerated tendency towards mobility

of IoT devices, either being transported by humans, like

smartphones, or being mobile by itself, like a robot or an

unmanned aerial vehicle. Fig. 1 illustrates an example of

device mobility. As shown in Fig. 1a, tasks τ3, τ5, τ8, τ10,
τ11 and τ13 appear in more than one IoT device in the initial

distribution of device locations. For example, task τ3 appears

not only in device ψ1, but also in device ψ2. In this situation,

device ψ1 and device ψ2 need to process task τ3 separately

because task τ3 has different collected input data on different

devices. Due to device mobility, the initial distribution of

device locations may change, as demonstrated in Fig. 1b. In

Fig. 1b, any one of tasks τ3, τ5, τ8, τ10, τ11 and τ13 has the

same collected input data on different devices. We divide these

tasks into two categories: one for exclusive task and one for

overlapping task. An exclusive task is the task that can only be

executed by the specific IoT device, and an overlapping task

refers to the task that can be handled by any one of the IoT

devices containing this task. For instance, as shown in Fig. 1b,

task τ1 and task τ2 are exclusive tasks whereas task τ3 is an

overlapping task. This is because tasks τ1 and τ2 can only be

executed by device ψ1, while task τ3 can be executed either

by device ψ1 or by device ψ2.

However, as demonstrated in Fig. 2a, existing energy

management mechanisms fail to take into consideration the

mobility of IoT devices, and they allow overlapping task τ3
to be executed once on IoT device ψ1 in addition to being

executed once on IoT device ψ2. This results in overlapping

task τ3 being executed twice. In fact, overlapping task τ3 only

needs to be executed once. Obviously, redundant execution of

overlapping tasks leads to unnecessary energy waste, thereby

decaying the network lifetime. Meanwhile, since network

QoS requirement may fluctuate at runtime, task execution

should quickly adapt to the fluctuating QoS requirement when

optimizing network lifetime. In this paper, we propose a QoS-

adaptive mobility-aware scheme to optimize network lifetime

of battery-powered IoT applications with approximate real-

time computation requirements. To the best of our knowledge,

this is the first attempt to optimize network lifetime with joint

considerations of IoT device mobility and approximate real-

time computation. As illustrated in Fig. 2b and Fig. 2c, our

developed solution can not only avoid redundant execution of

overlapping tasks for energy saving but also meet the fluctu-

ating QoS requirement at runtime. The major contributions of

this paper are summarized as follows.

• We investigate the problem of network lifetime optimiza-

tion for battery-powered IoT applications that perform

approximate real-time computation under the QoS con-

straint. In particular, the mobility of IoT devices is taken

into consideration.

• We present a mixed-integer linear programming (MILP)

based mobility-aware offline solution to the QoS-

constrained network lifetime optimization, and propose a

cross-entropy method based QoS-adaptive online heuris-

tic that can quickly adapt task execution to the fluctuating

QoS requirement at runtime.

• We conduct extensive simulation experiments to validate
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the effectiveness of our proposed algorithms. Simulation

results demonstrate that the proposed algorithms can

achieve up to 169.52% network lifetime improvement

compared to benchmarking schemes.

The remainder of the paper is organized as follows. Sec-

tion II introduces network architecture and models. Section III

describes problem definition and the overall framework of

our optimization solution. Section IV presents the offline

approach based on MILP technique while Section V shows the

proposed online scheme based on cross-entropy method. The

effectiveness of the proposed solution is verified in Section VI

and concluding remarks are given in Section VII.

II. NETWORK ARCHITECTURE AND MODELS

In this section, we briefly introduce our network architecture

and models including task model, energy model, and network

lifetime and QoS model.

A. Network Architecture

We consider a local network composed of N IoT devices

ψ = {ψ1, ψ2, · · · , ψN} and a gateway, as shown in Fig. 3. All

IoT devices are connected to the gateway by using a specific

IoT wireless technology (e.g., HaLow, LPWAN, BLE [6]).

Fig. 4 presents the architecture diagram of any IoT device

in the local network. As illustrated in the figure, each IoT

device ψi (1 ≤ i ≤ N) is equipped with two major modules:

one is an energy source module, and the other is an energy

dissipation module. The energy source module is typically in

the form of a battery (e.g., Li-ion). The energy dissipation

module drains energy from the energy source module and

consists of three parts: sensors, a heterogeneous multiprocessor

system-on-chip (MPSoC), and a signal transceiver. The sensors

sense physical phenomena and acquire input data required

for tasks. The MPSoC system performs task execution, and

the signal transceiver implements communication between

the IoT device and the gateway. Assume that the MPSoC

system on IoT device ψi is equipped with Li heterogeneous

processors, denoted by Θi = {Θi,1,Θi,2, · · · ,Θi,Li
}, where

every processor Θi,l (1 ≤ l ≤ Li) is characterized by a given

supply voltage/frequency pair (vi,l, fi,l).

Fig. 3: A local network with N IoT devices and a gateway.

