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Affinity-Driven Modeling and Scheduling for
Makespan Optimization in Heterogeneous

Multiprocessor Systems
Kun Cao, Junlong Zhou, Peijin Cong, Liying Li,

Tongquan Wei, Mingsong Chen, Shiyan Hu, and X. Sharon Hu

Abstract—With the advent of heterogeneous multiprocessor
architectures, efficient scheduling for high performance has
been of significant importance. However, joint considerations
of reliability, temperature, and stochastic characteristics of
precedence-constrained tasks for performance optimization make
task scheduling particularly challenging. In this paper, we tackle
this challenge by using an affinity (i.e., probability) -driven
task allocation and scheduling approach that decouples schedule
lengths and thermal profiles of processors. Specifically, we sep-
arately model the affinity of a task for processors with respect
to schedule lengths and the affinity of a task for processors with
regard to chip thermal profiles considering task reliability and
stochastic characteristics of task execution time and inter-task
communication time. Subsequently, we combine the two types
of affinities, and design a scheduling heuristic that assigns a
task to the processor with the highest joint affinity. Extensive
simulations based on randomly generated stochastic and real-
world applications are performed to validate the effectiveness
of the proposed approach. Experiment results show that the
proposed scheme can reduce the system makespan by up to 30.1%
without violating the temperature and reliability constraints
compared to benchmarking methods.

Index Terms—Affinity-driven modeling, stochastic dependent
tasks, scheduling, makespan, reliability, temperature.

I. INTRODUCTION

DUE to the advance of technology scaling and ever in-

creasing demand for performance, multiprocessors have

replaced uniprocessors to become the main design paradigm

for current and future processors [1], [2]. For multiprocessor

scheduling, a typical target is to minimize the overall length

of time required to execute the applications on processors,

namely makespan. Most of multiprocessor scheduling strate-

gies are designed based on worst-case execution times of

tasks. However, the uncertainty in task execution times are
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not considered. Since tasks in real-world usually contain

conditional instructions and/or operations, different inputs of

such a task may result in varying execution times [3]–[6].

Given this, some novel stochastic scheduling algorithms have

been investigated and developed. Tang et al. [3] presented a

stochastic earliest finish time scheduling scheme to schedule

tasks with random processing time and communication time

for makespan minimization. Li et al. [4] developed a heuristic

energy-aware stochastic task scheduling algorithm to jointly

optimize makespan and energy consumption of heterogeneous

computing systems. A stochastic dynamic level scheduling

algorithm was also presented by Li et al. [5] to tackle the

problem of minimizing a parallel application’s expected sched-

ule length (i.e., makespan) on heterogeneous cluster systems.

Zheng et al. [6] presented a Monte Carlo based scheduling

approach to minimize the expected value of makespan for

dependent tasks with stochastic execution times.

Reliability is another key concern in multiprocessor schedul-

ing. This is because the susceptibility of modern processors to

soft errors is dramatically increasing with the relentless scaling

of feature size and operating voltage [7]. Considerable research

efforts have been devoted to jointly handling makespan and

reliability issues [8]–[11]. Girault et al. [8] proposed a schedul-

ing algorithm that enables users to choose a tradeoff between

makespan and reliability. Sathappan et al. [9] developed a

modified genetic algorithm to improve system reliability and

makespan. Wang et al. [10] presented a look-ahead genetic

algorithm to optimize both makespan and reliability of a

workflow application in distributed computing environments.

Aupy et al. [11] addressed the problem of realizing energy

minimization under the constraints of a prescribed bound on

makespan and reliability. However, all the above works assume

that task execution times are fixed or determined, and the

uncertainty in task execution times is not taken into account.

With the ever continued technology scaling, the chip power

density has increased exponentially, which in turn leads to

the elevated chip temperature. A system will fall into the

predicament of functional incorrectness, low reliability and

even permanent damage if the operating temperature exceeds

a certain threshold [12]. Thus, thermal management has been a

significant and pressing research issue in computing systems.

Numerous thermal management techniques such as dynamic

voltage-frequency scaling (DVFS) [13], scheduling priority

adjustments [14], task migration [15], and task splitting [16]

have been proposed to obtain high-performance computing
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capability while maintaining the peak temperature of chips

below a specified temperature limit. However, thermal-aware

designs themselves based on these techniques cannot guaran-

tee a dependable system operation since reliability is not taken

as a design constraint.

To the best of our knowledge, no research effort has been

devoted to optimizing makespan with joint considerations of

stochastic task execution times, reliability, and temperature.

In [3]–[6], it has been shown that stochastic algorithms achieve

better performance in terms of makespan than the algorithms

that use worst-case execution times of tasks. Since makespan

minimization is a typical optimization goal while both relia-

bility and temperature issues should be carefully addressed

in the design of heterogeneous multiprocessor systems, it

is necessary to optimize makespan by jointly considering

stochastic task execution times, reliability, and temperature. In

this paper, we explore this optimization problem and propose

an effective affinity-driven task scheduling scheme. The major

contributions of this paper are summarized as follows.

• We separately model the affinity of a task for processors

with respect to schedule lengths and the affinity of a task

for processors with regard to chip thermal profiles. Task

reliability and stochastic characteristics of task execution

time and inter-task communication time are considered.

• We derive a joint affinity of a task for processors, and

propose an affinity-driven task scheduling heuristic for

makespan optimization under the reliability and temper-

ature constraints. Task precedence constraints are taken

into account in the scheduling heuristic.

• We conduct extensive simulation experiments based on

real-world and randomly generated stochastic application-

s. The results show that the proposed scheme can reduce

up to 30.1% makespan without violating the temperature

and reliability constraints.

The rest of the paper is organized as follows. Section II

introduces the system models. Section III formulates the

problem definition. Section IV models the affinity of a task

for processors, and Section V describes the proposed affinity-

driven scheduling heuristic. The effectiveness of the proposed

scheme is verified by simulation in Section VI and concluding

remarks are given in Section VII.

II. SYSTEM MODELS

A. Architecture Model

We consider a loosely coupled heterogeneous multipro-

cessor system like a cluster of machines [4], [5], [17],

[18]. Each machine is characterized by a processor and

thus the system can be modeled as M heterogeneous pro-

cessors Θ = {Θ1,Θ2, · · · ,ΘM}. Every processor Θk ∈
Θ (1 ≤ k ≤ M) is equipped with �k discrete sup-

ply voltage and operating frequency pairs denoted by

{(vk,1, fk,1), (vk,2, fk,2), · · · , (vk,ι, fk,ι), · · · , (vk,�k , fk,�k)}
(1 ≤ ι ≤ �k). For the sake of easy presentation, vk,min =
vk,1 ≤ vk,2 ≤ · · · ≤ vk,�k = vk,max = 1.0 and

fk,min = fk,1 ≤ fk,2 ≤ · · · ≤ fk,�k = fk,max = 1.0
hold, where (vk,min, fk,min) is the minimal supply voltage

and operating frequency pair whereas (vk,max, fk,max) is the

maximal supply voltage and operating frequency pair. Every

processor Θk supports one sleep mode and �k active modes

that are characterized by the supply voltage and operating

frequency pair (vk,ι, fk,ι). Tasks can be only executed in the

active mode and the processor is idle when it is in sleep mode.

The data transfer rate of inter-processor is considered to be

fixed and constant while the communication cost of intra-

processor is assumed to be negligible [18].

(2.2,0.9)(1.7,1.1) (1.8,0.9)

(3.2,2.1) (2.2,1.3) (1.3,1.8)
(2.7,3.1)

Fig. 1: An example of a stochastic parallel application.

