
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018 1733

Cost-Constrained QoS Optimization for
Approximate Computation Real-Time

Tasks in Heterogeneous MPSoCs
Tongquan Wei , Member, IEEE, Junlong Zhou, Member, IEEE, Kun Cao, Peijin Cong,

Mingsong Chen , Member, IEEE, Gongxuan Zhang, Senior Member, IEEE,
Xiaobo Sharon Hu, Fellow, IEEE, and Jianming Yan

Abstract—Internet of Things devices, such as video-based
detectors or road side units are being deployed in emerging appli-
cations like sustainable and intelligent transportation systems.
Oftentimes, stringent operation and energy cost constraints are
exerted on this type of applications, necessitating a hybrid supply
of renewable and grid energy. The key issue of a cost-constrained
hybrid of renewable and grid power is its uncertainty in energy
availability. The characteristic of approximate computation that
accepts an approximate result when energy is limited and exe-
cutes more computations yielding better results if more energy
is available, can be exploited to intelligently handle the uncer-
tainty. In this paper, we first propose an energy-adaptive task
allocation scheme that optimally assigns real-time approximate-
computation tasks to individual processors and subsequently
enables a matching of the cost-constrained hybrid supply of
energy with the energy demand of the resultant task schedule.
We then present a quality of service (QoS)-driven task scheduling
scheme that determines the optional execution cycles of tasks on
individual processors for optimization of system QoS. A dynamic
task scheduling scheme is also designed to adapt at runtime the
task execution to the varying amount of the available energy.
Simulation results show that our schemes can reduce system
energy consumption by up to 29% and improve system QoS by
up to 108% as compared to benchmarking algorithms.

Index Terms—Approximate computation, hybrid energy
systems, quality of service (QoS) optimization, real-time mul-
tiprocessor system-on-chip (MPSoC).

Manuscript received April 23, 2017; revised August 10, 2017; accepted
October 25, 2017. Date of publication November 13, 2017; date of current
version August 20, 2018. This work was supported in part by the Shanghai
Municipal Natural Science Foundation under Grant 16ZR1409000, and in
part by the Natural Science Foundation of China under Grant 61672230. This
paper was recommended by Associate Editor Z. Shao. (Corresponding author:
Mingsong Chen.)

T. Wei, K. Cao, P. Cong, and J. Yan are with the Department of Computer
Science and Technology, East China Normal University, Shanghai 200062,
China.

J. Zhou and G. Zhang are with the School of Computer Science and
Engineering, Nanjing University of Science and Technology, Nanjing 210094,
China.

M. Chen is with the Shanghai Key Laboratory of Trustworthy
Computing, East China Normal University, Shanghai 200062, China (e-mail:
mschen@sei.ecnu.edu.cn).

X. S. Hu is with the Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46656, USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2772896

I. INTRODUCTION

AS A GLOBAL infrastructure for information society,
Internet of Things (IoT) has enabled various emerging

applications [1], [2]. Sustainable and intelligent transporta-
tion is one of such applications, where video-based detection
systems or road side unit (RSU)-based vehicular ad-hoc
networks are utilized for better traffic planning and manage-
ment. IoT devices, such as video detectors and RSUs consume
power of up to 10W [3], resulting in an unaffordable energy
cost and thus hindering the deployment of intelligent trans-
portation systems in metropolitan cities. This situation can
potentially be mitigated from two approaches. One is for these
systems to scavenge energy from renewable generations as
complement to the energy drained from power grid. The other
one is to perform approximate computing for applications like
image or video-based object identification such that results
of best quality is obtained by consuming a given amount
of energy. In this paper, we are interested in designing such
systems that are powered by hybrid energy and supposed to
finish under budget a mission with best quality.

The key issue of a hybrid energy system under budget of
the energy cost is its uncertainty. This uncertainty stems from
the intermittence nature of renewable generation and time-
varying pricing of electric grid. A system powered by such
hybrid energy may fail to execute a task to completion by
deadline due to lack of energy, resulting in a timing fault
and degraded system performance. Approximate computation
approach [4] can minimize the possibility that a task misses
its deadline due to the nonstationarity of powering in hybrid
energy systems. In the approximate computation approach, a
task is decomposed into a mandatory part followed by an
optional part. The mandatory part must execute to comple-
tion to produce an acceptable result while the optional part
refines the generated result. Based on the observation that a
timely approximate result is preferable to a precise result too
late [4], the approximate computation technique can be used to
avoid timing faults. This is achieved by producing an approx-
imate result of acceptable quality by the deadline when the
system cannot produce an exact result in time due to lack
of energy. In this paper, we explore the design of a hybrid
energy real-time system using the approximate computation
technique.

The studied hybrid energy real-time system attempts to
combine renewable generation and electric grid with energy
storage to deliver a cost-constrained power supply. In fact,

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-3922-0989

1734 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

real-time embedded systems powered by conventional energy
and renewable energy have been studied separately in the
recent past. With regard to real-time embedded platforms
that are either powered by batteries or directly connected to
power grid, their energy management in the last two decades
has concentrated on minimizing energy consumption for a
longer lifetime and clear financial advantages [5]. On the
other hand, for real-time embedded platforms that are pow-
ered by renewable generations, the focus of research is mainly
on improving the efficiency to take advantage of renewable
energy, reducing the capacity of energy storage, and minimiz-
ing the deadline miss rate of real-time tasks. For instance,
Severini et al. [6] presented an improved version of lazy
scheduling algorithm [7] for energy harvesting systems. The
improved solution can foresee at runtime the task energy starv-
ing, hence allows obtaining a more conservative and efficient
management of energy with respect to the original solution.
Chetto and Queudet [8] showed that when the incoming ambi-
ent energy or task arrivals have a pure stochastic nature,
the EDF scheduling algorithm remains an attractive sched-
uler owing to easy implementation and no need for estimating
the stored or harvested energy. Abdeddaïm et al. [9] designed
an optimal fixed-priority solution to the real-time scheduling
problem that handles both energy and timing constraints for
energy harvesting systems.

All the above works on renewable powered systems focus
on improving energy efficiency and schedule timeliness for
energy harvesting embedded systems, however, the concept
of approximate execution is not considered. Stavrinides and
Karatza [10] combined the approximate computation and bin
packing strategy to evaluate the impact of input error on the
performance of a heterogeneous distributed real-time system,
however, the energy design constraint is not taken into account.

It is natural for approximate computing systems to max-
imize their QoS given a certain cost or energy budget.
Cortes et al. [11] designed an approach to maximize rewards
for real-time approximate computation systems. The voltage
at which each task runs and the number of optional cycles are
determined under the timing and energy constraint. Similarly,
Yu et al. [12] presented a runtime scheduling algorithm for
approximate computation tasks. The algorithm maximizes
system QoS under energy constraints by optimally redis-
tributing slack generated at runtime. Since these approaches
assume a constant constraint of energy, they are not well
suited for cost-constrained hybrid energy systems, where the
available energy varies due to intermittence of renewable and
dynamic pricing of grid power. Considering the uncertainty
in availability of energy in embedded harvesting systems,
Kooti et al. [13] designed an energy management technique
to maximize system QoS. However, the scheme specifically
targets applications in which QoS constraints allow drop out
of some of real-time tasks, which does not comply with the
stringent timing requirements of general real-time systems. In
addition, the scheme is based on a platform of single processor
only powered by harvesting energy, thus are not applica-
ble for the state-of-the-art hybrid energy multicore processor
platform.

In this paper, we propose an approximate computation-
based task allocation and scheduling scheme for a
heterogeneous multiprocessor system-on-chip (MPSoC)
real-time system that is powered by a hybrid of
energy harvested from environments and drained from

Fig. 1. Diagram of the system architecture.

power grid. The major contributions are summarized
as follows.

1) We present a static energy-efficient task allocation
scheme that adaptively assigns approximate computation
tasks to individual processors considering the uncer-
tainty in the hybrid of the renewable and grid energy.
The energy-adaptive task allocation (ATA) scheme can
effectively enable the matching of the hybrid energy sup-
ply with the energy consumption of the resultant task
schedule.

2) We propose a static scheduling scheme for tasks allo-
cated to individual processors. The proposed scheduling
scheme determines the number of optional cycles of each
task to be executed such that the system QoS is max-
imized under budget of the cost including energy and
battery aging. The static task schedule is also adapted at
runtime to the fluctuating amount of available energy.

3) We conduct extensive simulation experiments to verify
the effectiveness of the proposed schemes in improving
system energy efficiency and QoS. Simulation results
have demonstrated that the proposed schemes have better
performance as compared to benchmarking schemes.