B. Application Model

Assume that real-time periodic Bag-of-Tasks (BoT) ap-

plications [14] are to be executed in the local network. In

such a periodic application, tasks are independent, activated

Energy
Source

Battery Sensors MPSoC Transceiver

Energy Dissipation

+ +

Fig. 4: The architecture diagram of any IoT device.

with a common period, and share a common deadline. Tasks

are independent in the sense that there is no precedence or

communication among tasks. Let T andD represent the period

and deadline of the application, respectively. Suppose that ξi
tasks of the application can be performed by IoT device ψi,

denoted by Γi = {τ1,i, τ2,i, · · · , τm,i, · · · , τξi,i}. Let Ci be a

ξi ×N matrix, where ci[m][j] ∈ Ci (1 ≤ j ≤ N, j �= i) gives
the information whether task τm,i ∈ Γi (1 ≤ m ≤ ξi) is an

overlapping task or not. If τm,i ∈ Γj holds, then task τm,i is

an overlapping task and hence ci[m][j] takes the value of 1.
Otherwise task τm,i is an exclusive task and thus ci[m][j] is
set to 0. Tasks are assumed to be heterogeneous and therefore

the activity factor of a task, denoted by μ (ranging in (0,1]),

is introduced to capture how intensively functional units are

being utilized by the task [15].

In this work, we consider approximate computation real-

time tasks [9], [10]. Every task τm,i is logically decomposed

into two parts: i) a mandatory part with execution cyclesMm,i,

which must execute to completion before the deadline and

generate an acceptable result, and ii) an optional part with

maximum execution cycles Om,i, which refines and improves

the result produced by the mandatory part1. We use a tuple

τm,i : {μm,i, Rm,i, Vm,i,Mm,i, Om,i, αm,i} to characterize

the approximate computation modeled task τm,i. In the tuple,

μm,i is the activity factor of task τm,i. Rm,i represents the

amount of input data needed for task τm,i to start its execution.

Vm,i denotes the amount of data acquired by IoT device ψi

for task τm,i in a sampling cycle. The αm,i (ranging in [0,1])

is the optional execution factor of task τm,i, which denotes the

proportion of executed optional cycles to maximum optional

cycles of task τm,i. Therefore, the actual length Wm,i of task

τm,i, measured by the total execution cycles, can be given by

Wm,i =Mm,i + αm,i ×Om,i. (1)

C. Energy Model

The overall power consumption Pcon of any IoT device in

the local network includes the power consumption Psen of

sensors, the power consumption Pexe of the MPSoC system,

and the power consumption Pcom of the signal transceiver.

Therefore, Pcon is expressed as

Pcon = Psen + Pexe + Pcom. (2)

The power consumption Pexe of an MPSoC system can be

modeled as the sum of static power consumption Psta and

dynamic power consumption Pdyn, that is, [16]

Pexe = Psta + Pdyn. (3)

1For the sake of generality, we assume the weight of task τm,i that indicates
the relative importance of the task has been integrated into Om,i.
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Fig. 5: An overview of our proposed solution.

Psta is independent of switching activity and can be regarded

as a processor-dependent constant while Pdyn is related to

charging and discharging of gates in the circuits. The dynamic

power consumption of processor Θi,l when executing task τm,i

at the supply voltage/frequency pair (vi,l, fi,l) is given by [16]

Pdyn(m, i, l) = μm,iC
eff
i,l v2i,lfi,l, (4)

where Ceff
i,l is the effective switching capacitance of processor

Θi,l. Therefore, the overall energy consumption of IoT device

ψi during scheduling horizon T is hence calculated as

E
energy
con (i) = Pcom(i)× T +

Li�

l=1

Psta(i, l)× T+

Li�

l=1

�

τm,i∈Γi,l

(μm,iC
eff
i,l v2i,lWm,i + Psen(i)

Rm,i

Vm,i
),

(5)

where Psen(i) and Pcom(i) are the power consumption of sen-

sors and the signal transceiver on IoT device ψi, respectively.

Psta(i, l) is the static power consumption of processor Θi,l.

Γi,l ⊆ Γi is the task subset consisting of these tasks that are

executed on processor Θi,l.

D. Network Lifetime and QoS Model

The lifetime of an IoT device can be defined as the ratio of

its remaining energy to its power consumption [6]. Therefore,

the lifetime Ti of IoT device ψi is given by

Ti =
E
energy
rem (i)

E
energy
con (i)/T

, (6)

where Eenergy
rem (i) is the remaining energy of IoT device ψi and

it is expressed as the difference between the available energy

supply E
energy
sup (i) provided by the energy source module and

energy consumption E
energy
con (i):

E
energy
rem (i) = E

energy
sup (i)− E

energy
con (i). (7)

The network lifetime, denoted by T, can be thus represented

as the minimal lifetime of the IoT device in the local network

T = min{T1,T2, · · · ,Ti, · · · ,TN}. (8)

It has been shown that the QoS of a task can be represented

as a linear or concave function of optional cycles of the

task [9]. The more cycles the optional part of the task executes,

the higher QoS the task generates. Thus the network QoS can

be defined as the sum of the executed CPU cycles of optional

parts of all the approximate computation real-time tasks in the

network. It is denoted by Q and is expressed as

Q =
N�

i=1

Qi =
N�

i=1

ξi�

m=1

αm,iOm,i, (9)

where Qi is the QoS achieved by IoT device ψi, αm,i is the

optional execution factor of task τm,i, and Om,i is the the

maximum optional cycles of task τm,i.