B. Application Model
Assume that stochastic parallel applications are to execute

on the target system. Such an application consists of prece-

dence constrained tasks and can be represented by a directed

acyclic graph (DAG) G = (V,E). V = {τ1, · · · , τi, · · · , τN}
denotes the set of N tasks. E is the set of edges corresponding

to the precedence constraint between tasks. For the edge

(τi, τj) ∈ E, task τi is a direct predecessor of task τj , which

means task τj cannot start to execute until task τi finishes its

execution. The characteristic of task τi is described by a tuple

τi : {μi, E[ti,k,ι], V ar[ti,k,ι], E[ci,j ], V ar[ci,j ], RG}. μi is the

activity factor of task τi, which demonstrates the heterogenous

nature of tasks [16]. ti,k,ι is the fault-free execution time of

task τi executing on processor Θk at frequency fk,ι. E[ti,k,ι]
and V ar[ti,k,ι] are the expected value and variance of ti,k,ι,
respectively. E[ci,j ] and V ar[ci,j ] are the expected value and

variance of communication time ci,j between task τi and task

τj , respectively. RG is the reliability goal of an application and

it is also the reliability goal of each task in the application [19].
Since tasks usually contain conditional instructions and/or

operations, different inputs of such a task result in vary-

ing execution times that approximately follow normal dis-

tributions [4], [5]. Therefore, we use the notation ti,k,ι ∼
N(E[ti,k,ι], V ar[ti,k,ι]) to denote the normal distribution of

task execution time ti,k,ι. The communication time ci,j be-

tween task τi and task τj is equal to zero if the two tasks

are assigned to the same processor, and follows normal

distribution otherwise [4]. Similarly, the probability distri-

bution of communication time ci,j can be represented by

ci,j ∼ N(E[ci,j ], V ar[ci,j ]). Fig. 1 shows an example of

a stochastic parallel application. The normal distributions of

communication times among tasks are given in the figure,

and the normal distributions of task execution times on two

heterogeneous processors are listed in Table I. All the values

in Fig. 1 and Table I are generated by using the tool of Task

Graphs for Free (TGFF) [20] which will be detailed later in

Section VI-A.
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TABLE I: The normal distribution of execution time ti,k,ι.

TI DSP processor Intel Xton processor

Task ti,1,1 ti,1,2 ti,2,1 ti,2,2 ti,2,3

τ1 N(4.1, 2.4) N(2.6, 1.0) N(4.6, 0.9) N(3.3, 1.7) N(2.2, 1.6)

τ2 N(2.9, 1.8) N(2.0, 1.3) N(3.1, 1.1) N(2.2, 0.9) N(1.5, 0.4)

τ3 N(3.5, 2.1) N(2.5, 2.4) N(4.0, 3.2) N(2.9, 1.4) N(1.9, 1.6)

τ4 N(4.7, 2.3) N(3.0, 1.7) N(5.0, 4.1) N(3.6, 2.6) N(2.6, 1.4)

τ5 N(4.4, 1.7) N(2.8, 2.1) N(4.8, 2.0) N(3.5, 2.7) N(2.5, 2.2)

τ6 N(3.8, 1.3) N(2.4, 0.6) N(4.3, 1.1) N(3.0, 0.7) N(2.1, 1.5)

C. Reliability Model

Transient fault (resulting in soft error) is a type of failure

that appears for a short time and then disappears without

damage to the device, and is caused by electromagnetic

interference or cosmic radiation. Exponential distribution is

typically utilized to model soft errors. The average fault rate

of processor Θk at operating frequency fk,ι is modeled as [21]

λ(fk,ι) = λk,max10
dk(1−fk,ι)

1−fk,1 , (1)

where λk,max is the average fault rate at processor maximal

frequency fk,max, and dk (> 0) is a hardware specific factor

indicating the sensitivity of fault rates to frequency scaling.

The reliability of a task is defined as the probability of its

successful execution without the occurrence of soft errors, and

can be determined by the exponential failure law. Therefore,

using the exponential distribution assumption, the reliability

of task τi running at frequency fk,ι without considering

precedence constraints is expressed as [21]

R′(τi, fk,ι) = e−λ(fk,ι)ti,k,ι . (2)

When considering precedence constraints between tasks, the

reliability of task τi is then given by

R(τi, fk,ι) = R(τmi
, τpi

, τqi , · · · , τsi , τni
) ·R′(τi, fk,ι). (3)

In Eq. (3), R(τmi
, τpi

, τqi , · · · , τsi , τni
) indicates the proba-

bility that all the direct predecessors τmi
, τpi

, τqi , · · · , τsi , τni

of task τi are successfully executed, and it is calculated as

R(τmi
,τpi

, τqi , · · · , τsi , τni
) = R(τmi

)R(τpi
|τmi

) ·
R(τqi |τmi

, τpi
) · · ·R(τni

|τmi
, τpi

, τqi , · · · , τsi). (4)

Reliability R(τmi
), omitting the operating frequency of task

τmi
, denotes the probability of successful execution of task

τmi , and reliability R(τni |τmi , τpi , τqi , · · · , τsi) represents the

conditional probability of successful execution of task τni

when tasks τmi
, τpi

, τqi , · · · , τsi are all successfully executed.

We adopt the task replication technique to provide fault-

tolerance, since it has been widely used in improving system

reliability due to transient faults. Furthermore, we consider

systems that use replication to tolerate up to one transient

fault since single-fault-tolerance is a common assumption [2].

In addition, uniform processor and frequency is adopted for all

replicas of a given task to reduce the computational overhead.

To check the occurrence of soft errors, an acceptance test [22]

is performed at the end of execution of each task replica. If

the acceptance test indicates no error, then the output of the

task replica is committed; otherwise, it is discarded. Since the

time overhead of acceptance test is much smaller than task

execution time [22], we assume that the time overhead for

fault detection does not increase task execution time.

D. Power Model

The power consumption of a CMOS-based processor can

be modeled as the sum of static power consumption P sta and

dynamic power consumption P dyn [16]. P sta is consumed

by the leakage current required to maintain basic state of

circuits. The static power consumption at the supply voltage

and frequency pair (vk,ι, fk,ι) is given by [16]

P sta
k,ι = ϑkvk,ι + ηkvk,ιTk(t), (5)

where ϑk and ηk are non-negative architecture dependent con-

stants of processor Θk, and Tk(t) is the operating temperature

of processor Θk at time instance t.
The dynamic power consumption of a processor is only

related to processor switching activity when executing tasks

and can be formulated as a function of supply voltage and

operating frequency. The dynamic power consumption when

executing task τi at the supply voltage and operating frequency

pair (vk,ι, fk,ι) is calculated as [16]

P dyn
i,k,ι = μiρkv

2
k,ιfk,ι, (6)

where μi is the active factor of task τi and ρk is a non-negative

constant depending on the architecture of processor Θk.

E. Temperature Model

An accurate and practical temperature model is needed to

accurately characterize the thermal behavior of a task. For

a loosely coupled heterogeneous multiprocessor system like a

cluster of machines, the heat transfer among multiple machines

has shown to be negligible [17], [23]. Given this, we adopt

a heat-independent RC thermal model widely utilized for

thermal-aware task scheduling to capture thermal profiles. The

RC thermal model is expressed by the following system of

ordinary differential equation [13], [24]

C
dT (t)

dt
= P (t)− T (t)− T amb

R
, (7)

where P (t) is the power consumption at time instance t, and

it can be obtained using Eqs. (5)–(6). R and C are thermal

resistance and capacitance, respectively and they are hardware

dependent constants. T amb is the ambient temperature.

Let T amb
k , Rk, and Ck represent the ambient temperature,

thermal resistance, and thermal capacitance of processor Θk,

respectively. Then, for a given time interval [t0, t0 + ti,k,ι],
if the initial temperature is T init

i,k,ι, the ending temperature of

executing task τi on processor Θk at the supply voltage and

frequency pair (vk,ι, fk,ι), denoted as T end
i,k,ι, can be derived by

solving Eq. (7). The derivation of ending temperature T end
i,k,ι is

described in Eqs. (8)–(10) [24]. In Eq. (10), T std
i,k,ι is the steady

state temperature of task τi when executing on processor Θk at

the supply voltage and frequency pair (vk,ι, fk,ι). The steady

state temperature of task τi is the temperature that will be

reached if infinite number of instances of task τi execute

continuously on the processor.

III. PROBLEM DEFINITION

The system makespan can be defined as the overall length

of time required to complete the tasks of applications on pro-
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dTk(t)

dt
=

T amb
k + ϑkRkvk,ι + ηkRkvk,ιTk(t) + μiρkRkv

2
k,ιfk,ι

RkCk
− Tk(t)

RkCk
(8)

� t0+ti,k,ι

t0

dt =

� T end
i,k,ι

T init
i,k,ι

dTk(t)
Tamb
k

+ϑkRkvk,ι+μiρkRkv2
k,ι

fk,ι

RkCk
− (

1−ηkRkvk,ι

RkCk
)Tk(t)

(9)

��
� T end

i,k,ι = T std
i,k,ι − (T std

i,k,ι − T init
i,k,ι)e

−(
1−ηkRkvk,ι

RkCk
)ti,k,ι

T std
i,k,ι =

Tamb
k +ϑkRkvk,ι+μiρkRkv

2
k,ιfk,ι

1−ηkRkvk,ι

(10)

cessors. Let MS(k) be the schedule length of tasks executing

on processor Θk, the makespan of the whole system is then

the maximum of schedule length of processors, that is,

MS = max{MS(k)|k ∈ [1, 2, · · · ,M ]}. (11)

For the DAG G = (V,E) of an application, the precedence

constraints among tasks should be satisfied. Let E[tf (i)] and

E[ts(j)] denote the expected finish execution time of task τi,
and the expected start execution time of task τj , respectively.