The rest of this paper is organized as follows. Section II
introduces the system architecture and models, and Section III
defines the problem and gives the overall framework of
the proposed scheme. Section IV presents the proposed
uncertainty-aware and cost-constrained task allocation, and
Section V describes the proposed QoS-driven task schedul-
ing. The effectiveness of the proposed approach is verified in
Section VI and concluding remarks are given in Section VII.

II. SYSTEM ARCHITECTURE AND MODELS

The system consists of four major parts: 1) the energy
source module; 2) storage module; 3) dissipation module; and
4) power grid. As shown in Fig. 1, the energy source module
automatically scavenges renewable energy from environments
at the power of Pharv(t), and converts the renewable generation
into electrical energy. The energy storage module, which is
typically in the form of a battery, serves as a buffer against the
uncertainty in harvested energy. When the harvested energy is
more than the energy consumed by the dissipation module, the
extra energy is stored in the storage module. A heterogeneous
MPSoC is considered as the energy dissipation module, which
drains energy at the rate of Pcons(t) from the energy source,
storage module, and/or power grid that provide a power supply
of Psup(t). We are interested in a system that is designed under
a cost budget. We assume that the harvested energy is free,
thus, the amount of energy drained from the battery and/or
grid depends upon the cost of battery aging and the dynamic
price of grid electricity.

WEI et al.: COST-CONSTRAINED QoS OPTIMIZATION FOR APPROXIMATE COMPUTATION REAL-TIME TASKS IN HETEROGENEOUS MPSoCs 1735

A. Processor and Task Model

The MPSoC system consists of M processors, denoted
by � = {�1,�2, . . . , �M}, where each processor �m
(1 ≤ m ≤ M) is a typical DVFS-enabled processor that can
operate with a set of discrete supply voltage and frequency
pairs (vm,r, fm,r) (1 ≤ r ≤ xm), where vm,1 < · · · < vm,r <

· · · < vm,xm , fm,1 < · · · < fm,r < · · · < fm,xm , and xm is the
voltage/frequency level of �m. Real-time tasks are supposed to
schedule and execute on the system. Consider a task set � con-
sisting of N independent real-time tasks {τ1, τ2, . . . , τN}. The
task set � is a frame-based task set, in which all tasks share
a common deadline d that is also the frame. Different tasks
exhibit different power consumptions on the same processor,
even executing at the same operating speed and temperature.
This is due to the fact that power consumptions of tasks
strongly rely on circuit activities and usage patterns of dif-
ferent functional units [14]. Thus, the activity factor of a task,
denoted by μ (ranging in (0, 1]), is introduced to capture how
intensively functional units are being utilized by the task [15].

We consider approximate computation tasks in this paper.
Each task τi (1 ≤ i ≤ N) is logically decomposed into
a mandatory part with execution cycles Mi and an optional
part with execution cycles Oi [16]. The mandatory part must
execute to completion before the deadline and generate an
acceptable result, while the optional part refines and improves
the result. The characteristic of an approximate computa-
tion modeled task τi is therefore described by a quadruple
τi : {μi,Mi,Oi, d}, where μi is the activity factor, and d is
the common deadline. Mi is the mandatory cycles of τi that
must be completed before the deadline while Oi is the maxi-
mum optional cycles of τi. Since optional cycles are partially
executed, we introduce a variable to represent the executed
optional cycles of τi, which is denoted as oi and holds for
0 ≤ oi ≤ Oi. Then, the actual length li of τi, measured by the
total execution cycles, can be expressed as

li = Mi + oi. (1)

B. Battery SoH Degradation Model

A practical and widely used state-of-health (SoH) degrada-
tion model of Li-ion batteries [17]–[19] is adopted to estimate
the SoH degradation for cycled charging and discharging of
a Li-ion battery cell. Before presenting the estimation of SoH
degradation, we formally define the state-of-charge (SoC) of
a battery at first, that is

SoC = Cbat

Cfull
× 100% (2)

where Cbat is the amount of charge stored in the battery and
Cfull is the battery full charge capacity. The amount of SoH
degradation, denoted by DSoH, is defined as

DSoH = Cnom
full − Cfull

Cnom
full

× 100% (3)

where Cnom
full is nominal value of Cfull for a fresh new battery.

The adopted SoH degradation model estimates the bat-
tery SoH degradation in a cycled charging/discharging pattern,
where a (charging/discharging) cycle is defined as a charging
process of the battery cell from SoClow to SoChigh followed
by a discharging process from SoChigh to SoClow. Thus, the
average SoC and SoC swing in a cycle are calculated as

SoCavg =
(
SoClow + SoChigh

)
/2 (4)

SoCswing = SoChigh − SoClow. (5)

The battery SoH degradation DSoH,cycle during one cycle,
accounting for SoCavg and SoCswing, is given by

D1 = Kco · e(SoCswing−1) · Tref
Kex ·TB + 0.2

η

ηlife
(6)

D2 = D1 · e4KSoC · (SoCavg−0.5) · (1− DSoH) (7)

DSoH,cycle = D2 · eKT · (TB−Tref) · Tref
TB (8)

where Kco, Kex, KSoC, and KT are battery specific param-
eters. TB and Tref are battery’s operation temperature and
reference temperature, respectively. η is the duration of this
charging/discharging cycle and ηlife is the calendar life of this
battery. The total SoH degradation (in reference to a fresh
battery) after W charging and discharging cycles is

DSoH =
W∑

w=1

DSoH,cycle(w) (9)

where DSoH,cycle(w) is the SoH degradation in the wth cycle.
However, the above SoH degradation model can only be

applied to the fixed charging/discharging pattern, that is,
the battery experiences the cycles with the same SoCswing
and SoCavg. In reality, a battery may not follow this pat-
tern. Hence, a cycle-decoupling method was proposed [18]
to build an improved SoH degradation model of battery for
charging/discharging cycles with arbitrary patterns. The SoH
degradation in an arbitrary cycle and the total degradation can
thus be derived using (8) and (9), respectively.

C. Energy Model

The energy of the concerned system is modeled from the
perspective of both supply and demand. We first describe the
model for energy supply. Let Pharv(t) be the harvesting power
and Eharv(t1, t2) be the energy scavenged from environments
during time interval [t1, t2], then Eharv(t1, t2) is calculated as

Eharv(t1, t2) =
∫ t2

t1
Pharv(t)dt. (10)

As illustrated in Fig. 1, the energy source module, storage
module, and power grid can provide the energy to the dissi-
pation module. Let Esup(t1, t2) represent the system available
supply energy during time interval [t1, t2], and Ebat(t1, t2) and
Egrid(t1, t2) indicate the energy drained from the battery and
power grid during [t1, t2], respectively, then we have

Esup(t1, t2) = Eharv(t1, t2)+ Ebat(t1, t2)+ Egrid(t1, t2). (11)

We then describe the model for energy demand. The total
energy consumption of an IoT device depends on its proces-
sors, memory, disks, cooling system, and wireless components.
Although, there are many research work [20]–[22] focusing
on reducing system overall energy consumption, we only con-
sider processor energy consumption in the energy dissipation
model since processor is the dominant source of overall energy
consumption of some systems like IoT security authentication
system [23]–[25]. The power consumption of a processor can
be modeled as the sum of static/leakage power consumption
Psta and dynamic power consumption Pdyn. The static power
Psta is temperature dependent and consumed by the leakage
current required to maintain basic state of circuits. The leakage
current changes super linearly with temperature. The dynamic

1736 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

power Pdyn is related to processor switching activity and can
be estimated by a function of supply voltage v and frequency
f , that is, Pdyn ∝ v2f . Thus, the overall power consump-
tion of processor �m when executing task τi at the supply
voltage/frequency (vm,r, fm,r) is formulated as

Pcons(τi,�m) = ω1 · vm,r + ω2 · vm,r · Tm(t)

+ Ceff,m ·μi · v2
m,r · fm,r (12)

where ω1 and ω2 are both non-negative architecture-dependent
constants of �m, Tm(t) is the operating temperature of �m at
time instance t, Ceff,m is the effective switching capacitance
of �m, and μi is the activity factor of τi.

The static power is always consumed to maintain basic cir-
cuits and the dynamic power is only consumed when executing
tasks. Thus, based on (12), the total energy consumed (or
demanded) by the system during the scheduling horizon H,
denoted by Edem, is calculated as

Edem =
M∑

m=1

(

ω1 · vm,r ·H+
∫ H

0
ω2 · vm,r ·Tm(t)dt

)

+
M∑

m=1

∑

τi∈�m

(
Ceff,m ·μi · v2

m,r · li ·
H
d

)
(13)

where �m is the subset of tasks allocated to processor �m.
Oftentimes, H is a multiple of d.

III. PROBLEM DEFINITION AND OVERALL FRAMEWORK

Our goal is to reduce the impact of uncertainties in the
energy scavenged from ambient environments, and improve
the efficiency of renewable energy and QoS of the system
under a certain cost budget Costbdg,H. The following sections
describe the system cost and QoS function, formulate the QoS
optimization problem, and overview the proposed solution.