III. PROBLEM DEFINITION AND OVERALL FRAMEWORK

In this section, we first give a definition of the network

lifetime optimization problem, and then show the overall

framework of our proposed solution.

A. Problem Definition

In this paper, we concentrate on the scenario where the

available energy supply of each IoT device during the schedul-

ing horizon is sufficient to complete the execution of the

mandatory parts of all approximate tasks on the IoT device, but

sufficient or insufficient to perform the execution of the option-

al parts of all approximate tasks on the IoT device. The studied

problem is formally defined as follows. Given a mobility-

aware local network, the target application, and the network

QoS requirement, design a task allocation and scheduling

scheme to maximize network lifetime under the constraints

that i) the mandatory parts of tasks must be completed before

the deadline; ii) the network QoS requirement is satisfied; and

iii) for each IoT device, its energy consumption cannot exceed

its available energy supply during the scheduling horizon.

B. Overview of Our Proposed Solution

Fig. 5 presents an overview of our proposed solution to

QoS-constrained network lifetime optimization. As shown in

the figure, our solution is composed of two stages: a mobility-

aware offline stage and a QoS-adaptive online stage. At

offline stage, an optimal mobility-aware task schedule that

can maximize network lifetime while satisfying all design

constraints is derived by using MILP technique. Redundant

executions due to mobility-incurred overlapping of a single

task on different IoT devices are avoided for energy savings.

Since the network QoS requirement may fluctuate at runtime,

the offline task schedule needs to be adjusted at runtime at

the minimum cost. Therefore, we provide a low-cost yet high-

performance QoS-adaptive online scheme. In the proposed

online scheme, if the gateway monitors no change in network

QoS requirement 2 at runtime during the current time interval

[t, t+T ] for executing new arriving task instances, the optimal

task schedule produced at offline stage will be directly adopted

without any modification to schedule tasks; else an online

heuristic will be invoked. The main idea of the heuristic is

2We assume that the time granularity of changes in QoS requirements at
runtime cannot be smaller than the application period.
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to redetermine the optimal processors for the execution of

overlapping tasks by using cross-entropy method such that

the network lifetime is optimized and task execution quickly

adapts to the fluctuating QoS requirement.

IV. MILP BASED MOBILITY-AWARE OFFLINE NETWORK

LIFETIME OPTIMIZATION

In this section, we present an MILP based mobility-aware

offline approach to solve the QoS-constrained network lifetime

optimization problem.

A. MILP Formulation

For ease of presentation, let Γ = {Γ1 ∪ · · · ∪Γi ∪ · · · ∪ΓN}
be the task set consisting of all exclusive tasks and overlapping

tasks on N IoT devices. An overlapping task on different IoT

devices only appears once in task set Γ. Let Mm
ψ be the set of

the indexes of these IoT devices that can execute task τm ∈ Γ.
Let M i

Θ be the set of the indexes of these processors on IoT

device ψi. We define the following variables.

Am,i,l =

�
�
�

1 if task τm ∈ Γ is assigned to

processor Θi,l, i ∈Mm
ψ , l ∈M i

Θ

0 otherwise

(10)

Sm : the start time of task τm (11)

αm : the optional execution factor of task τm (12)

1) Objective: The objective function is expressed as

maximize: T(Am,i,l, Sm, αm), ∀τm ∈ Γ, i ∈Mm
ψ , l ∈M i

Θ.
(13)

2) Constraints: The constraints are summarized below.

• Every task τm is assigned to exactly one processor.
�

i∈Mm
ψ

�
l∈Mi

Θ

Am,i,l = 1, ∀τm ∈ Γ. (14)

• The optional execution factor αm of task τm takes the
value from interval [0, 1].

αm ∈ [0, 1], ∀τm ∈ Γ. (15)

• The mandatory part of every task τm meets its deadline.

Sm +
�

i∈Mm
ψ

�
l∈Mi

Θ

Am,i,l(
Rm

Vm,i
+
Mm

fi,l
) ≤ D, ∀τm ∈ Γ.

(16)

• For each IoT device, its energy consumption cannot
exceed its available energy supply during the scheduling
horizon. This constraint is equivalent to the condition that

the lifetime of any IoT device should not be less than zero

during the scheduling horizon.

Ti(Am,i,l, Sm, αm) ≥ 0, ∀τm ∈ Γ, i ∈Mm
ψ , l ∈M i

Θ.
(17)

• The offline QoS requirement Qoff
goal should be met.