A binary variable Δi,j is utilized to indicate the precedence

constraint between task τi and task τj . If task τi precedes task

τj , Δi,j takes the value of 1, otherwise takes the value of 0.

Task τi precedes task τj meaning that there exists a path from

task τi to task τj .

To avoid temperature-induced failures, the peak temperature

of processors should be below a temperature limit (threshold)

Tmax. The value of Tmax is in general specified based on

system design requirements. Let T peak
k denote the peak tem-

perature of processor Θk, then the on-chip peak temperature,

denoted by T peak, can be calculated as

T peak = max{T peak
k |k ∈ [1, 2, · · · ,M ]}. (12)

The system is deemed to be safe when the peak tem-

perature T peak does not exceed the threshold temperature

Tmax. In addition to the temperature constraint, all tasks

in an application should achieve their reliability goals, and

maintain the precedence constraints. Considering the above

design constraints, the task allocation and scheduling problem

to minimize the expected value E[MS] of makespan for an

M -processor system can be formulated into the below form.

Minimize: E[MS] (13)

Subject to: TSpeak ≤ Tmax (14)

RG ≤ RS(τi) (15)

E[(tf (i) + ci,j)] ·Δi,j ≤ E[ts(j)] (16)

∀i, j ∈ [1, 2, · · · , N ]

TSpeak is the estimated value of T peak, and RS(τi) is the

estimated reliability for task τi. Eq. (14) is the temperature

constraint, which prevents the peak temperature from exceed-

ing the temperature limit. Eq. (15) is the reliability constraint,

which means the reliability goal of every task should be

satisfied. Eq. (16) is the precedence constraint, which suggests

task τj cannot start its execution until task τi ends if task τi
precedes task τj .

IV. MODELING THE AFFINITY OF A TASK

In this section, we model the affinity of a task for processors

considering reliability, temperature, and stochastic character-

istics of task execution time and inter-task communication

time. First, task replication technique is adopted to provide

the required level of fault-tolerance in Section IV-A. Then,

Section IV-B models the affinity of a task for processors

with respect to schedule lengths, and Section IV-C models the

affinity of a task for processors with regard to thermal profiles.

Section IV-D finally shows the way to calculate the processor

sleep time utilized in the modeling of the two affinities.

A. Calculating Task Replication Number

Since task execution time ti,k,ι is normally distributed,

the reliability R′(τi, fk,ι) without precedence constraints in

Eq. (2) follows a log-normal distribution [25]

R′(τi, fk,ι) ∼ ln[N(P (τi, fk,ι), Q(τi, fk,ι))]. (17)

where P (τi, fk,ι) = −λ(fk,ι)E[ti,k,ι] and Q(τi, fk,ι) =
λ2(fk,ι)V ar[ti,k,ι]. The expected value and variance of re-

liability R′(τi, fk,ι) are then given by�
E[R′(τi, fk,ι)] = eP (τi,fk,ι)+

1
2Q(τi,fk,ι)

V ar[R′(τi, fk,ι)] = E2[R′(τi, fk,ι)](eQ(τi,fk,ι) − 1)
. (18)

During the step of deriving the minimum number of replicas

of task τi, the minimum replicated number of its direct

predecessors has already been determined in previous steps.

That is, R(τmi
, · · · , τni

) in Eq. (3) is a known value at

that moment. Therefore, the expected value and variance

of reliability R(τi, fk,ι) with precedence constraints can be

calculated by Eq. (19) and Eq. (20), respectively.

E[R(τi, fk,ι)] = R(τmi , · · · , τni) ·E[R′(τi, fk,ι)] (19)

V ar[R(τi, fk,ι)] = R2(τmi , · · · , τni) ·V ar[R′(τi, fk,ι)] (20)

R(τi, fk,ι) can be estimated by

RS(τi, fk,ι) ≈ E[R(τi, fk,ι)] + Λi,k,ι

�
V ar[R(τi, fk,ι)], (21)

where Λi,k,ι is a constant number. Given this, the reliability

of τi considering γi replica execution is thus estimated by

RS(τi,fk,ι, γi) = 1− (1−RS(τi1 , fk,ι)) ·
(1−RS(τi2 , fk,ι)) · · · (1−RS(τiγi , fk,ι)), (22)
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TABLE II: An example of replica parameter table: execution times of task replicas in multimedia application mpegplay.

Task Frequency 1st Replica 2nd Replica 3rd Replica · · · 1st–2nd Replica 1st–3rd Replica · · ·
τ1

f1 N(32.6, 22.8) N(30.2, 19.7) N(28.3, 16.7) · · · N(62.8, 35.7) N(91.1, 46.8) · · ·
f2 N(18.9, 10.2) N(18.1, 9.9) N(17.9, 11.5) · · · N(37.0, 14.1) N(54.9, 26.3) · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

τ30
f1 N(46.4, 25.3) N(40.5, 22.0) N(38.8, 27.7) · · · N(86.9, 42.7) N(125.7, 66.1) · · ·
f2 N(32.1, 16.8) N(26.9, 12.3) N(29.6, 18.1) · · · N(59.0, 30.2) N(88.6, 50.4) · · ·

and the minimum replica number γi required to achieve the

target reliability goal RG for task τi can be easily derived by

RS(τi, fk,ι, γi) ≥ RG. (23)

RS(τiγi , fk,ι) is the estimated reliability of γith replica τiγi of

task τi executing at frequency fk,ι. The execution time distri-

bution N(E[ti1,k,ι], V ar[ti1,k,ι]), N(E[ti2,k,ι], V ar[ti2,k,ι]),
· · · , N(E[tiγi ,k,ι], V ar[tiγi ,k,ι]) of replica τi1 , τi2 , · · · , τiγi
of task τi can be obtained from the replica parameter table.

TABLE II is an example of replica parameter table, which

illustrates execution times of task replicas in multimedia

application mpegplay consisting of 30 tasks running on a TI

DSP processor. The TI DSP processor supports two supply

voltage and operating frequency pairs: one is (0.98V, 2.0GHz)

and the other is (1.42V, 3.0GHz) [4]. In TABLE II, the

columns “1st replica”, “2nd replica”, and “3rd replica” present

execution time distributions of the first replica, second replica,

and third replica of tasks, respectively. The columns “1st–2nd

replica” and “1st–3rd replica” indicate the time distributions

of consecutively executing the first and second replica, and

the first, second, and third replica of tasks, respectively. This

replica parameter table is obtained by using the technique of

profiling task off-line traces [4], [26], [27]. Using this tech-

nique, we can get the replica parameter table of tasks executing

on the target heterogeneous multiprocessor system. Therefore,

reliability RS(τi1 , fk,ι), RS(τi2 , fk,ι), · · · , RS(τiγi , fk,ι) can

be readily calculated by using Eq. (21). Once the minimum

replica number γi of task τi executing at frequency fk,ι is

derived by using Eq. (23), we can obtain the distribution of

execution time ti,k,ι from the replica parameter table when

replicas from τi1 to τiγi of task τi are sequentially executed

to fulfill task reliability constraint.

B. Modeling the Affinity with Respect to Schedule Lengths
The affinity Ak,w of task τi for processor Θk with respect

to schedule lengths is defined as

Ak,w = 1− MS(k)

max1≤k≤M MS(k)
. (24)

The schedule length MS(k) of processor Θk is given by

MS(k) =

�
ω(i, k) + t′slpi,k,ι + ti,k,ι τi ∈ Qk

MS(k) otherwise
. (25)

where ω(i, k) = max {MS(k), CF (i, k)}. From Eqs. (24)–

(25) we can see that the smaller the schedule length MS(k)
is, the higher the affinity Ak,w is. In Eq. (25), ω(i, k)+ t′slpi,k,ι

is the start execution time of task τi if task τi is assigned to

processor Θk. Qk is the task queue on processor Θk. t′slpi,k,ι

is the estimated value of sleep time tslpi,k,ι that is utilized to

prevent the peak temperature of processor Θk from exceeding

temperature limit (The way to calculate sleep time tslpi,k,ι and

estimated sleep time t′slpi,k,ι will be detailedly described in

Section IV-D.). CF (i, k) is the communication finish time

between task τi and its direct predecessors when task τi is

assigned to processor Θk, and it is given by

CF (i, k) = max
τm∈pre(τi)

(tf (m) + cm,i), (26)

where pre(τi) denotes the set of tasks that are direct predeces-

sors of task τi. We below present a theorem which shows that

the finish execution time of each task is normally distributed.