A. System Cost Function

We adopt a slotted time model that deals with all the system
decisions and constraints in discrete time intervals of equal
length. More specifically, the whole scheduling horizon H is
divided into W time slots with equal and constant length of�t.
We assume that the power grid has a dynamic pricing function,
and the price of one unit of energy (in kWh) during the wth
time slot is denoted by PXgrid[w]. In our formulation, solar
energy is considered free for simplicity, though its cost can be
normalized and incorporated in the formulation. Since solar
energy is free, the total cost function Costtot,H during H is
composed of two parts. One is the cost Costaging,H associated
with battery aging and the other is the energy cost Costgrid,H
due to charges from power grid. That is

Costtot,H = Costaging,H + Costgrid,H. (14)

Let Costbat be the cost to purchase a fresh new battery,
DSoH,H be the amount of SoH degradation during H, and
DSoH,end be the amount of SoH degradation indicating the end-
of-life of a battery, the cost of battery aging during H is

Costaging,H = Costbat
DSoH,H
DSoH,end

. (15)

Oftentimes, Costbat, the cost to purchase and replace a bat-
tery is fixed, and the DSoH,end indicating the end-of-life of a

battery takes value of 70% [19]. Since Costbat and DSoH,end
are assumed constant, it can be seen from (15) that the cost
of battery aging can be minimized by optimizing DSoH,H, the
amount of SoH degradation during the scheduling horizon H.

For the wth time slot, let Psup[w] be the power supplied
to the energy dissipation module, Pharv[w] be the harvesting
power of energy source module, and Pbat[w] be the power
drained from the battery. We assume that the grid electricity
price PXgrid[w] and the battery aging cost in the wth time
slot is fixed. Then we define a binary variable β that is set
to 1 when the electricity cost in a time slot is greater than the
battery aging cost, and 0 otherwise. When the incurred cost
of grid electricity is different from the battery aging cost in a
time slot, the energy source of lower cost is selected to power
the MPSoC. Given these and based on the principle of energy
conservation illustrated in Fig. 1, the grid power can then be
derived as Psup[w]− Pharv[w]− β ·Pbat[w], and its cost is

Costgrid,H =
W∑

w=1

PXgrid[w]

× (Psup[w]− Pharv[w]− β ·Pbat[w]
)
�t. (16)

From the viewpoint of energy dissipation module, Psup[w]
can also be written in the form of Pdem[w] +�P[w], that is,
Psup[w] = Pdem[w] + �P[w], where �P[w] is the difference
between the power supply and demand of energy dissipation
module. Thus, (16) can be expressed as

Costgrid,H =
W∑

w=1

PXgrid[w]
(
Pdem[w]+�P[w]− Pharv[w]

− β ·Pbat[w]
)
�t. (17)

The solar harvesting profile Pharv[w] can be estimated using
historical data. The power drain of battery Pbat[w] can be
derived by an SoH degradation-aware battery management
policy [18] that minimizes the amount of SoH degrada-
tion DSoH,H and hence Costaging,H. As the cost of battery
aging Costaging,H is derived and the cost budget Costbdg,H is
given, the cost of grid power Costgrid,H is then determined.
In (17), since Costgrid,H, Pharv[w], Pbat[w], PXgrid[w], �t are
all known, Pdem[w] + �P[w] is decided. When Pdem[w] is
optimized and �P[w] = 0, the energy consumed per execu-
tion cycle is minimized and the energy supply matches with
the energy demand. In other words, more energy can be used
to execute task optional cycles for QoS improvement.

B. System QoS Function

It has been shown that the quality of a task can be rep-
resented as a linear or concave function of optional cycles
of the task [4]. The more cycles the optional part of the task
executes, the higher QoS the task generates. Thus, we quantita-
tively define a simple yet effective QoS function for a system,
which is the sum of the executed CPU cycles of optional parts
of all the real-time tasks. It is denoted by Q and is expressed as

Q =
N∑

i=1

oi. (18)

Clearly, the system QoS is a function of executed optional
cycles of real-time tasks.

WEI et al.: COST-CONSTRAINED QoS OPTIMIZATION FOR APPROXIMATE COMPUTATION REAL-TIME TASKS IN HETEROGENEOUS MPSoCs 1737

Fig. 2. Main design flow of the proposed scheme.

C. Cost-Constrained QoS Optimization Problem

Given a set of approximate-computation real-time tasks and
a set of heterogeneous processors powered by renewable and
grid energy, design a task-to-processor allocation that adapts
to the uncertainty of system available energy, and a task
scheduling scheme that arranges assigned tasks on individual
processors to maximize the system QoS under the constraint
of a cost budget. We assume that the system energy demand
cannot exceed the energy supply, and the mandatory parts of
all the tasks must be finished before the common deadline d.
The problem is formulated into the below form

Maximize: Q =
N∑

i=1

oi

Subject to: 0 ≤ oi ≤ Oi (19)

Edem ≤ Esup (20)
∑

τi∈�m

Mi/f (τi) ≤ d (21)

Costtot,H ≤ Costbdg,H. (22)

D. Overview of the Proposed Two-Stage Scheme

The key issue of the studied system is that uncertainties in
the energy scavenged from ambient environments result in low
energy utilization and/or high deadline miss rate. We address
the problem by designing approximate computation-based task
allocation and scheduling algorithms that enhance the energy
efficiency, ensure system timing constraints, and maximize the
system QoS under the constraint of a cost budget. The design
flow of the proposed scheme is illustrated in Fig. 2. Given
cost budget of a system, the uncertainties in energy supply
of energy dissipation modules stem from the intermittence
of renewable energy and dynamic pricing of grid energy. We
tackle the uncertainties in stage 1 of the scheme by adopting an
SoH degradation-aware battery management policy [18] that
minimizes the cost of battery aging, and conducting an energy-
ATA that minimizes the system energy demand and adapts the
energy demand to the availability of energy supply including
the grid and renewable energy.

In stage 1 of the proposed scheme, we first adopt an SoH
degradation-aware battery management policy [18] to reduce
the cost of battery aging. Based on the battery storage and SoH

degradation model adopted, the SoH degradation-aware battery
management policy [18] takes the battery initial SoC and target
SoC as input and determines the battery charging/discharging
current profile using convex optimization techniques. The gen-
erated charging/discharging current profile is a near-optimal
charge management policy that can minimize the battery SoH
degradation, thus extend the cycle life of battery. For a given
cost budget formulated in (14), it is preferable to utilize
free renewable energy, or battery storage and/or grid power,
whichever incurs lower cost during the scheduling horizon H.
The cost of battery aging and grid power are given in (15)
and (17), respectively.

We then design an energy ATA algorithm in stage 2
of the proposed scheme. The algorithm first intro-
duces and initializes a variable α, named the task
optional execution factor, to represent the uncertainty
in energy supply. It allocates tasks to processors using
a deterministic task allocation (DTA) scheme that con-
sists of Real_to_Virtual_Model_Transformation (RVMT) and
Deterministic Task-to-(Virtual) Core Allocation [26] based on
the α. Then, it adapts system energy demand to renewable
and grid supply of energy by using the task optional execu-
tion factor as a control knob to maximize the degree of match
between system energy demand and supply. Through the DTA
and task optional execution factor tuning, the system energy
consumption is minimized, the energy supply is fully utilized,
and the cost of grid energy is reduced.

The stage 2 of the proposed scheme aims at improving
the QoS of the system after SoH degradation-aware battery
management policy minimizes the cost of battery aging and
the energy ATA scheme reduces the cost of grid energy. The
QoS-driven task scheduling algorithm proposed in this stage
first introduces an energy metric that indicates the importance
of every task on the processor in terms of improving system
QoS, then proves that the system QoS is maximized if tasks
having smaller energy metric are selected to execute their
optional parts. It finally develops a task selection scheme that
chooses the tasks with smaller metric under the constraint of
cost budget.

The above QoS-driven task scheduling is designed for the
offline scenario under the assumption of a fixed energy sup-
ply. However, the actual energy harvested from environments
may not be the same as the energy estimated by prediction
techniques due to the fluctuating nature of renewable genera-
tion. In addition, the cost-constrained energy drained from the
battery and power grid may vary due to different initial SoC
of the battery and time varying price of grid power. Therefore,
an online QoS-driven task scheduling is designed to adapt the
offline schedules to fluctuating energy supply at runtime.

IV. TASK ALLOCATION UNDER COST CONSTRAINT

The task allocation scheme first assumes deterministic
energy sources and minimizes the energy consumption by
intelligently assigning tasks to processors, then iteratively
adapts the task allocation to uncertainties in energy availability.