�
τm∈Γ

αm ×Om ≥ Qoff
goal. (18)

• Tasks have no overlapping executions in the same proces-
sor. Let Sp and Sq denote the start time of task τp and

task τq when the two tasks are executed on processor

Θi,l, respectively, and the variable Smin(p,q) denote the

minimum of the Sp and Sq . Thus, the equation Smin(p,q)
= min(Sp,Sq) holds. The bp,q is an auxiliary binary

decision variable indicating the relationship of Smin(p,q),
Sp, and Sq . If Sp < Sq holds, that is, Smin(p,q) = Sp,

then bp,q = 1; else bp,q = 0. H is a large enough constant

number and is set to 10000 in the experiment. Similar to

Smin(p,q), the variable Smax(p,q) is introduced to indi-

cate the maximum of the Sp and Sq . That is, Smax(p,q)
= max(Sp,Sq) holds. Two auxiliary variables hp,q and

gp,q are also introduced as pseudo-linear constraints to

facilitate the formulation. The following constraints must

be satisfied to avoid overlapping executions.

Smin(p,q) ≤ Sp (19)

Smin(p,q) ≤ Sq (20)

Smin(p,q) ≥ Sp −H× (1− bp,q) (21)

Smin(p,q) ≥ Sq −H× bp,q (22)

bp,q = 1, 0 (23)

Smax(p,q) = Sp + Sq − Smin(p,q) (24)

hp,q = H× (Sp − Smax(p,q)) + Sq (25)

Sp − hp,q ≥ Mq + αqOq

fi,l
+
Rq

Vq,i
(26)

gp,q = H× (Sq − Smax(p,q)) + Sp (27)

Sq − gp,q ≥ Mp + αpOp

fi,l
+
Rp

Vp,i
(28)

B. Algorithm of MILP Based Offline Approach

Algorithm 1: Mobility-Aware MILP Offline Scheme

Input: 1) Task set Γ, 2) Device set ψ,
3) Offline QoS requirement Qoff

goal;

Output: Offline schedule table Ωoff ;
1 Generate schedule table Ωoff for N IoT devices by

solving the MILP formulated in Section IV-A;

2 Return Schedule table Ωoff .

Algorithm 1, performed by the gateway, demonstrates the

pseudo-code of our proposed MILP based offline lifetime

optimization scheme. Inputs to the algorithm are the task set,

device set, and offline QoS requirement. The optimal offline

task scheduling that can maximize network lifetime under the

network QoS and real-time constraints is derived by solving

the MILP formulated in Section IV-A.

V. CROSS-ENTROPY METHOD BASED QOS-ADAPTIVE

ONLINE LIFETIME OPTIMIZATION

The proposed MILP based offline lifetime optimization

scheme generates an optimal task schedule that maximizes

network lifetime while satisfying all design constraints. How-

ever, due to the fact that the network QoS requirement may

fluctuate at runtime, the offline task schedule needs to be
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adjusted at runtime. Therefore, we provide a low-cost yet high-

performance QoS-adaptive online task scheduling algorithm

based on cross-entropy method. Our online scheme is designed

to redetermine the optimal processors for overlapping task

execution such that not only is the network lifetime optimized

but also task execution can quickly adapts to the fluctuating

QoS requirement. In this section, we first briefly introduce the

theoretic basis of cross-entropy method, and then describe our

proposed online scheme based on cross-entropy method.

A. Theoretical Basis of Cross-Entropy Method

The basic idea of cross-entropy method is to transform

the deterministic optimization problem into its corresponding

stochastic optimization problem [17]. By using an iterative

sampling algorithm, the stochastic optimization problem is

then addressed. In each iteration of the sampling algorithm,

multiple random samples representing solutions to the deter-

ministic optimization problem are generated, and these random

samples converge to the optimal or near-optimal solution in

a probabilistic way. Compared to conventional optimization

techniques such as genetic algorithm [18] or particle swarm

optimization algorithm [19], cross-entropy method has a com-

plete theoretical basis, and has been proven to be an effective

solution to optimization problems [17]. For more details on

the theoretical basis of cross-entropy method, readers are

suggested to refer to literature [17].

Now let us consider a discrete or combinatorial optimization

problem that the goal is to find the optimal mapping β∗ :
R

n → R
n∗

such that the value of function F (x) about variable
x in the state space � is maximized when x = β∗, that is,

F (β∗) = γ∗ = max
x∈�

F (x). (29)

This optimization problem is associated with the following

estimation of the probability [17]

λ(γ) = Pu(F (X) ≥ γ) = Eu(Φ{F (X)≥γ}). (30)

X = (X1, · · · , Xz, · · · , XZ) is a sample vector consisting

of Z random samples produced by the corresponding proba-

bility P (x, u). P (x, u) is in parametric class of probabilities

{P (x, ι), ι ∈ 
} with parameter ι being set to u. γ is a

threshold or level parameter, and Pu(F (X) ≥ γ) represents

the probability of F (X) ≥ γ. Eu(Φ{F (X)≥γ}) denotes the

expected value of Φ{F (X)≥γ}, and Φ{F (X)≥γ} is the indicator

function, that is,

Φ{F (x)≥γ} =

�
1 F (x) ≥ γ

0 otherwise.
(31)

The cross-entropy method aims to find the minimal γ such that

λ(γ) (i.e., the probability of F (X) ≥ γ) approaches 0. It is

then that the probability of F (X) < γ approaches 1, indicating

γ is the minimal upper bound on F (x) for ∀x ∈ � and thus the

optimal solution to Eq. (29). The main steps of cross-entropy

method are summarized and described as follows.