Theorem 1: For any task DAG G = (V,E) where both
task execution time and inter-task communication time are
normally distributed, the finish execution time of each task
is normally distributed as well.

Proof: We use the approach of structural induction to

prove this theorem. First, for the induction basis, the finish

execution time tf (1) of entry task τ1 is given by tf (1) =

t′slp1,k,ι + t1,k,ι. Since the execution time t1,k,ι is normally

distributed and t′slp1,k,ι is a determined value, it is easy to

see that their sum t′slp1,k,ι + t1,k,ι is normally distributed [28].

Next, for the induction, we consider the allocation of task τi
(2 ≤ i ≤ N) to processor Θk. The induction hypothesis is

that the finish execution times of all tasks before assigning

task τi to processor Θk are normally distributed. That is, the

finish execution times of task τ2, τ3, · · · , τi−1 are normally

distributed. Since both the finish execution time tf (m) and

communication time cm,i in Eq. (26) are normally distributed,

maxτm∈pre(τi)(tf (m) + cm,i) follows a normal distribution

and its distribution can be derived by using Clark’s equations

which calculate the expected value and variance of the greatest

of multiple normally distributed random variables [29]. Take

the case where task τi has two direct predecessors τm′ and

τn′ as an example. According to Clark’s equations [29], the

expected value and variance of communication finish time

CF (i, k) are given by Eq. (27). In a similar way, Clark’s

equations can be used recursively to derive expected value and

variance of the greatest of multiple (≥ 3) normally distributed

random variables. Before task τi is assigned to processor Θk,

the current schedule length MS(k) is normally distributed.

This is because the current schedule length MS(k) is the

finish execution time of the last task assigned to processor

Θk. Therefore, the item ω(i, k) defined in Eq. (25) is normally

distributed, and its expected value and variance can be derived

by using Clark’s equations in a same way as illustrated in

Eq. (27). Since ω(i, k) and ti,k,ι are normally distributed as

analyzed above, and t′slpi,k,ι is the estimated value of sleep

time, their sum ω(i, k) + ti,k,ι + t′slpi,k,ι in Eq. (25) follows
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�������
E[CF (i, k)] = {E[tf (m

′)] + E[cm′,i]}Φ(b) + {E[tf (n
′)] + E[cn′,i]}Φ(−b) + aϕ(b)

V ar[CF (i, k)] = ({E[tf (m
′)] + E[cm′,i]}2 + {V ar[tf (m

′)] + V ar[cm′,i]})Φ(b)+
({E[tf (n

′)] + E[cn′,i]}2 + {V ar[tf (n
′)] + V ar[cn′,i]})Φ(−b)+

({E[tf (m
′)] + E[cm′,i]}+ {E[tf (n

′)] + E[cn′,i]})aϕ(b)− E2[CF (i, k)]

(27)

where

���������
a =

�
{V ar[tf (m′)] + V ar[cm′,i]}+ {V ar[tf (n′)] + V ar[cn′,i]}

b = ({E[tf (m
′)] + E[cm′,i]} − {E[tf (n

′)] + E[cn′,i]})/a
ϕ(x) = (2π)−1/2e−x2/2

Φ(x) =
� x
−∞ ϕ(t)dt

a normal distribution with the expected value and variance

given below [28].�
E[ω(i, k) + ti,k,ι + t′slpi,k,ι] = E[ω(i, k)] + E[ti,k,ι] + t′slpi,k,ι

V ar[ω(i, k) + ti,k,ι + t′slpi,k,ι] = V ar[ω(i, k)] + V ar[ti,k,ι]

(28)

Thus, we finally conclude that the finish execution time tf (i)
of task τi is normally distributed. The theorem is proved. �

According to Theorem 1 and its proof, we can see that

MS(k) and max1≤k≤M MS(k) in Eq. (24) are two correlated

normal random variables. Let X1 represent MS(k), X2 denote

max1≤k≤M MS(k), and X denote the ratio X1/X2. Based on

the work [30], the cumulative distribution function F (x) of X
can be expressed as

F (x) ≈ 1√
2π

� E[X2]x−E[X1]√
V ar[X1]V ar[X2]S(x)

−∞
e−

1
2 t

2

dt, (29)

where S(x) = ( x2

V ar[X1]
− 2x

V ar[X2]
+ 1

V ar[X2]
)

1
2

. It is clear

that for a given value x0, F (x0) is a determined value rather

than a random variable. Therefore, using F (x0) and Eq. (24),

the affinity Ak,w is readily derived.

C. Modeling the Affinity with Regard to Thermal Profiles

We select the ending temperature of a task to characterize its

thermal profiles since the peak temperature of a task execution

is reached at its start/ending time instant [31]. Given this, the

affinity Ak,t of task τi for processor Θk with regard to thermal

profiles is derived as

Ak,t =

�
1− TSend

i,k,ι

Tmax TSend
i,k,ι < Tmax

0 otherwise
, (30)

where TSend
i,k,ι is the estimated value of ending temperature

T end
i,k,ι when task τi is executed on processor Θk at frequency

fk,ι. From the above equation we can see that the lower the

estimated value TSend
i,k,ι is, the higher the affinity Ak,t is.

Since the execution time of task τi follows a normal

distribution, the ending temperature T end
i,k,ι is a random variable

and it has been given by Eq. (10). According to the definition

of log-normal distribution, we have the following log-normal

distribution about temperature [25]

T end
i,k,ι − T std

i,k,ι

T init
i,k,ι − T std

i,k,ι

∼ lnN(ζk,ιE[ti,k,ι], ζ
2
k,ιV ar[ti,k,ι]), (31)

where ζk,ι = −(
1−ηkRkvk,ι

RkCk
). For simplicity, we use the

notation 	T end
i,k,ι to represent

T end
i,k,ι−T std

i,k,ι

T init
i,k,ι

−T std
i,k,ι

, thus Eq. (31) becomes

	T end
i,k,ι ∼ lnN(ζk,ιE[ti,k,ι], ζ

2
k,ιV ar[ti,k,ι]). (32)

According to the manipulation of log-normal distribution, the

expected value and variance of 	T end
i,k,ι are given by [25]�

E[ 	T end
i,k,ι] = eζk,ιE[ti,k,ι]+

1
2 ζ

2
k,ιV ar[ti,k,ι]

V ar[ 	T end
i,k,ι] = E2[ 	T end

i,k,ι](e
ζ2
k,ιV ar[ti,k,ι] − 1)

. (33)

The expected value and variance of ending temperature T end
i,k,ι

are hence expressed as�
E[T end

i,k,ι] = (T init
i,k,ι − T std

i,k,ι)E[ 	T end
i,k,ι] + T std

i,k,ι

V ar[T end
i,k,ι] = (T init

i,k,ι − T std
i,k,ι)

2V ar[ 	T end
i,k,ι]

. (34)

Based on Eq. (34), the ending temperature T end
i,k,ι can be

estimated by

TSend
i,k,ι ≈ E[T end

i,k,ι] + Λend
i,k,ι

�
V ar[T end

i,k,ι], (35)

where Λend
i,k,ι is a constant number.

Due to precedence constraints, task execution may not be

continuous on a processor. This leads to the fact that the ending

temperature of a task may not be the initial temperature of its

successive task executed on the same processor. However, the

initial temperature T init
i,k,ι of task τi is a determined value in

Eq. (34). To estimate the ending temperature T end
i,k,ι of task

τi, it should firstly determine the initial temperature T init
i,k,ι.

When task τi is assigned to processor Θk, task τi can be

executed if and only if i) processor Θk is in idle mode,

ii) the communication between task τi and its predecessors

is finished, and iii) the temperature constraint is not violated.