A. DTA to Minimize Energy Consumption

The concerned system consists of heterogeneous multipro-
cessors, each of which is DVFS-enabled and supports a set of
discrete supply voltage and frequency pairs. Hence, operating

1738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

frequencies of tasks need to be determined during task alloca-
tion. To this end, we propose an RVMT method that converts
the processor model with multiple voltage and frequency lev-
els to a model of multiple virtual cores, each of which has
a fixed supply voltage and frequency level. This method can
effectively decrease one dimension of optimization for energy
consumption by reducing task-to-(real) processor allocation
and frequency selection problem to task-to-(virtual) core allo-
cation problem. Below, we first show the proposed RVMT
processor model transformation, analyze the energy optimal-
ity of allocating tasks to virtual cores and present a theorem
on optimum task allocation, then develop a task-to-(virtual)
core allocation heuristic based on the theorem.

1) Real_to_Virtual Model Transformation: The system
energy consumption during the scheduling horizon H given
in (13) can be rewritten as

Edem =
M∑

m=1

(

ω1 · vm,r ·H+
∫ H

0
ω2 · vm,r ·Tm(t)dt

)

+ H
d

M∑

m=1

xm∑

r=1

⎛

⎝Ceff,m · v2
m,r

∑

τi∈�m,r

μi · li
⎞

⎠

(23)

where �m,r is the subset of tasks allocated to processor
�m and operated at frequency fm,r. The two items of (23)
are the static and dynamic energy consumption, respectively.
The static energy consumption depends on temperature while
the dynamic energy consumption depends on task allocation.
Thus, both thermal-aware task scheduling and energy-efficient
task allocation are helpful to minimize the system overall
energy consumption. Since thermal-aware task scheduling for
minimizing the static energy consumption has been well stud-
ied in [26], we focus on energy-efficient task allocation to
minimize the dynamic energy consumption in this paper.

Let Edyn represent the dynamic energy consumption, which
can be formulated into the product of two vectors, that is

Edyn = H
d

M∑

m=1

xm∑

r=1

⎛

⎝Ceff,mv2
m,r

∑

τi∈�m,r

μili

⎞

⎠

= H
d

M∑

m=1

xm∑

r=1

Gm,rQm,r = H
d
GQ (24)

where Gm,r = Ceff,mv2
m,r, Qm,r = ∑

τi∈�m,r
μili, M

is the number of processors, and xm is the number of
frequency levels supported by the mth processor. Vector
G = [G1,1,G1,2, . . . ,G1,x1 , . . . ,GM,1,GM,2, . . . ,GM,xM]T cap-
tures processor dependent parameters and vector Q =
[Q1,1,Q1,2, . . . ,Q1,x1 , . . . ,QM,1,QM,2, . . . ,QM,xM] captures
task related parameters. Here, Gm,r ∈ G is referred to as
the power dissipation factor of processor �m, Qm,r ∈ Q
is referred to as the power dissipation factor of subset �m,r
allocated to processor �m at frequency level fm,r, and μili
is referred to as the power dissipation factor of task τi. It
is clear that G is constant since Ceff,m and vm,r are known
for the given MPSoC system � while Q is not since it
depends on the task assignment and frequency selection
(e.g., �m,r). In addition, for a given task set �, the sum
of power dissipation factor of tasks in the set is a constant
(denoted by V) and can be expressed as

∑M
m=1

∑xm
r=1 Qm,r =∑M

m=1
∑xm

r=1

∑
τi∈�m,r

μili =∑N
i=1 μili = V .

Fig. 3. Illustration of the RVMT transformation.

According to the above formulation, the power dissipation
of the MPSoC system can be characterized by vector G =
[G1,1,G1,2, . . . ,G1,x1 , . . . ,GM,1,GM,2, . . . ,GM,xM]T . Since the
number of power dissipation factors in the vector G is greater
than the number of processors supporting multiple voltage lev-
els, we propose a model transformation method that converts
the DVFS-enabled MPSoC system of multiple voltage levels
into a virtual core system, each core of which supports only
one voltage level. During the transformation, the virtual cores
obtained from a certain processor in the MPSoC system are
assumed to share the same characteristics as the processor
except for the supply voltage and frequency. As a result, each
element in the power dissipation vector G corresponds to a
core in the virtual core system. We then sort the cores in the
increasing order of power dissipation factors.

Fig. 3 illustrates the proposed RVMT processor model trans-
formation. As demonstrated in the figure, the virtual core
system can be represented by �̄ = {θ̄1, θ̄2, . . . , θ̄�, . . . , θ̄X },
where every core θ̄� ∈ �̄ (1 ≤ � ≤ X , and X = ∑M

m=1 xm)

has a fixed voltage and frequency pair (v�, f�). The vir-
tual core system θ̄ is then characterized by vector δ =
[δ1, δ2, . . . , δ�, . . . , δX]T and δ1 ≤ δ2 ≤ · · · ≤ δ� ≤ · · · ≤ δX
holds, where δ� = Ceff,�v2

� is referred to as the power dis-
sipation factor of θ̄�. Accordingly, the power dissipation of
subsets allocated to virtual cores can be represented by vec-
tor ξ = [ξ1, ξ2, . . . , ξ�, . . . , ξX], where ξ� = ∑

τi∈�� μili is
referred to as the power dissipation factor of subset allocated
to θ̄�, and ξ1+· · ·+ξ�+· · ·+ξX = V holds. Thus, the dynamic
energy consumption given in (24) can be expressed as

Edyn = H
d
δξ. (25)

Let ξ∗ = [ξ∗1 , ξ∗2 , . . . , ξ∗� , . . . , ξ∗X] be a vector that denotes
the optimum power dissipation factors of subsets allocated to
individual virtual cores, and E∗dyn be the dynamic energy con-
sumption of the optimum task allocation. We prove below that
the dynamic energy consumption Edyn given in (25) is min-
imized when the virtual core with smaller power dissipation
factor (δ) ends up with the subset of its allocated tasks having
a larger power dissipation factor (ξ∗).

Theorem 1: If the virtual core power dissipation factors δ1 ≤
δ2 ≤ · · · ≤ δX hold for δ = [δ1, δ2, . . . , δX]T , and the sum of
the corresponding task subset power dissipation factors ξ∗1 +
ξ∗2 + · · · + ξ∗X is fixed for ξ∗ = [ξ∗1 , ξ∗2 , . . . , ξ∗X], then the

WEI et al.: COST-CONSTRAINED QoS OPTIMIZATION FOR APPROXIMATE COMPUTATION REAL-TIME TASKS IN HETEROGENEOUS MPSoCs 1739

Algorithm 1: Deterministic Task-to-Core Assignment
Input: 1) Task set represented by � = {τ1, τ2, . . . , τN }

2) MPSoC represented by � = {�1,�2, . . . , �M}
Output: task-to-(virtual) allocation {�1, �2, . . . , �X}

1 transform the real processor system � to virtual core system � by
� = RVMT(�), where the X cores of � are in increasing order of
their power dissipation factors;

2 for l = 1 to X do
3 initialize the utilization and task subset of

virtual core θ l ∈ � by U(θ l) = 0 and �l = ∅;

4 l = 1;
5 while � �= ∅ and � ≤ X do
6 sort the tasks τi ∈ � in the decreasing order of task power

dissipation factors μili using heapsort;
7 for i = 1 to size(�) do

/* use First-Fit to group tasks */
8 if RT(τi, θ�) == true and u(τi, θ�)+ U(θ�) ≤ 1 then
9 assign task τi to core θ�;

10 update �, ��, and U(θ�) by � = � − τ i, �� = �� + τi,
11 and U(θ�) = U(θ�) + u(τi, θ�);

12 �← �+ 1;
13 if � �= ∅ and � > X then
14 exit(1) ; /* Exit when infeasible */

dynamic energy consumption Edyn is minimized to E∗dyn if
ξ∗1 ≥ ξ∗2 ≥ · · · ≥ ξ∗� ≥ · · · ≥ ξ∗X holds.

2) Deterministic Task-to-(Virtual) Core Allocation: We pro-
pose a suboptimal task allocation heuristic which is motivated
by the theorem presented in Section IV-A1, that is, allocat-
ing the subset having a larger power dissipation factor to the
virtual core having a smaller power dissipation factor can min-
imize the dynamic energy consumption. The heuristic operates
as follows. Tasks in the subset with the maximum power dissi-
pation factor is allocated to the virtual core with the minimum
power dissipation factor, and tasks in the subset with the next
maximum power dissipation factor is allocated to the virtual
core with the next minimum power dissipation factor. This pro-
cess repeats until all subsets of tasks are allocated to cores.
In addition, the constraints of task deadline and processor
capacity limit are examined during the allocation.