1) Set iteration counter t ← 1 and initialize probability

vector P0.

2) Generate Z samples {X1, · · · , Xz, · · · , XZ} based on

probability vector Pt−1, and calculate sample perfor-

mance {F (X1), · · · , F (Xz), · · · , F (XZ)}.
3) Select Belite samples with best performance, and let

ϑ denote the set of indices of best samples. Derive

threshold γt using the average performance of Belite best

samples:

γt ← 1

Belite

�
ε∈ϑ

F (Xε). (32)

4) Obtain probability vector Pt using

Pt,a,b =

�Z
z=1 Φ{F (Xz)≥γt}Φ{xz,a=b}�Z

z=1 Φ{F (Xz)≥γt}
, (33)

a = 1, 2, · · · , n; b = 1, 2, · · · , n∗,
where xz,a is the ath element in sample Xz , and Pt,a,b

indicates the probability of xz,a being mapped to b (i.e.,
xz,a = b) at tth iteration.

5) If predefined stop criterion is met, exit; otherwise, set

t← t+ 1, and return to 2).

B. Our Online Scheme Based on Cross-Entropy Method

The objective of online scheduling includes not only gener-

ating a high quality task schedule, but also minimizing the run-

time scheduling overheads. To this end, the main idea of our

QoS-adaptive online scheme is to reallocate overlapping tasks

to optimal processors by using cross-entropy method such that

the network lifetime is optimized while task execution can be

quickly adapted to the fluctuating QoS requirement.

Algorithm 2, executed by the gateway, shows the pseudo-

code of our proposed cross-entropy method based online

scheme. Line 1 of the algorithm initializes the online task

schedule Ωon to the offline task schedule Ωoff . If no change

in network QoS requirement at runtime is detected, the optimal

task schedule produced at offline stage will be directly adopted

without any modification (lines 2-3); else an online heuristic

based on cross-entropy method will be invoked (lines 4-

24). Lines 5-6 of the algorithm construct a task set and a

processor set. For each IoT device, lines 7-9 first delete all

overlapping tasks from its schedule table and then updates the

start times of all exclusive tasks in the schedule table. The

available energy supply that can be used for overlapping task

execution for each IoT device is calculated in line 10. Lines

11-12 first derive network QoS difference and then equally

assign the network QoS difference to overlapping tasks. Lines

13-23 perform the reallocation process for overlapping tasks

by using cross-entropy method. Lines 13-14 initialize the

iteration counter, maximal iteration number, and probability

vector. Line 15 determines whether the algorithm continues the

iteration process or exits the optimization. In each iteration,

lines 16-17 first generate multiple samples according to current

probability vector and then select feasible samples from the

generated samples. If no feasible sample is found and the

current iteration counter is no less than 2, lines 18-19 terminate

the iterative process. Lines 20-21 derive the performance of

feasible samples and accordingly update the threshold. Lines
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Algorithm 2: QoS-Adaptive Online Scheme

Input: 1) Task set Γ, 2) Device set ψ, 3) Online QoS

requirement Qon
goal, 4) Offline schedule table Ωoff

Output: Online schedule table Ωon;

1 Initialize Ωon ← Ωoff ;

2 if Qon
goal == Qoff

goal then
3 Return Ωon.

4 else
5 Construct task set Γ′ that stores all overlapping tasks;

6 Create processor set Ψ where each element Ψm ∈ Ψ
indicates the set of these processors that overlapping

task τm ∈ Γ′ can be assigned to;

7 for each IoT device ψi do
8 Delete all overlapping tasks from Ωon

i ;

9 Update start times of all exclusive tasks in Ωon
i ;

10 Derive its available energy supply using Eq. (7);

11 Calculate QoS difference �Q = Qon
goal −Qoff

goal;

12 Assign �Q equally to overlapping tasks in task set

Γ′ while satisfying Eq. (15);

13 Set t = 1, and initialize maximal iteration number

tmax;

14 Initialize probability vector P0: for each overlapping

task τm ∈ Γ′, set the probability of allocating τm to

the processors in Ψm to 1/sizeof(Ψm) and the

processors not in Ψm to 0;
15 while t ≤ tmax do
16 Generate J samples according to Pt−1 using

Latin hypercube importance sampling [20];

17 Select Z feasible samples meeting Eq. (16) and

Eq. (17) from J samples using

acceptance-rejection method [21];

18 if find no feasible sample and t ≥ 2 then
19 break;
20 Calculate network lifetime for each feasible

sample using Eq. (8);

21 Obtain threshold γt using Eq. (32);

22 Derive probability vector Pt using Eq. (33);

23 t← t+ 1;

24 Return Ωon that is the feasible sample with optimal

network lifetime at (t− 1)th iteration.

22-23 update probability vector and iteration counter used

for next iteration. Line 24 returns the online schedule table

generated based on the sample with best performance at the

(t− 1)th iteration.