Therefore, this idle period p(i, k) is calculated as

p(i, k) = ω(i, k)−MS(k) + t′slpi,k,ι, (36)

where both ω(i, k) and MS(k) are normally distributed as

analyzed before. The expected value and variance of idle
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period p(i, k) can be given by [28]���
��

E[p(i, k)] = E[ω(i, k)]− E[MS(k)] + t′slpi,k,ι

V ar[p(i, k)] = V ar[ω(i, k)] + V ar[MS(k)]

−2Cov(ω(i, k),MS(k))

, (37)

where Cov(ω(i, k),MS(k)) is the covariance between ω(i, k)
and MS(k), and it can be calculated as

Cov(ω(i, k),MS(k)) = E[ω(i, k) ·MS(k)]−
E[ω(i, k)] ·E[MS(k)]. (38)

However, since ω(i, k) ·MS(k) does not follow an exist-

ing probability distribution, it is difficult to directly derive

E[ω(i, k) ·MS(k)]. Consider the fact that we are only inter-

ested in getting an approximate affinity of task assignment, we

ignore the calculation of Cov(ω(i, k),MS(k)) for simplicity.

Therefore, the variance V ar[p(i, k)] is given by

V ar[p(i, k)] = V ar[ω(i, k)] + V ar[MS(k)]. (39)

The probability distribution of idle period p(i, k) is expressed

as p(i, k) ∼ N(E[p(i, k)], V ar[p(i, k)]) due to the fact that

both ω(i, k) and MS(k) are normally distributed [28], and

this idle period can be treated as an idle task to lower the on-

chip temperature. Given this, the ending temperature of this

idle task can be easily estimated by using Eq. (35), and the

estimated temperature is also the initial temperature of task τi.

D. Calculating Processor Sleep Time

Sleep mode distribution [16] can be utilized to calculate

the minimal time for a processor to stay in sleep mode while

incurring minimum impact on system makespan. The sleep

mode distribution is mainly achieved by two steps. It first

derives the safe temperature T safe
i,k,ι of task τi under the peak

temperature constraint, then calculates the sleep period tslpi,k,ι

that the processor needs to stay in the sleep mode to reduce

temperature from T init
i,k,ι to T safe

i,k,ι . The safe temperature T safe
i,k,ι

of task τi is defined as the threshold of the initial temperature

of task τi. If processor Θk continues to execute task τi when

the initial temperature T init
i,k,ι is higher than the safe temperature

T safe
i,k,ι , the temperature constraint would be definitely violated.

The derivation of safe temperature for a task with determined

execution time has been thoroughly explored in [16], and we

suggest readers to refer to [16] for more details.

However, the sleep mode distribution ignores the stochastic

characteristics of tasks. We develop the sleep mode distribution

to make it suitable for stochastic task scheduling. Since execu-

tion time ti,k,ι is normally distributed, the expected value and

variance of safe temperature T safe
i,k,ι can be calculated as [28]��

�
E[T safe

i,k,ι ] = T std
i,k,ι − (T std

i,k,ι − Tmax)/E[ �T end
i,k,ι]

V ar[T safe
i,k,ι ] =

�
|Tmax − T std

i,k,ι|V ar[ �T end
i,k,ι]/e

− 4E[ti,k,ι]

RkCk

.

(40)

The estimated safe temperature TSsafe
i,k,ι is hence derived as

TSsafe
i,k,ι ≈ E[T safe

i,k,ι ] + Λsafe
i,k,ι

�
V ar[T safe

i,k,ι ], (41)

where Λsafe
i,k,ι is a constant number. Once the estimated safe

temperature TSsafe
i,k,ι is derived, we can calculate how long

the processor needs to stay in sleep mode to reduce the

temperature from T init
i,k,ι to TSsafe

i,k,ι . The sleep period tslpi,k,ι of

processor Θk can be estimated by

t′slpi,k,ι = (−RkCk)ln(TS
safe
i,k,ι /T

init
i,k,ι). (42)

V. AFFINITY-DRIVEN TASK SCHEDULING HEURISTIC

The proposed affinity-driven scheduling heuristic operates

as follows. For every task, the weighted affinities of assigning

the task to all processors are first calculated based on the

schedule lengths and thermal profiles of processors. Then, the

processor with highest weighted affinity is chosen to execute

the task. The weighted affinity of a task for a processor is

defined as follows. Let Ak represent the weighted affinity of

task τi for processor Θk, and it is given by

Ak = α×Ak,w + (1− α)×Ak,t, (43)

where Ak,w is the affinity determined by schedule lengths,

whereas Ak,t is the affinity determined by thermal profiles.

α (in the range [0, 1]) is the weighting parameter, and it is

introduced to combine affinity Ak,w and affinity Ak,t.

The proposed task scheduling heuristic is implemented by

Algorithm 1. Inputs of Algorithm 1 are the weighting parame-

ter, replica parameter table, peak temperature limit, task DAG,

and processor set. Line 1 initializes task assignment, task

operating frequency, sleep time, and task replicated number.

Line 2 constructs a queue Q of tasks in topological order.

Lines 3-31 iteratively determine the most suitable processor

and frequency for all tasks. In each round of iteration, line 4

derives the minimum replicated number of task τi executing

on every processor’s frequency. Line 5 gets task τi’s execution

time distribution with consideration of replica execution from

the replica parameter table. Line 6 sets the operating frequency

f(τi) of task τi to the maximal frequency f1,max of processor

Θ1, and initializes t′slpi,1 and f1(τi). The derivation of the

ending temperature TSend
i,1,max of task τi is implemented in

line 7. If TSend
i,1,max > Tmax holds, Algorithm 2 is called

to reduce the temperature of task τi (lines 8-10). Line 11

calculates the affinity A1(τi) of allocating task τi to processor

Θ1 with operating frequency f1(τi). Line 12 initializes Amax

and flag, where flag indicates the index of processor that

generates the maximal affinity Amax. Line 13 sets the sleep

time t′slpi to t′slpi,1 , and replicated number γi to γi,flag,f1(τi)
which is the minimum replicated number of task τi executing

on processor Θflag at operating frequency f1(τi). Lines 14-27

iteratively update the most suitable processor for task τi from

processor Θ2 to processor ΘM . In each round of iteration,

line 15 sets fk(τi) to maximal operating frequency fk,max of

processor Θk, and sleep time t′slpi,k to 0. Line 16 derives the

ending temperature TSend
i,k,max of task τi when executing at

frequency fk(τi). If the ending temperature TSend
i,k,max exceeds

the temperature limit Tmax, lines 17-19 call Algorithm 2 to

reduce the temperature of task τi. Lines 20-21 calculate affinity

Ak,t(τi) and affinity Ak,w(τi) when task τi is to execute at

operating frequency fk(τi). Based on the two affinities, the
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Algorithm 1: Affinity-driven task scheduling heuristic

Input: i) task DAG of a parallel application; ii) replica parameter table;
iii) processor set Θ = {Θ1,Θ2, · · · ,ΘM}; iv) weighting
parameter α; v) peak temperature limit Tmax;

Output: i) task assignment {Q1, Q2, · · · , QM}; ii) task operating
frequency {f(τ1), f(τ2), · · · , f(τN )}; iii) sleep time

{t′slp1 , t′slp2 , · · · , t′slpN }; iv) task replicated number
{γ1, γ2, · · · , γN};

1 {Q1, Q2, · · · , QM} ← {∅, ∅, · · · , ∅}, {f(τ1), f(τ2), · · · , f(τN )}
← {0, 0, · · · , 0}, {t′slp1 , t′slp2 , · · · , t′slpN } ← {0, 0, · · · , 0},
{γ1, γ2, · · · , γN} ← {0, 0, · · · , 0};

2 construct a queue Q = {τ1, τ2, · · · , τN} of tasks in topological order;
3 for i ← 1 to N do
4 determine minimum replicated number of task τi executing on

every processor’s frequency using Eq. (23);
5 obtain execution time distribution of task τi considering replica

execution from the replica parameter table;

6 t′slpi,1 ← 0, f(τi) ← f1,max, f1(τi) ← f1,max; // The operating

frequency f(τi) of task τi is set to the maximal frequency of
processor Θ1.

7 derive TSend
i,1,max of task τi using Eq. (35);

8 if TSend
i,1,max > Tmax then

9 k ← 1, call Algorithm 2 to reduce the temperature of task τi;
10 end
11 compute the affinity A1(τi) of allocating task τi to processor Θ1

with operating frequency f1(τi) using Eq. (43);
12 Amax ← A1(τi), flag ← 1; // flag indicates the index of

processor generating the maximal affinity Amax.