The details of the heuristic are described in Algorithm 1.
Inputs to the algorithm are task set � and processor set �.
Let �̄ be the corresponding virtual core system, and θ̄� be the
�th virtual core of the virtual system model. Let U(θ̄�) be the
utilization of virtual core θ̄�, which is calculated as the sum
of utilization of tasks assigned to the core, and u(τi, θ̄�) be the
utilization of task τi if it is assigned to virtual core θ̄�, which
is calculated as the quotient of task execution time and frame
size.

The algorithm first transforms the MPSoC to a virtual core
system using �̄ = RVMT(�), in which the cores are arranged
in the increasing order of power dissipation factors. The uti-
lization and subset of all virtual cores θ̄� (1 ≤ � ≤ X)
are initialized by U(θ̄�) = 0 and �� = ∅, respectively. It
then iteratively implements the process of task-to-(virtual) core
allocation if the task set is not empty and not all the cores in
�̄ have been considered. Before starting the iteration, the core
index � is set to 1. In each round of iteration, the algorithm first
sorts the tasks of set � in the decreasing order of task power
dissipation factors μili, then allocates tasks to cores and con-
struct subset of tasks in a first fit manner under the real-time
constraint RT(τi, θ̄�) == true and processor capacity limit
u(τi, θ̄�) + U(θ̄�) ≤ 1. RT(τi, θ̄�) is a procedure that checks

the real-time constraint of a task and returns true if the task
is finished before its deadline, and false otherwise. If allocat-
ing task τi to core θ̄� can satisfy these constraints, the task
is allocated to the core, and task set �, subset ��, and uti-
lization U(θ̄�) are hence updated. The process then moves to
the next iteration and considers the allocation of the next task.
Otherwise, the task is not assigned and the process directly
moves to the next iteration. If there is no feasible schedule for
the system under the constraints, the algorithm exits.

B. ATA to Handle Uncertainties in Energy Availability

Based on the DTA, this section handles the uncertainty in
energy sources by adapting the execution of approximate-
computation tasks to the energy availability. We introduce
a variable α to denote the ratio of the number of executed
optional cycles to the maximum optional cycles of a task. The
α is named as task optional execution factor and falls within
the range [0, 1]. Using α, the total execution cycles of task τi
given in (1) can be rewritten as

li = Mi + α ·Oi. (26)

The key issue in dealing with the energy uncertainty is to
derive the relationship between task optional execution fac-
tors and energy demand of the system. In other words, the
optional execution factor of a task is expected to serve as a
coarse adjustment knob to control the degree of match between
system energy demand and supply. To this end, we first
show that the energy demand of a system increases when the
optional execution factor of a task in the given set increases,
as described in Theorem 2.

Theorem 2: Given task τi ∈ �, its two different optional
execution factors α and α′, and the task allocation scheme in
Algorithm 1, the inequality Edem > E′dem holds if α > α′,
where Edem and E′dem are the energy demand of the generated
task schedule corresponding to α and α′ of task τi, respectively.

Since the optional execution factor of a task is positively
related to system energy demand, we can determine the task
optional execution factor for given energy demand by using a
simple yet effective binary search-based approach. We assume
that the optional execution factor of every task is the same such
that the ATA is conducted at a coarse granularity. We refine
the optional execution factors of tasks such that each task has
its own optional execution factor at the task scheduling stage,
as shown in Section V.

To handle the uncertainty in energy availability, we adapt
system energy demand to fluctuating energy supply by using
the task optional execution factor as a coarse-grain control
knob to adjust the system energy consumption. The proposed
ATA algorithm is described in Algorithm 2. It takes as
input task set �, processor set � and the given cost budget
Costbdg,H, and outputs X subsets {�1, �2, . . . , �X }. It first
derives the budget-constrained energy Esup that is available
to support the system operation during the scheduling hori-
zon H based on (11). It then utilizes a binary search-based
approach to derive a common task optional execution factor
for all tasks in set �. It initializes the common task optional
execution factor α to 0.5. It calculates task execution cycles
using (26), calls Algorithm 2 to allocate tasks, and computes
energy demand Edem using (13). Once energy demand Edem of
the task allocation is derived, the algorithms iteratively adapt
the energy demand to the fluctuating supply of energy Esup
according to |Esup−Edem| > ε, where ε is a sufficiently small

1740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

Algorithm 2: Iterative Task Allocation Based on Task
Optional Execution Factors

Input: Task set � && MPSoC � && cost budget Costbdg,H && a
sufficiently small positive number ∈

Output: task to virtual core assignment {�1, �2, . . . , �X}
1 derive available energy Esup during [t, t +H] using (11);
2 min = 0,max = 1, α = (min+ max)/2;
3 calculate task execution cycles for all tasks using Eq. (26) based on
α, call Alg. 1 to allocate tasks, and calculate energy demand Edem
using Eq. (13);

4 while
∣
∣Esup − Edem

∣
∣ >∈ do

5 if Edem > Esup then
6 max = α, α = (min+ max)/2;

7 else
8 min = α, α = (min+ max)/2;

9 update li for all tasks using Eq. (26) based on α;
10 allocate tasks using Alg. 1 based on li;
11 update Edem of the task schedule using Eq. (13);

positive number. Algorithm 2 stops when energy demand of
the generated schedule closely matches to the energy supply,
and returns the allocation solution.

V. QOS-DRIVEN TASK SCHEDULING

This section maximizes the system QoS by determining
tasks whose optional parts should be executed. Once these
tasks are picked out, a runtime scheme needs to be designed
to adapt task schedule to the fluctuating energy availability.

A. Static Task Selection for QoS Optimization

As given in (18), the QoS of a system is defined as the sum
of executed CPU cycles of optional parts of all tasks in the
given set. To maximize the QoS of a system under the energy
constraint, we propose to develop a task selection scheme that
chooses certain tasks and executes the optional parts of these
tasks. Let E� denote the energy consumed by tasks in subset
�� allocated to the virtual core θ̄�, then E� is given by

E� =
∑

τi∈��
Pcons

(
τi, θ̄�

) · oi +Mi

f�

=
∑

τi∈��

Pcons
(
τi, θ̄�

)

f�
· oi +

∑

τi∈��

Pcons
(
τi, θ̄�

)

f�
·Mi (27)

where Pcons(τi, θ̄�) is the power consumption of task τi on core
θ̄�, f� is the operating frequency of core θ̄�, oi is the actual
optional execution cycles of task τi, and Mi is the mandatory
part of task τi. The energy demand or consumption of the
system can be expressed as the sum of energy E� consumed by
individual cores. It approximates closely to the energy supply
of the system by a parameter ε > 0 since tasks are assigned
to individual cores using the energy adaptive algorithm (i.e.,
Algorithm 2) presented in Section IV-B. Thus, we have

Esup ≈ Edem =
X∑

�=1

E� =
X∑

�=1

∑

τi∈��

Pcons
(
τi, θ̄�

)

f�
· oi

︸ ︷︷ ︸
Eoptl

+
X∑

�=1

∑

τi∈��

Pcons
(
τi, θ̄�

)

f�
·Mi

︸ ︷︷ ︸
Emand

(28)

where the first item Eoptl is the energy consumed by executing
optional parts while the second item Emand is the energy con-
sumed by executing mandatory parts of real-time tasks. When
a scheduling decision is made at the start of the scheduling
horizon H, the estimated energy supply Esup is a fixed value.
In addition, the Emand shows that the energy consumed by all
allocated mandatory parts during the scheduling horizon H is
invariable. As a result, the total energy consumption of the
optional parts given by the Eoptl is fixed.

The problem of selecting tasks for QoS optimization is
hence refined into finding optimal optional cycles for all
allocated tasks under the energy budget constraint. Let

EC�,i = Pcons
(
τi, θ̄�

)

f�
(29)

be an energy metric that gives the energy consumption of task
τi on core θ̄� per execution cycle. Since every task is only
allowed to bind with one core, we use ECi rather than EC�,i
to denote the energy metric of τi on θ̄� after task assignment
is determined. In addition, we sort all tasks allocated to cores
in ascending order of ECi for the sake of easy presentation.
Thus, the energy consumed by optional parts of all tasks is

Eoptl = EC1 · o1 + EC2 · o2 + · · · + ECN · oN (30)

and EC1 < EC2 < · · · < ECN holds. In (30), the metric
ECi and task executed optional cycles oi = α ·Oi are deter-
mined once tasks are bound to individual cores. However, the
α is derived in the task allocation for maximizing energy effi-
ciency. Now, we aim to maximize system QoS in the task
scheduling under the energy budget by redetermining the exe-
cuted optional cycles oi of tasks using an individual optional
execution factor αi.