VI. EVALUATION

A. Experimental Settings

Two sets of simulations have been implemented to validate

the effectiveness of our proposed network lifetime optimiza-

tion solution. The first set of simulations is based on synthetic

applications while the second set of simulations is based

on real-life benchmarks. In each set of simulations, two

local networks that consist of, respectively, 5 (N=5) and 10

(N=10) IoT devices are adopted. In addition to comparing the

performance achieved by our proposed offline method with

that of three benchmarking algorithms RAN, CTF [22], and

HWG [23], we also compare the performance achieved by

the proposed online approach with that of three benchmarking

algorithms GEN, PSO, and GCS [12]. The mentioned bench-

marking algorithms are described below.

• RAN is an algorithm that randomly selects tasks whose

optional parts are to be completed for the purpose of

meeting the network QoS requirement.

• CTF [22] is a method that assigns QoS-critical jobs

higher priorities such that their optional cycles can be

completed first. The QoS-critical jobs are defined as tasks

with larger maximum optional cycles.

• HWG [23] is a state-of-the-art approach that integrates

a worst-fit based partitioning heuristic with genetic algo-

rithm to generate a task allocation that reduces energy

consumption while satisfying all design constraints.

• GEN is a method that replaces cross-entropy method

(lines 13-24 of Algorithm 2) with genetic algorithm [18]

to perform network lifetime optimization.

• PSO, similar to GEN, is an approach that uses the particle

swarm optimization algorithm [19] to replace the cross-

entropy method adopted in Algorithm 2.

• GCS [12] is a dynamic scheduling method that deter-

mines the best allocation of slack cycles for maximizing

QoS. For fair comparison, we stop the running of GCS

when the network QoS requirement is satisfied.

All the algorithms above are implemented in C++, and the

simulations are performed on a machine with Intel i7 Dual-

Core 3.5GHz processor and 16GB memory. We perform 1000

experiments to obtain the average of the simulation data.

TABLE I: Parameters of the simulated processor model [24].

No. v (V) f (GHz) Ceff (nF)
1 0.85 0.8010 13.0
2 0.90 0.8291 12.0
3 0.95 0.8553 14.0
4 1.00 0.8797 15.0
5 1.05 0.9027 17.0
6 1.10 1.0000 16.0
7 1.15 1.0527 18.0
8 1.20 1.1236 16.0
9 1.25 1.1867 19.0
10 1.30 1.2500 18.0

B. Simulation for Synthetic Applications

In this set of simulations, a set of synthetic MPSoC sys-

tems is adopted to execute synthetic applications. The supply

voltage v, operating frequency f , and effective switching

capacitance Ceff of ten processors built on 65nm technology

are listed in TABLE I. The number of processors of an MPSoC

system is randomly selected in the range [2, 10]. Task activity

factors are uniformly distributed in the interval [0.4, 1] [15].
The worst case execution cycles (WCEC) of tasks are assumed

to be in the range of [4 × 109, 6 × 1010] [25]–[27]. Each

task τm,i is instantiated by haphazardly picking two WCECs
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Fig. 6: The network lifetime when running 10 synthetic applications under N = 5 and varying offline QoS requirements.
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Fig. 7: The network lifetime when running 10 synthetic applications under N = 10 and varying offline QoS requirements.

from the range. One is for its mandatory part Mm,i and the

other is for its maximum optional part Om,i. The number of

tasks on individual IoT device is randomly selected from the

range [10, 30]. The amount of input data needed for each

task is randomly picked from the interval [1, 20]Mb [28].

The information matrix Ci is also generated in a random

way. The common deadline D of tasks is assumed to be

1.5 ×max{�τm,i∈Γi
Mm,i/fi,max| i = 1, 2, · · · , N}, where

fi,max is the maximum frequency supported by IoT device

ψi [24], [29]. The application period T is set to be the

same as the common deadline D. A set of Li-lion battery

banks equipped with [4, 10]Ah normal capacity and [15, 20]V
terminal voltage [30] is served as energy supply modules. For

the battery bank on each IoT device, its normal capacity and

terminal voltage are generated at random from corresponding

intervals. The amount of data per sampling cycle sensed by

sensors on IoT device ψi to acquire the input data required for

task τm,i is arbitrarily chosen from the interval [1, 5]Mb/s [31].

The power consumption of sensors and that of the signal

transceiver on each IoT device are indiscriminately picked

from the ranges [0.5, 2]W and [1, 5]W, respectively [32]. The

maximum iteration number tmax is set to 10.

1) Performance Comparison for Offline Approach: We uti-

lize a normalized network QoS requirement in the comparative

study, the maximum of which is set to 1. To be specific, the

network QoS requirement is normalized against the sum of

the maximum optional cycles of all tasks on N IoT devices.

Fig. 6 presents the normalized network lifetime under varying

offline QoS requirements when the local network consists of 5

IoT devices executing synthetic applications. The results given

in the figure clearly show that our proposed offline scheme

achieves better performance in terms of network lifetime

compared to the three benchmarking algorithms. For example,

in the case of Qoff
goal = 0.5, the network lifetime achieved by

the proposed approach is 96.25%, 41.86%, and 9.76% higher

on average than that of RAN, CTF, and HWG, respectively.