13 t′slpi ← t′slpi,1 , γi ← γi,flag,f1(τi); // γi,flag,f1(τi) is the

minimum replicated number of task τi executing on processor
Θflag at operating frequency f1(τi). It is obtained by line 4 of
Algorithm 1.

14 for k ← 2 to M do
15 t′slp

i,k
← 0, fk(τi) ← fk,max;

16 derive TSend
i,k,max of task τi when executing at frequency

fk(τi) using Eq. (35);
17 if TSend

i,k,max > Tmax then
18 call Algorithm 2 to reduce the temperature of task τi;
19 end
20 derive the affinity Ak,t(τi) on frequency fk(τi) determined

by thermal profiles using Eq. (30);
21 obtain the affinity Ak,w(τi) on frequency fk(τi) determined

by schedule length using Eq. (24);
22 calculate the weighted affinity Ak(τi) of allocating task τi to

processor Θk with operating frequency fk(τi) using Eq. (43);
23 if Amax ≤ Ak(τi) then
24 Amax ← Ak(τi), flag ← k; f(τi) ← fk(τi);

25 t′slpi ← t′slp
i,k

, γi ← γi,flag,fk(τi);

26 end
27 end
28 assign task τi to processor Θflag ;
29 update Q and Qflag by Q ← Q− τi, Qflag ← Qflag + τi;
30 update the schedule length MS(flag) using Eq. (25);
31 end
32 derive expected value E[MS] of system makespan MS defined in

Eq. (11) using Clark’s equations [29];
33 exit with Output;

weighted affinity Ak(τi) of allocating task τi to processor Θk

with operating frequency fk(τi) is obtained in line 22. Lines

23-26 update the processor Θflag that generates the maximal

allocation affinity Amax, and operating frequency f(τi), sleep

time t′slpi and the minimum replicated number γi. Lines 28-30

assign task τi to processor Θflag , and update the task queue

Q, task subqueue Qk and schedule length MS(flag). Repeat

this process until all the tasks are assigned to processors (lines

3-31). The expected value of system makespan is derived in

line 32, and the algorithm exits with Output in line 33.

Algorithm 2: Frequency scaling with stochastic sleep

mode distribution
Input: i) task τi; ii) operating frequency fk(τi);

Output: i) updated operating frequency fk(τi); ii) sleep time t′slp
i,k

;

1 ι = �k; // The highest frequency of processor Θk is fk,�k .

2 while TSend
i,k,ι > Tmax do

3 if ι �= 1 then
4 ι ← ι− 1;
5 fk(τi) ← fk,ι; // Frequency scaling is utilized.

6 t′slp
i,k

← 0;

7 update the ending temperature TSend
i,k,ι of using Eq. (35);

8 end
9 else

10 derive E[T safe
i,k,1

] and V ar[T safe
i,k,1

] using Eq. (40);

11 estimate safe temperature TSsafe
i,k,1

using Eq. (41);

12 calculate estimated sleep time t′slp
i,k,1

using Eq. (42);

13 t′slp
i,k

← t′slp
i,k,1

; // Stochastic sleep mode distribution is

adopted when frequency scaling fails to work.
14 end
15 end

Algorithm 2 describes our proposed thermal management

scheme. As shown in the algorithm, when the estimated ending

temperature of a task exceeds the temperature limit, frequency

scaling is firstly utilized to adjust the operating frequency

of this task such that a lower on-chip peak temperature is

achieved. When frequency scaling fails to guarantee that the

temperature constraint is not violated due to the bad thermal

profiles, the stochastic sleep mode distribution is then adopt-

ed. To be specific, when the estimated ending temperature

TSend
i,k,�k

of task τi executing on processor Θk at maximal

frequency fk,�k exceeds the temperature limit Tmax (i.e.,

TSend
i,k,�k

> Tmax), frequency scaling is first utilized to find

the maximal ι (ι ≥ 1) such that the temperature constraint

TSend
i,k,ι ≤ Tmax is met. However, when ι is scaled down

to 1, the estimated ending temperature TSend
i,k,1 of task τi

executing on processor Θk at minimal frequency fk,1 may

be still higher than Tmax (i.e., TSend
i,k,1 > Tmax). To prevent

the temperature constraint from being violated, the stochastic

sleep mode distribution is then adopted. Using Eq. (42), the

stochastic sleep mode distribution calculates the estimated

sleep period t′slpi,k,1 that processor Θk needs to stay in the sleep

mode to reduce temperature from initial temperature T init
i,k,1 to

safe temperature TSsafe
i,k,1 before task τi execution. After t′slpi,k,1

time, task τi is immediately executed at the minimal frequency

fk,1. According to the definition of safe temperature, when the

initial temperature T init
i,k,1 is scaled down to the safe temperature

TSsafe
i,k,1 and the execution of task τi starts immediately, the

temperature constraint will definitely not be violated.

During task execution at runtime, note that it is sufficient to

successfully complete only one replica of any task. Therefore,

when one replica of task completes and no fault is detected

by using the acceptance test approach [22], we cancel other

replicas of that task to lower processor temperature. Thanks

to the benefits of canceling these redundant replicas of task τi
executed on processor Θk, once i) processor Θk is in idle

mode, ii) the input data of task τi+1 to be executed next

on processor Θk is ready, and iii) the thermal modeling tool
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HotSpot [32] utilized in our simulations monitors that the cur-

rent temperature of processor Θk is not higher than task τi+1’s

calculated initial temperature derived by Algorithm 1, task

τi+1 starts its execution immediately instead of performing

its execution after all these redundant replicas of task τi are

executed.

VI. EVALUATIONS

A. Experimental Settings
A heterogeneous multiprocessor system [4] composed of

five machines is adopted in our experimental simulations. The

five machines are equipped with an Intel Core Duo processor

supporting 4 frequencies, an Intel Xton processor supporting

3 frequencies, an AMD Athlon processor supporting 3 fre-

quencies, a TI DSP processor supporting 2 frequencies, and

a SPARC64 processor supporting 2 frequencies, respectively.

All the parameters of processor frequencies can be found

in [4]. The average fault arrival rate at the maximal voltage

supply and operating frequency of a processor is randomly

selected from the interval [10−8, 10−7], and the parameter d of

a processor indicating the sensitivity of fault rates to frequency

scaling is randomly selected from the interval [1, 10] [22].

The tool HotSpot [32] is utilized to capture thermal profiles.

The average of thermal resistance and thermal capacitance

of processors are assumed to be 0.80 K/W and 340 J/K,

respectively [23], and the variance of the thermal resistance

and thermal capacitance of a processor are deemed to be 0.5

and 50.0, respectively.
Two sets of simulation experiments are carried out. In the

first set of simulations, DAGs of synthetic applications are

generated by using the tool of Task Graphs for Free (TGF-

F) [20]. Five synthetic applications are tested, and the number

of tasks in applications is in the range between 100 and

300, in steps of 50. The task activity factors μ are uniformly

distributed in the interval [0.4, 1] [16]. The expected value

and variance of every replica’s execution time and inter-task

communication time in an application are specified in the

intervals of [1, 5] and (0, 5] respectively, according to the

processor’s capacity [4], [5]. The execution times of multiple

replicas of the same task are considered to follow the same

normal distribution. In the second set of simulations, real-

world multimedia applications [4] mpegplay, madplay, tmndec,

and toast, are utilized to validate the proposed scheme. The

DAGs of the four applications are generated by using the DAG

generation tool GGen [38]. The replica parameter tables and

inter-task communication times of the four applications are ob-

tained by profiling task off-line traces [4], [26], [27]. The same

settings of reliability and temperature constraints are adopted

for the synthetic applications and real-world benchmarks. That

is, the reliability requirements of applications are specified in

the interval of [0.85, 0.99999] [22]. The ambient temperature

T amb of each processor is set to 30◦C. The temperature limit

Tmax takes the values of 70◦C and 80◦C. The weighting

parameter α takes values of 0.3 and 0.8. We use PRSD1 to

denote our proposed approach with α = 0.3, and PRSD2 to

represent our proposed method with α = 0.8.
In the two sets of simulations, we compare makespan,

peak temperature, reliability, and feasibility achieved by the

proposed scheme with that of existing benchmarking schemes.

We perform 1000 experiments to obtain the average of the

simulation data. The benchmarking schemes for comparison

are described as below.