Clearly, ECi is determined once tasks are bound to individ-
ual cores. Moreover, the LHS of (30) is determined after task
allocation. Thus, our goal of optimization for system QoS,
which is given in (18) as the sum of executed optional cycles
of all tasks, becomes maximizing the sum of oi for 1 ≤ i ≤ N
under the constraint of (30). This can be achieved by develop-
ing a task selection scheme that wisely chooses certain tasks
and executes their optional cycles. Given these, we present and
prove a theorem below, which shows the QoS is maximized if
the tasks having smaller energy metric are selected to execute
their optional parts.

Theorem 3: Given the energy budget Eoptl of optional parts
of the task set �, the QoS of the system, as defined in (18),
is maximized if the tasks having smaller energy metric are
selected to execute their optional parts.

Based on the theorem, we conclude that executing optional
parts of tasks with smaller energy metric can improve the
system QoS. A heuristic is thus designed to determine the
execution cycles of optional parts of all tasks, which is shown
in Algorithm 3. The algorithm describes the procedure to
redetermine optional execution cycles of tasks in subsets for
maximizing the system QoS. The algorithm first calculates
EC, the energy metric that gives the energy consumption per
execution cycle of a task and sorts the tasks allocated to indi-
vidual cores in ascending order of the metric, then calculates
the energy budget Eoptl for optional parts of all tasks. It derives
optional execution cycles for each task based on the analysis
that executing optional parts of tasks with smaller energy met-
ric can improve the system QoS. Given energy metric ECi and

WEI et al.: COST-CONSTRAINED QoS OPTIMIZATION FOR APPROXIMATE COMPUTATION REAL-TIME TASKS IN HETEROGENEOUS MPSoCs 1741

Algorithm 3: Determine Task Optional Execution Cycles
Input: Subsets of assigned tasks produced by Alg. 2
Output: Tasks with optional execution cycles updated

1 for � = 1 to X do
2 for i = 1 to size(��) do
3 calculate the energy metric ECi;

4 sort the tasks allocated to core θ� in ascending order of ECi using
heapsort;

5 Eoptl = Esup − Emand ;
6 for � = 1 to X do
7 for i = 1 to size(��) do
8 if Eoptl > 0 then
9 if ECi × Oi ≤ Eoptl then

10 oi = Oi, αi = 1;

11 else

12 oi = Eoptl
ECi

, αi = Eoptl
ECi×Oi

;

13 Eoptl− = ECi × oi;

14 else
15 oi = 0, αi = 0;

16 i← i+ 1;

maximum optional cycles Oi of τi, the energy consumed by
the task can be expressed as ECi ×Oi. If energy budget Eoptl
for optional parts is large enough, maximum optional cycles of
τi can be executed by oi = Oi; otherwise, only oi = Eoptl/ECi
optional cycles can be executed. No optional execution cycles
will be executed if the energy budget is exhausted. After τi is
examined, the energy budget is updated accordingly and the
process moves to the next task. The algorithm outputs all tasks
once their optional execution cycles oi are updated.

B. Dynamic Energy Adaptation for QoS Optimization

The proposed scheme generates a cost-constrained task
schedule at design time by mapping tasks to processors and
executing optional cycles of those tasks that can maximize
the system QoS. However, due to the fact that the amount of
renewable and grid energy available under a cost budget fluctu-
ates, the static task schedule needs to be adjusted at runtime.
Therefore, we provide a dynamic task scheduling algorithm
that adapts task execution to fluctuating energy available at
runtime. The dynamic algorithm is developed based on the
QoS-aware static algorithm described in Algorithm 4.

Consider core θ̄� with allocated tasks in subset ��. Energy
available for core θ̄� to execute tasks includes renewable
energy harvested from environments, and energy drained from
battery and grid. Due to the intermittence of renewable energy
and time varying price of grid power, the amount of energy
available to support the operation of the system under a given
cost budget fluctuates. Assume that the actual energy available
will be allocated to individual cores in proportion to the opti-
mal energy value derived using Algorithm 4. The actual energy
available is then weighted by a factor h�, which is defined as
the ratio of the energy consumed by size(��) tasks on core θ̄�
to the energy available for the system under the cost budget
of Costbdg. Let f−1(Costbdg) denote the energy available for
the given cost budget Costbdg, then the factor h� is given by

h� =
∑size(��)

i=1 ECi · (Mi + oi)

f−1
(
Costbdg

) . (31)

Algorithm 4: Adapt Task Execution to Fluctuating Energy
at Runtime

Input: Optional execution cycles {o1, o2, . . . , oN } determined by
Alg. 3 && subset �� of tasks on core θ�

1 sort tasks in �� in ascending order of metric EC using heapsort;

2 hl =
∑size(��)

i=1 ECi · (Mi+oi)

f−1(costbdg)
;

3 i← 1;
4 while i ≤ size(��) do
5 li = (oi +Mi);

6 while ECi · li > h� · f−1(Costbdg) · li
f�H && li ≥ Mi do

7 li = σ · li ; /* scale the length li to reduce
energy demand of task τi */

8 while h� · f−1(Costbdg) · li
f�H − ECi · li >∈ && li ≥ Mi do

9 li = (1+ σ) · li ; /* scale the length li to
increase energy demand of task τi */

10 if h� · f−1(Costbdg) · li
f�H − ECi · li ≤∈ && li ≥ Mi then

11 execute task τi with execution cycles of li;

12 else
13 drop task τi and li = 0 ; /* drop τi when the energy

supply is insufficient */

14 update battery storage;
15 i← i+ 1;

The dynamic algorithm running on core θ̄� is given in
Algorithm 4. It takes as input the N task optional execution
cycles determined by Algorithm 4 and the subset �� of tasks
allocated to core θ̄�. To achieve a higher system QoS, the
algorithm sorts tasks on the core in ascending order of energy
metric EC so that it first executes tasks with smaller energy
consumption per execution cycle. It calculates the factor h�
for θ̄� using (31). For task τi in subset ��, the algorithm
calculates the execution cycles li of the task. The energy
demand of the task is expressed as ECi · li and the energy
available on θ̄� during time interval (li/f�) is expressed as
h� · f−1(Costbdg) · (li/f�H). The dynamic algorithm aims to
adapt the static task schedule to the variation in energy supply.
That is, it tries to reduce the runtime mismatch between the
energy supply and demand before a task is executed. On one
hand, if energy demand of τi is greater than energy supply
of the task, then execution cycles of the task and in turn the
energy demand of the task are iteratively reduced by an empir-
ical factor σ ∈ [0, 1]. The iteration stops when the energy
demand is less than or equal to the energy supply. On the
other hand, if the energy supply of τi is greater than the energy
demand of the task by a small positive number ε > 0, the exe-
cution cycles of the task and in turn the energy demand of the
task are iteratively increased by an empirical factor σ ∈ [0, 1].
After execution cycles and energy demand of τi are updated
in accordance with the fluctuation of energy supply, the task
is executed if its execution cycles li is greater than its manda-
tory cycles Mi; otherwise, τi is dropped and li is reset to 0.
The energy available for core θ̄� is updated and the procedure
moves to the next task.

VI. EVALUATION

A. Experimental Settings

We validate the proposed cost-constrained task allocation
and scheduling scheme through two sets of simulation exper-
iments. The first set of simulations is based on synthetic

1742 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

real-time tasks while the second set of simulations is based
on real-life benchmarks. As introduced in Sections IV and V,
our scheme is composed of four algorithms. The first one is a
DTA (Algorithm 1) proposed in [26] that minimizes the energy
consumption by utilizing heterogeneities of both processors
and tasks. The second one is an ATA (Algorithm 2) that uses a
common optional execution factor to handle the uncertainty in
energy availability and adopts DTA to allocate tasks. The third
one is a static task selection (STS, Algorithm 3) that selects cer-
tain tasks to complete their optional parts for maximizing QoS
under the energy budget. The tasks with smaller EC are given
higher priority to execute optional parts. The three algorithms
are developed at design time. The fourth one is a dynamic
task scheduling (DTS, Algorithm 4) which adjusts the static
schedule to adapt to the fluctuating harvested energy at runtime.

Accordingly, four comparative experiments are carried out
in each set of simulations to validate our scheme from differ-
ent perspectives. First, we compare the energy consumption
of our DTA scheme [26] with that of the hybrid worst-fit
genetic algorithm (HWGA) [27] to validate the efficiency of
our ATA algorithm in saving energy, which is developed based
on DTA. We also investigate the degree of match between
energy demand and supply by using our ATA to validate the
efficiency of our ATA in utilizing the energy supply, which
specifically exploits an optimal common task optional exe-
cution factor to maximize the degree of match. Second, we
compare the QoS of our ATA with that of DTA under a given
cost constraint to validate the efficiency of our scheme in
improving QoS at task allocation stage. Third, we compare the
QoS of our STS with that of baseline method RAND, RVS,
and benchmarking algorithm critical-task-first (CTF) [13] to
validate the efficiency of our scheme in improving QoS at task
scheduling stage. Finally, to validate the effectiveness of our
runtime scheme DTS, we compare the QoS of DTS with that
of the dynamic algorithm, gradient curve shifting (GCS) [12].
These algorithms are described below.