In the case of Qoff
goal = 0.6, the network lifetime achieved by

the proposed approach is 94.57%, 38.18%, and 9.24% higher

on average than that of RAN, CTF, and HWG, respectively.

In the case of Qoff
goal = 0.7, the network lifetime achieved by

the proposed approach is 92.8%, 36.6%, and 8.18% higher on

average than that of RAN, CTF, and HWG, respectively.

Fig. 7 plots the normalized network lifetime under varying

offline QoS requirements when the network consists of 10 IoT

devices executing synthetic applications. Similar to the results

shown in Fig. 6, our proposed offline algorithm significantly

improves the network lifetime. For instance, in the scenario of

Qoff
goal = 0.5, the network lifetime achieved by the proposed

approach is 122.22%, 59.02%, and 27.14% higher on average

than that of RAN, CTF, and HWG, respectively. In the scenario

of Qoff
goal = 0.6, the network lifetime achieved by the proposed

approach is 115.47%, 55.5%, and 23.05% higher on average

than that of RAN, CTF, and HWG, respectively. In the scenario

of Qoff
goal = 0.7, the network lifetime achieved by the proposed

approach is 111.08%, 50.21%, and 20.60% higher on average

than that of RAN, CTF, and HWG, respectively.

2) Performance Comparison for Online Approach: Fig. 8

depicts the normalized network lifetime under varying online

QoS requirements when the network consists of 5 IoT devices.

As demonstrated in the figure, our proposed online scheme

achieves remarkable network lifetime improvement compared

to the three benchmarking algorithms. To be specific, in the

case of Qon
goal = 0.55, the network lifetime achieved by the

proposed approach is 21.54%, 13.14%, and 11.74% higher on

average than that of GCS, GEN, and PSO, respectively. In the

case of Qon
goal = 0.65, the network lifetime achieved by the

proposed approach is 19.58%, 10.87%, and 10.42% higher on

average than that of GCS, GEN, and PSO, respectively. In the
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Fig. 8: The network lifetime when running 10 synthetic applications under N = 5 and varying online QoS requirements.
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Fig. 9: The network lifetime when running 10 synthetic applications under N = 10 and varying online QoS requirements.

case of Qon
goal = 0.75, the network lifetime achieved by the

proposed approach is 17.13%, 9.55%, and 9.90% higher on

average than that of GCS, GEN, and PSO, respectively.

TABLE II: The runtime (unit: s) on average for deriving the

scheduling of 10 synthetic applications under N = 5.

Qon
goal

The number of IoT device: N = 5
Proposed GEN PSO GCS Min. Sp Max. Sp

0.55 2.06 4.18 3.91 27.69 1.90x 13.44x
0.65 2.12 4.72 4.10 38.60 1.93x 14.76x
0.75 2.22 5.91 4.39 49.28 1.97x 22.15x

Fig. 9 plots the normalized network lifetime under varying

online QoS requirements when the network consists of 10

IoT devices. As shown in the figure, our proposed online

algorithm achieves better lifetime improvement compared to

the three benchmarking algorithms. Specifically, in the sce-

nario of Qon
goal = 0.55, the network lifetime achieved by the

proposed approach is 30.39%, 12.72%, and 16.28% higher on

average than that of GCS, GEN, and PSO, respectively. In the

scenario of Qon
goal = 0.65, the network lifetime achieved by the

proposed approach is 28.89%, 11.88%, and 15.06% higher on

average than that of GCS, GEN, and PSO, respectively. In the

scenario of Qon
goal = 0.75, the network lifetime achieved by

the proposed approach is 26.99%, 10.49%, and 12.85% higher

on average than that of GCS, GEN, and PSO, respectively.

TABLE III: The runtime (unit: s) on average for deriving the

scheduling of 10 synthetic applications under N = 10.

Qon
goal

The number of IoT device: N = 10
Proposed GEN PSO GCS Min. Sp Max. Sp

0.55 13.28 27.88 25.49 249.04 1.92x 18.76x
0.65 17.12 33.85 26.02 351.12 1.52x 20.50x
0.75 19.91 37.17 31.06 523.17 1.56x 26.27x

TABLE II demonstrates the runtime on average for deriving

the scheduling of synthetic applications using the proposed

online scheme and benchmarking schemes when the network

consists of 5 IoT devices. The metric Sp denotes the speedup

achieved by the proposed method when compared to the

baseline approach in terms of average runtime. It can be

easily seen from the table that our proposed online scheme

greatly reduces the runtime for deriving task scheduling. For

example, when online QoS requirement Qon
goal is set to 0.55,

our proposed online scheme can achieve up to 13.44 times

of speedup. TABLE III presents the runtime on average for

deriving the scheduling of synthetic applications using the

proposed online scheme and benchmarking schemes when the

network consists of 10 IoT devices. Similar to the results

presented in TABLE II, our proposed online scheme also

achieves better performance in terms of runtime compared to

the three benchmarking schemes. For instance, when online

QoS requirement Qon
goal is set to 0.55, our proposed online

scheme can achieve up to 18.76 times of speedup.