• LPRE [36] is an Integer Linear Programming (ILP) based

framework to maximize system reliability and minimize

energy consumption. Task replication technique is uti-

lized to provide fault-tolerance while the stochastic task

execution times and temperature constraint are ignored.

• SDLS [5] is a stochastic dynamic level scheduling

scheme that aims to minimize the expected system

makespan, but it doesn’t take the reliability and temper-

ature constraints into account.

• DDME [37] is an approach to reduce system makespan

and energy consumption. However, it ignores the un-

certainty in task execution times, and constraints of

temperature and reliability.

• WPMP [34] also introduces a weighting parameter α to

balance makespan and peak temperature as our proposed

scheme. However, it ignores both the stochastic behavior

and reliability requirements of tasks. We use WPMP1

and WPMP2 to denote the algorithm under the setting of

α = 0.3, and α = 0.8, respectively.

• RMSR [19] is a replication-based scheduling algorithm

which aims at maximizing system reliability. It doesn’t

consider the temperature constraint of the system and the

stochastic behavior of task execution times.

• TASA [33] is a scheduling algorithm for peak tem-

perature reduction with stochastic workloads. Reliability

requirements of tasks are ignored in this algorithm.

• TARS [35] is a rotation scheduling approach for peak

temperature minimization. The stochastic behavior of task

execution times and reliability requirements of tasks are

not taken into consideration in this approach.
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Fig. 2: Average makespan of synthetic applications under

Tmax = 70◦C.

B. Results for Synthetic Applications

1) Comparison under Tmax = 70◦C): Fig. 2 demon-

strates the average makespan of synthetic applications under

Tmax = 70◦C. As shown in the figure, the average makespan

achieved by the proposed scheme is much lower than that of

the benchmarking schemes TASA, WPMP1, WPMP2, TARS,

RMSR, LPRE, and DDME for the five synthetic applications
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TABLE III: Average reliability of synthetic applications under Tmax = 70◦C (RG : Average Reliability Goal).

App. RG SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

1 0.935 0.730 0.500 0.950 0.945 0.670 0.620 0.515 0.987 0.965 0.600

2 0.947 0.620 0.425 0.959 0.953 0.573 0.520 0.438 0.995 0.972 0.505

3 0.943 0.525 0.356 0.967 0.959 0.455 0.417 0.367 0.993 0.985 0.383

4 0.936 0.455 0.325 0.955 0.949 0.400 0.378 0.335 0.997 0.978 0.350

5 0.932 0.375 0.295 0.952 0.943 0.356 0.320 0.305 0.996 0.983 0.300

Avg. 0.939 0.541 0.380 0.957 0.950 0.491 0.451 0.392 0.994 0.977 0.428

TABLE IV: Feasibility of synthetic applications under Tmax = 70◦C.

App. SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

1 50.1% 25.5% 100.0% 100.0% 50.7% 55.2% 26.3% 100.0% 100.0% 46.2%

2 35.8% 20.1% 100.0% 100.0% 40.2% 43.7% 20.7% 45.1% 50.1% 35.6%

3 26.2% 15.2% 100.0% 100.0% 25.5% 32.3% 15.6% 32.3% 35.5% 22.3%

4 20.5% 9.8% 100.0% 100.0% 20.7% 27.8% 10.1% 25.2% 29.7% 20.2%

5 15.1% 5.0% 100.0% 100.0% 15.3% 22.1% 5.1% 17.6% 19.2% 15.2%

Avg. 29.5% 15.1% 100.0% 100.0% 30.5% 36.2% 15.6% 44.0% 46.9 27.9%
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Fig. 3: Average peak temperature of synthetic applications

under Tmax = 70◦C.

under test. For instance, for application 4, compared to TASA,

WPMP1, WPMP2, TARS, RMSR, LPRE, and DDME, the

proposed method PRSD1 reduces the average makespan by

11.8%, 10.6%, 7.4%, 13.1%, 25.1%, 21.0%, and 18.2%,

respectively; the proposed method PRSD2 reduces the average

makespan by 14.9%, 13.8%, 10.7%, 16.3%, 27.8%, 23.8%,

and 21.2%, respectively. Fig. 3 plots the average peak tem-

perature of synthetic applications under Tmax = 70◦C. It

has been shown in the figure that the proposed scheme can

always satisfy the temperature constraint. In addition, the pro-

posed scheme can achieve a better average peak temperature

reduction. Take application 1 as an example, the proposed

approach PRSD1 reduces the average peak temperature by

27.4%, 31.1%, 29.6% and 23.1%, and the proposed approach

PRSD2 reduces the average peak temperature by 21.7%,

25.6%, 24.0%, and 17.0% compared to SDLS, RMSR, LPRE,

and DDME, respectively.

Table III compares the average reliability of synthetic appli-

cations under Tmax = 70◦C. The reliability of an application

is calculated as the ratio of the sum of task reliability to the

number of tasks in the application. As shown in the table,

the average reliability achieved by our proposed scheme is

always higher than the average reliability goal. Meanwhile,

the table also reveals that the average reliability achieved

by our proposed scheme is second to that of benchmarking

methods RMSR and LPRE. Table IV lists the feasibility of

synthetic applications under Tmax = 70◦C. The feasibility

of an application is calculated as the ratio of the number

of application instances that can be feasibly scheduled under

reliability and temperature constraints to the total number of

application instances (i.e., 1000). From the results shown in

the table, we can easily find that the proposed scheme achieves

100% feasibility.

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

A
ve

ra
ge

 M
ak

es
pa

n 
(s

)

Application

SDLS [ ] TASA [ ] PRSD1 PRSD2
WPMP1 [ ] WPMP2 [ ] TARS [ ] RMSR [ ]
LPRE [ ] DDME [ ]

Fig. 4: Average makespan of synthetic applications under

Tmax = 80◦C.

30
40
50
60
70
80
90

100
110
120

1 2 3 4 5

A
ve

ra
ge

 P
ea

k 
T

em
pe

ra
tu

re
 (

)

Application

SDLS [ ] TASA [ ] PRSD1 PRSD2
WPMP1 [ ] WPMP2 [ ] TARS [ ] RMSR [1 ]
LPRE [ ] DDME [ ]

Fig. 5: Average peak temperature of synthetic applications

under Tmax = 80◦C.

2) Comparison under Tmax = 80◦C): Fig. 4 demon-

strates the average makespan of synthetic applications un-

der Tmax = 80◦C. We can see from the figure that our

proposed scheme can achieve better performance in terms

of makespan. For instance, for application 4, the proposed

method PRSD1 reduces the average makespan by 13.3%,

9.2%, 6.7%, 14.7%, 26.4%, 22.4%, and 19.7%, and the

proposed method PRSD2 reduces the average makespan by
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TABLE V: Average reliability of synthetic applications under Tmax = 80◦C (RG : Average Reliability Goal).

App. RG SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

1 0.935 0.730 0.500 0.955 0.950 0.681 0.639 0.515 0.987 0.965 0.600

2 0.947 0.620 0.425 0.964 0.961 0.583 0.536 0.438 0.995 0.972 0.505

3 0.943 0.525 0.356 0.972 0.964 0.463 0.430 0.367 0.993 0.985 0.383

4 0.936 0.455 0.325 0.961 0.955 0.407 0.389 0.335 0.997 0.978 0.350

5 0.932 0.375 0.295 0.958 0.950 0.363 0.330 0.305 0.996 0.983 0.300

Avg. 0.939 0.541 0.380 0.962 0.956 0.499 0.465 0.392 0.994 0.977 0.428

TABLE VI: Feasibility of synthetic applications under Tmax = 80◦C.

App. SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

1 50.1% 25.5% 100.0% 100.0% 52.2% 56.1% 26.3% 100.0% 100.0% 46.2%

2 35.8% 20.1% 100.0% 100.0% 41.4% 44.4% 20.7% 100.0% 100.0% 35.6%

3 26.2% 15.2% 100.0% 100.0% 26.3% 32.8% 15.6% 32.3% 35.5% 22.3%

4 20.5% 9.8% 100.0% 100.0% 21.2% 28.3% 10.1% 25.2% 29.7% 20.2%

5 15.1% 5.0% 100.0% 100.0% 15.7% 22.5% 5.1% 17.6% 19.2% 15.2%

Avg. 29.5% 15.1% 100.0% 100.0% 31.4% 36.8% 15.6% 55.0% 56.9% 27.9%

17.7%, 13.8%, 11.4%, 19.0%, 30.1%, 26.3%, and 23.7%
compared to TASA, WPMP1, WPMP2, TARS, RMSR, LPRE,

and DDME, respectively. Meanwhile, Fig. 4 also demonstrates

that the makespan achieved by our proposed scheme is inferior

to that of SDLS. The average peak temperature achieved by

various schemes under Tmax = 80◦C is compared in Fig. 5.