1) DTA [26] is an energy-efficient task allocation algorithm
designed for systems of deterministic energy supply. It
can minimize dynamic energy consumption by assigning
the subset of tasks having a large power dissipation factor
to the processor having a small power dissipation factor.

2) HWGA [27] is a state-of-the-art approach that integrates
a worst-fit-based partitioning heuristic with the genetic
algorithm to generate a task allocation that reduces
the energy consumption while satisfying all system
constraints.

3) RAND is a method that randomly selects tasks whose
optional parts are to be completed under the budget.

4) RVS is a method that selects the task whose energy met-
ric is larger to execute first, which is exactly the opposite
of our proposed task selection algorithm STS.

5) CTF [13] is a method that assigns QoS-critical jobs
higher priorities such that their optional cycles can be
completed first. The QoS-critical jobs are defined as
tasks with larger maximum optional cycles.

6) GCS [12] is a dynamic scheduling method that deter-
mines the best allocation of slack cycles generated at
runtime for maximizing QoS under energy constraint.

B. Simulation for Synthetic Real-Time Tasks

We perform this simulation based on an MPSoC system
with eight heterogeneous processors (M = 8). Our processor

Fig. 4. Normalized energy consumption of 30 task sets using our DTA and
benchmarking algorithm HWGA [27].

model is built on 65 nm technology and the parameters of
processors can be found in [26], [28], and [29]. Task activ-
ity factors μ are uniformly distributed in the interval [0.4, 1],
demonstrating the heterogeneous nature of tasks [15]. The size
N of task set � is set to 200. The worst case execution cycles
(WCEC) of tasks in the set � are assumed to be in the range of
[4×107, 6×108]. Each task τi is instantiated by randomly pick-
ing two WCECs from the range, one is for its mandatory part
Mi and the other is for its maximum optional part Oi. The com-
mon deadline d of tasks is assumed to be 1.5

∑N
i=1 Mi/fmax,

where fmax is the maximum frequency. Multiple task sets are
constructed to validate the proposed scheme in the simulation.

Solar source is selected as the renewable gen-
eration, and the trace of harvesting power Pharv(t)
is generated according to the equation Pharv(t) =⏐⏐ψ ·�(t) · cos([t/70π]) · cos([t/100π])

⏐⏐ [7], [30], where ψ
is a coefficient and �(t) is a normally distributed random
variable with variance 1 and mean 0. The ψ is used to
generate two different Pharv(t), the first of which is taken as
predicted harvesting power and the second of which is used as
actual harvesting power. The real-time pricing model offered
by Ameren Illinois Corporation [31] is adopted as the pricing
model of grid electricity. A Li-lion battery bank equipped
with 4 Ah normal capacity and 15 V terminal voltage [18] is
served as the energy storage module. The whole scheduling
horizon H is set to 24 h and divided into 24 time slots with
equal and constant length of 1 h.

1) Evaluate the Effectiveness of Our ATA Scheme in Energy
Management: Our ATA scheme is developed based on the
energy-efficient DTA scheme [26] that minimizes the system
energy consumption by fully exploiting the heterogeneities
of both processors and tasks, and an optimal task common
optional execution factor that can maximize the degree of
match between system energy demand and supply. To evaluate
the effectiveness of our ATA in energy management, we first
compare our DTA with benchmarking algorithm HWGA [27]
in terms of energy consumption, then investigate the degree
of match between energy demand and supply using our ATA.

Fig. 4 shows the normalized energy consumption of 30 task
sets using our DTA scheme [26] and benchmarking algorithm
HWGA [27]. It has been demonstrated in the figure that our
DTA consumes less energy as compared to HWGA. To be
specific, the energy consumption of DTA is 19.7% lower than
that of HWGA on average. Furthermore, the energy savings
achieved by DTA over HWGA can be up to 29.0%. For exam-
ple, the normalized energy consumed by executing task set
1 using HWGA and DTA are 0.854 and 0.607, respectively.
In addition to the efficiency of reducing energy consumption
achieved by DTA, our scheme ATA can make the most of
energy supply by introducing task optional execution factor.
Fig. 5 plots the energy supplied by the harvesting system and

WEI et al.: COST-CONSTRAINED QoS OPTIMIZATION FOR APPROXIMATE COMPUTATION REAL-TIME TASKS IN HETEROGENEOUS MPSoCs 1743

Fig. 5. Normalized energy supply and demand of our proposed ATA
algorithm for executing 30 task sets.

(a) (b)

Fig. 6. Normalized QoS of ten synthetic task sets over 24 h using the
proposed DTA and ATA scheme under varying cost budgets. (a) Costbgt = 0.6
and (b) Costbgt = 0.7.

(a) (b)

Fig. 7. Normalized QoS of ten synthetic task sets over 24 h using
the proposed STS and baseline method RVS under varying cost bud-
gets. (a) Costbgt = 0.6 and (b) Costbgt = 0.7.

the energy demanded by our ATA for executing 30 task sets.
It can be easily seen from the figure that our scheme achieves
a close match between energy supply and demand.

2) Evaluate the Effectiveness of Our ATA and STS Scheme
for QoS Improvement: Two comparative experiments are car-
ried out to validate the effectiveness of our proposed static
QoS-aware task selection scheme under varying cost budgets.
We utilize a normalized cost budget in the comparative study,
the maximum of which is set to 1. That is, the normalized
cost budget varies in the range of (0, 1]. The first compara-
tive study is conducted from the perspective of task allocation,
where two allocation schemes, the DTA without considering
energy uncertainty and ATA considering energy uncertainty,
are compared with respected to QoS. Fig. 6 presents the nor-
malized QoS obtained when executing the optional cycles of
tasks in ten sets over a scheduling horizon of 24 h using the
proposed DTA and ATA scheme under varying cost budgets.
As compared to DTA, ATA achieves higher QoS of up to
55.1%, especially when the cost budget is low. For example,
the average QoS of ATA are 51.8% and 42.1% higher than
that of DTA for Costbgt = 0.6 and 0.7, respectively.

The second comparative experiments investigate the impact
of STS on system QoS. To be specific, we compare the QoS of
our STS with that of baseline task selection methods RAND,
RVS, and benchmarking algorithm CTF [13] to validate the
efficiency of our scheme in improving QoS at the task schedul-
ing stage. Fig. 7 shows the normalized QoS obtained when

(a) (b)

Fig. 8. Normalized QoS of ten synthetic task sets over 24 h using
the proposed STS and baseline method RAND under varying cost bud-
gets. (a) Costbgt = 0.6 and (b) Costbgt = 0.7.

(a) (b)

Fig. 9. Normalized QoS of ten synthetic task sets over 24 h using our STS and
benchmarking method CTF [13] under varying cost budgets. (a) Costbgt = 0.6
and (b) Costbgt = 0.7.

executing optional cycles of tasks in ten sets of tasks using
the proposed STS and the baseline method RVS under the cost
budget of Costbgt = 0.6 and 0.7. As compared to RVS, the
average QoS of our STS scheme are 97.6% and 72.4% higher
in the case of Costbgt = 0.6 and 0.7, respectively. Fig. 8 com-
pares the proposed STS and baseline method RAND in terms
of the QoS obtained when executing optional cycles of tasks
under the cost budget of Costbgt = 0.6 and 0.7, respectively. It
can be seen from the figure that the average QoS of STS are
75.2% and 51.8% higher than that of RAND for Costbgt = 0.6
and 0.7, respectively. A comparative study of the proposed
STS and benchmarking method CTF is demonstrated in Fig. 9.
The figure indicates that the average QoS of our STS scheme
are 61.2% and 39.7% higher than that of the CTF method for
Costbgt = 0.6 and 0.7, respectively.

From the above analyses, we can draw the followings.
1) From the perspective of task allocation, the ATA that

considers the uncertainty in energy availability out-
performs the DTA that does not in terms of system
QoS.

2) As to selecting tasks on individual processors to be exe-
cuted, the STS outperforms methods RVS, RAND, and
CTF in terms of system QoS. This is because our STS
utilizes heterogeneities of both tasks and processors for
QoS improvement under given cost constraints.

3) Our ATA and STS scheme outperform the benchmark-
ing methods regarding to system QoS improvement,
especially, when the given cost budget is low. This is
because when the given cost budget and the correspond-
ing available energy is low, our ATA and STS scheme
can efficiently utilize the intermittent available energy
so that a larger portion of the optional part of a task is
finished.