C. Simulation for Real-Life Applications

In this set of simulations, a set of practical MPSoC systems

that are constructed on Intel Core Duo processor, Intel Xeon

processor, AMD Athlon processor, TI DSP processor, and S-

PARC64 processor is adopted for simulation. All the processor

parameters of these MPSoC systems can be found in [14]. The

tool MEGA [33] that incorporates approximate computation is

utilized to generate real-life benchmarks. The settings of task

number, sensors, signal transceiver, and Li-lion battery bank

on each IoT device are the same as that of simulation for

synthetic applications.

1) Performance Comparison for Offline Approach: Fig. 10

demonstrates the normalized network lifetime under varying

offline QoS requirements when the local network consists of

5 IoT devices executing real-life tasks. The results given in
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Fig. 10: The network lifetime when running 10 real-life applications under N = 5 and varying offline QoS requirements.
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Fig. 11: The network lifetime when running 10 real-life applications under N = 10 and varying offline QoS requirements.

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 
L

ife
tim

e GCS GEN PSO PRO

(a) Qon
goal = 0.55

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
ife

tim
e 

GCS GEN PSO Proposed

(b) Qon
goal = 0.65

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10
N

or
m

al
iz

ed
 

L
ife

tim
e 

GCS GEN PSO Proposed

(c) Qon
goal = 0.75

Fig. 12: The network lifetime when running 10 real-life applications under N = 5 and varying online QoS requirements.
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Fig. 13: The network lifetime when running 10 real-life applications under N = 10 and varying online QoS requirements.

the figure clearly present that our proposed scheme achieves

higher network lifetime compared to the three benchmarking

algorithms. For example, in the case of Qoff
goal = 0.5, the net-

work lifetime achieved by the proposed approach is 155.62%,

70.30%, 25.18% higher on average than that of RAN, CTF,

and HWG, respectively. Fig. 11 plots the normalized network

lifetime under varying offline QoS requirements when the

network consists of 10 IoT devices executing real-life tasks.

Similar to the results shown in Fig. 10, our proposed offline

algorithm significantly improves the network lifetime.

2) Performance Comparison for Online Approach: Fig. 12

compares the normalized network lifetime under varying on-

line QoS requirements when the network consists of 5 IoT

devices executing real-life tasks. As demonstrated in the figure,

our proposed online scheme achieves higher network lifetime

compared to the three benchmarking algorithms. Take the

case of Qon
goal = 0.55 as an example, the network lifetime

achieved by the proposed approach is 19.75%, 10.87%, and

6.94% higher on average than that of GCS, GEN, and PSO,

respectively. Fig. 13 plots the normalized network lifetime

under varying online QoS requirements when the network

consists of 10 IoT devices executing real-life tasks. As shown

in the figure, our proposed online algorithm achieves striking

lifetime improvement compared to the three benchmarking
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algorithms. For example, in the scenario of Qon
goal = 0.55,

the network lifetime achieved by the proposed approach is

24.06%, 16.49%, and 11.13% higher on average than that of

GCS, GEN, and PSO, respectively.

TABLE IV: The runtime (unit: s) on average for deriving the

scheduling of 10 real-life applications under N = 5.

Qon
goal

The number of IoT device: N = 5
Proposed GEN PSO GCS Min. Sp Max. Sp

0.55 2.46 5.97 4.59 33.18 1.87x 13.51x
0.65 2.58 6.21 4.96 46.05 1.92x 17.85x
0.75 2.73 6.53 5.35 64.32 1.96x 23.59x

TABLE V: The runtime (unit: s) on average for deriving the

scheduling of 10 real-life applications under N = 10.

Qon
goal

The number of IoT device: N = 10
Proposed GEN PSO GCS Min. Sp Max. Sp

0.55 12.86 29.71 24.43 271.22 1.90x 21.09x
0.65 15.30 32.41 25.85 367.15 1.68x 23.99x
0.75 17.62 34.72 27.65 466.43 1.56x 26.47x

TABLE IV lists the runtime on average for deriving the

scheduling of real-life tasks when the network consists of

5 IoT devices. It can be easily seen from the table that

our proposed online scheme greatly reduces the runtime for

producing task scheduling. For example, when online QoS

requirement Qon
goal is set to 0.55, our proposed online scheme

can achieve up to 13.51 times of speedup. TABLE V presents

the runtime on average for deriving the scheduling of real-life

tasks when the network consists of 10 IoT devices. Similar

to the results presented in TABLE IV, our proposed online

scheme also achieves better performance in terms of runtime

compared to the three benchmarking schemes.

VII. CONCLUSION

In this paper, we tackle the problem of QoS-constrained

network lifetime optimization for approximate computation

real-time tasks in battery-powered IoT. Particularly, the mo-

bility of IoT devices is taken into consideration to avoid

redundant executions of the same task on different IoT devices

for energy reduction. Our proposed solution consists of a

mobility-aware offline scheme based on MILP technique and

a QoS-adaptive online scheme based on cross-entropy method.

Extensive simulations are conducted, and the experimental

results reveal that our proposed solution achieves remarkable

network lifetime improvement.
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