As shown in the figure that the peak temperature achieved by

our proposed scheme is always below the temperature limit

80◦C. In addition, the proposed scheme can achieve a better

average peak temperature reduction. Take application 1 as an

example, the proposed method PRSD1 reduces the average

peak temperature by 16.6%, 20.8%, 19.0% and 11.6%, and the

proposed method PRSD2 reduces the average peak tempera-

ture by 7.5%, 12.2%, 10.3%, and 2.1% compared to SDLS,

RMSR, LPRE, and DDME, respectively.

Table V presents the average reliability of synthetic appli-

cations under Tmax = 80◦C. From the table, we can see that

the average reliability achieved by our proposed scheme is

always higher than the average reliability goal for the five

applications under test. Table VI compares the feasibility of

synthetic applications achieved by benchmarking methods and

the proposed scheme under Tmax = 80◦C. We can see from

the table that the proposed scheme achieves better feasibility.

From the above analyses in Section VI-B1 and VI-B2, we

can draw the below observations.

• SDLS outperforms our proposed scheme in terms of

makespan, but it achieves a higher average peak tem-

perature. The reason is that SDLS ignores the reliability

and temperature constraints, which are antagonistic to the

objective of reducing makespan.

• Our proposed scheme achieves a better tradeoff between

makespan and peak temperature by introducing a weight-

ing parameter α. Therefore, the scheduler can adjust the

α to meet varying system design requirements.

• Our proposed scheme achieves a higher average peak

temperature compared to WPMP, TASA, and TARS. This

is because the three schemes fail to consider the stochastic

characteristics of tasks, which results in unnecessary idle

time to lower the peak temperature.

• Our proposed scheme is inferior to RMSR and LPRE in

terms of average reliability. This is because our scheme

is designed to meet reliability constraints rather than

maximize reliability.

• Our proposed scheme achieves better feasibility, which is

due to the effectiveness of the adopted temperature- and

reliability-aware techniques.
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C. Results for Real-World Benchmarks

1) Comparison under Tmax = 70◦C): We also validate the

effectiveness of our proposed scheme for real-world applica-

tions. Fig. 6 plots the average makespan of four benchmarks

toast, madplay, tmndec, and mepegplay under Tmax = 70◦C.

Similar to the results shown in Section VI-B1, the makespan

achieved by the proposed scheme is smaller (up to 18.2%)
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TABLE VII: Average reliability of real-world applications under Tmax = 70◦C (RG : Average Reliability Goal).

App. RG SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

toast 0.929 0.702 0.455 0.943 0.933 0.645 0.609 0.469 0.996 0.982 0.502

madplay 0.935 0.603 0.389 0.955 0.941 0.553 0.504 0.400 0.989 0.974 0.421

tmndec 0.944 0.625 0.402 0.962 0.950 0.578 0.526 0.414 0.997 0.989 0.452

mpegplay 0.930 0.502 0.355 0.946 0.938 0.455 0.400 0.366 0.999 0.997 0.389

Avg. 0.935 0.608 0.400 0.952 0.941 0.558 0.510 0.412 0.995 0.986 0.441

TABLE VIII: Feasibility of real-world applications under Tmax = 70◦C.

App. SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

toast 27.6% 19.8% 100.0% 100.0% 30.5% 30.8% 20.0% 40.2% 41.2% 20.3%

madplay 25.9% 16.2% 100.0% 100.0% 26.1% 26.4% 16.4% 35.3% 35.5% 16.9%

tmndec 28.1% 17.1% 100.0% 100.0% 27.2% 27.4% 17.3% 37.2% 38.1% 17.6%

mpegplay 20.5% 13.2% 100.0% 100.0% 21.3% 21.5% 13.4% 28.9% 29.9% 14.1%

Avg. 25.5% 16.6% 100.0% 100.0% 26.3% 26.5% 16.8% 35.4% 36.2% 17.2%

TABLE IX: Average reliability of real-world applications under Tmax = 80◦C (RG : Average Reliability Goal).

App. RG SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

toast 0.929 0.702 0.455 0.962 0.942 0.661 0.627 0.469 0.996 0.982 0.502

madplay 0.935 0.603 0.389 0.966 0.955 0.570 0.518 0.400 0.989 0.974 0.421

tmndec 0.944 0.625 0.402 0.971 0.959 0.594 0.542 0.414 0.997 0.989 0.452

mpegplay 0.930 0.502 0.355 0.948 0.944 0.469 0.410 0.366 0.999 0.997 0.389

Avg. 0.935 0.608 0.400 0.962 0.950 0.573 0.524 0.412 0.995 0.986 0.441

TABLE X: Feasibility of real-world applications under Tmax = 80◦C.

App. SDLS [5] TASA [33] PRSD1 PRSD2 WPMP1 [34] WPMP2 [34] TARS [35] RMSR [19] LPRE [36] DDME [37]

toast 27.6% 19.8% 100.0% 100.0% 30.8% 31.1% 20.0% 40.2% 41.2% 20.3%

madplay 25.9% 16.2% 100.0% 100.0% 26.4% 26.6% 16.4% 35.3% 35.5% 16.9%

tmndec 28.1% 17.1% 100.0% 100.0% 27.5% 27.7% 17.3% 37.2% 38.1% 17.6%

mpegplay 20.5% 13.2% 100.0% 100.0% 21.5% 21.7% 13.4% 28.9% 29.9% 14.1%

Avg. 25.5% 16.6% 100.0% 100.0% 26.5% 26.8% 16.8% 35.4% 36.2% 17.2%

than that of TASA, WPMP1, WPMP2, TARS, RMSR, LPRE,

and DDME. Fig. 7 compares the average peak temperature

achieved by benchmarking schemes and the proposed scheme.

As shown in the figure, our proposed scheme can prevent

the temperature limit (i.e., Tmax = 70◦C) from being vio-

lated for four benchmarks. Similar to the results shown in

Section VI-B1, Table VII reveals that our proposed scheme

achieves better (up to 182%) average reliability improvement

than benchmarking schemes SDLS, TASA, WPMP1, WPM-

P2, TARS, and DDME. Table VIII compares the feasibility

achieved by bencharking schemes and the proposed scheme

under Tmax = 70◦C. We can see from the table that the

feasibility achieved by the proposed scheme is 100%, which

is the highest value among these algorithms.
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2) Comparison under Tmax = 80◦C): The average

makespan of the four benchmarks under Tmax = 80◦C is

presented in Fig. 8. As shown in the figure, the average

makespan achieved by the proposed scheme can be reduced

by up to 22.1%. Fig. 9 plots the average peak temperature

achieved by benchmarking schemes and the proposed scheme.

The results in the figure show that the peak temperature of

the four benchmarks can be lowered by up to 27.5% using

the proposed scheme. Table IX shows the average reliability

of the four real-world applications under Tmax = 80◦C. As

shown in the table, the average reliability achieved by our

proposed approaches PRSD1 and PRSD2 is higher than the

average reliability goal. Table X lists the feasibility achieved

by bencharking schemes and the proposed scheme under
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Tmax = 80◦C. As shown in the table, the feasibility achieved

by the proposed scheme is the highest among these schemes.

VII. CONCLUSIONS

In this paper, we study the problem of makespan optimiza-

tion jointly considering reliability, temperature, and stochastic

characteristics of precedence-constrained tasks. We first model

two types of affinities: one is the affinity of a task for

processors with respect to schedule lengths and the other

is the affinity of a task for processors with regard to chip

thermal profiles. The task reliability, inter-task precedence, and

stochastic characteristics of task execution time and commu-

nication time are taken into account throughout the modeling

process. After the two types of affinities are modeled, we

then join together them by introducing a weighting parameter.

We finally propose an affinity-driven task scheduling heuristic

that assigns a task to the processor with the highest com-

bined affinities. Extensive simulations have been performed to

validate the effectiveness of the proposed scheme. Simulation

results show that the proposed scheme can achieve up to

30.1% reduction in makespan without violating temperature

and reliability constraints compared to benchmarking schemes.
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