3) Evaluate the Effectiveness of Our DTS Scheme for QoS
Improvement: The effectiveness of our dynamic task schedul-
ing scheme, referred to as DTS, is also verified in the
simulation. We compare the proposed dynamic task scheduling
scheme DTS with benchmarking algorithm GCS [12] in terms
of runtime QoS. Fig. 10 gives the normalized QoS achieved

1744 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

(a) (b)

Fig. 10. Normalized QoS of ten synthetic task sets over 24 h using
our DTS and benchmarking method GCS [12] under varying cost bud-
gets. (a) Costbgt = 0.6 and (b) Costbgt =0.7.

Fig. 11. Normalized energy consumption of ten real-life task sets using our
DTA and benchmarking algorithm HWGA [27].

when executing optional cycles of tasks in ten sets under the
cost budget of Costbgt = 0.6 and 0.7, respectively.

We can observe from the figure that the average QoS of
our DTS scheme are 17.7% and 15.1% higher than that of the
GCS [12] algorithm for Costbgt = 0.6 and 0.7, respectively.
This is primarily due to the fact that our proposed DTS utilizes
heterogeneities of both processors and tasks to enhance system
energy efficiency in a way so that the energy consumed per
execution cycle is minimized. Owing to the enhanced energy
efficiency achieved by judiciously assigning tasks to proces-
sors, DTS could not only guarantee the completion of task
mandatory parts, but also execute more task optional parts.
In addition to the enhanced energy efficiency that leads to a
higher QoS, the DTS could directly improve QoS by intelli-
gently selecting tasks on individual processors to execute their
optional parts. On the contrary, the GCS [12] improves system
QoS by only using slack claimed in the runtime, which renders
relatively small headroom for QoS improvement.

C. Simulation for Real-Life Benchmarks

In this simulation, a heterogeneous MPSoC system [23] that
consists of an AMD Athlon processor with three supply volt-
age/frequency levels and an TI DSP processor with two supply
voltage/frequency levels is adopted. The three supply voltage
and frequency pairs of AMD Athlon are (0.89 V, 1.8 GHz),
(1.12 V, 2.4 GHz), (1.34 V, 3 GHz), and the two supply volt-
age and frequency pairs of TI DSP are (0.98 V, 2.0 GHz),
(1.42 V, 3.0 GHz) [23], respectively. The settings of solar
source, Li-lion battery bank, and real-time pricing are the
same as that of simulation for synthetic real-time tasks. The
tool MEGA [32] that incorporates approximate computation
is utilized in this simulation to generate real-life benchmarks.

1) Evaluate the Effectiveness of Our ATA Scheme in Energy
Management: Fig. 11 shows the normalized energy consump-
tion of ten real-life task sets using our DTA scheme [26] and
benchmarking algorithm HWGA [27]. It has been demon-
strated in the figure that our DTA consumes less energy
as compared to HWGA. To be specific, the energy con-
sumption of DTA is 16.9% lower than that of HWGA on

Fig. 12. Normalized energy supply and demand of our proposed ATA
algorithm for executing 10 real-life task sets.

(a) (b)

Fig. 13. Normalized QoS of ten real-life task sets over 24 h using our
DTA and ATA scheme under varying cost budgets. (a) Costbgt = 0.6
and (b) Costbgt = 0.7.

(a) (b)

Fig. 14. Normalized QoS of ten real-life task sets over 24 h using our
STS and baseline method RVS under varying cost budgets. (a) Costbgt = 0.6
and (b) Costbgt = 0.7.

average. Furthermore, the energy savings achieved by DTA
over HWGA can be up to 21.7%. For example, the normalized
energy consumed by executing the real-life task set 4 using
HWGA and DTA are 0.896 and 0.701, respectively. Fig. 12
plots the energy supplied by the harvesting system and the
energy demanded by our ATA scheme for executing ten real-
life task sets. It can be easily seen from the figure that our
scheme achieves a close match between energy supply and
demand.

2) Evaluate the Effectiveness of Our ATA and STS Scheme
for QoS Improvement: Fig. 13 presents the normalized QoS
obtained when executing the optional cycles of real-life tasks
in ten sets over a scheduling horizon of 24 h using the
proposed DTA and ATA scheme under varying cost budgets.
Compared to DTA, ATA achieves a higher QoS of up to 68.8%,
especially when the cost budget is low. For example, the aver-
age QoS of ATA are 59.6% and 48.3% higher than that of
DTA for Costbgt = 0.6 and 0.7, respectively. Fig. 14 shows the
normalized QoS obtained when executing optional cycles of
real-life tasks in ten sets using the proposed STS algorithm and
baseline method RVS under the cost budget of Costbgt = 0.6
and 0.7. As compared to RVS, the average QoS of STS are
108.6% and 63.8% higher for Costbgt = 0.6 and 0.7, respec-
tively. Fig. 15 compares the proposed STS algorithm and
baseline method RAND in terms of the QoS obtained when
executing optional cycles of real-life tasks in ten sets under the
cost budget of Costbgt = 0.6 and 0.7, respectively. It can be

WEI et al.: COST-CONSTRAINED QoS OPTIMIZATION FOR APPROXIMATE COMPUTATION REAL-TIME TASKS IN HETEROGENEOUS MPSoCs 1745

(a) (b)

Fig. 15. Normalized QoS of ten real-life task sets over 24 h using our STS
and baseline method RAND under varying cost budgets. (a) Costbgt = 0.6
and (b) Costbgt = 0.7.

(a) (b)

Fig. 16. Normalized QoS of ten real-life task sets over 24 h using our STS
and baseline method CTF [13] under varying cost budgets. (a) Costbgt = 0.6
and (b) Costbgt = 0.7.

(a) (b)

Fig. 17. Normalized QoS of 10 real-life task sets over 24 h using our DTS and
benchmarking method GCS [12] under varying cost budgets. (a) Costbgt = 0.6
and (b) Costbgt = 0.7.

seen from the figure that the average QoS of STS are 78.6%
and 40.4% higher than that of RAND for Costbgt = 0.6 and
0.7, respectively. A comparative study of the proposed STS
algorithm and benchmarking method CTF is demonstrated in
Fig. 16. The figure indicates that the average QoS of STS are
69.9% and 26.7% higher than that of CTF for Costbgt = 0.6
and 0.7, respectively.

3) Evaluate the Effectiveness of Our DTS Scheme for QoS
Improvement: Fig. 17 gives the normalized QoS achieved
when executing optional cycles of real-life tasks in ten sets
under the cost budget of Costbgt = 0.6 and 0.7, respectively.
We can observe from the figure that the average QoS of our
DTS scheme are 20.8% and 13.5% higher than that of the
GCS [12] algorithm for Costbgt = 0.6 and 0.7, respectively.

VII. CONCLUSION

We propose to utilize the characteristic of approximate
computation to intelligently handle uncertainties in energy
availability of an MPSoC real-time system that is powered by
a hybrid of energy harvested from environments and drained
from power grid. For systems of such power supply, we design
a static energy-ATA scheme and an QoS-driven task schedul-
ing scheme that not only reduce the energy consumption but
also improve the system QoS. We also design a dynamic task
scheduling algorithm that adapts task execution to fluctuating

energy available at runtime. We conduct extensive simulations
to validate the effectiveness of our schemes. Results show
that our algorithms can reduce energy consumption by up to
29% and improve system QoS by up to 108% as compared to
benchmarking schemes.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their helpful suggestions. The proof of theorems are
omitted due to page limit.

REFERENCES

[1] M. Elhebeary, M. Ibrahim, M. Aboudina, and A. Mohieldin, “Dual-
source self-start high-efficiency micro-scale smart energy harvesting
system for IoT applications,” IEEE Trans. Ind. Electron., vol. 65, no. 1,
pp. 342–351, Jun. 2017.

[2] J. Zhou, J. Yan, T. Wei, M. Chen, and X. S. Hu, “Energy-adaptive
scheduling of imprecise computation tasks for QoS optimization in real-
time MPSoC systems,” in Proc. DATE, Lausanne, Switzerland, 2017,
pp. 1402–1407.

[3] (2015). Peek Traffic Corporation, Video Detection Products. [Online].
Available: http://peektraffic.com/products_video_detection.php

[4] J. W. S. Liu et al., Algorithms for Scheduling Imprecise Computations.
New York, NY, USA: Springer, 1991.

[5] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-aware
scheduling for real-time systems: A survey,” ACM Trans. Embedded
Comput. Syst., vol. 15, no. 1, 2016, Art. no. 7.

[6] M. Severini, S. Squartini, and F. Piazza, “Energy-aware lazy scheduling
algorithm for energy-harvesting sensor nodes,” Neural Comput. Appl.,
vol. 23, nos. 7–8, pp. 1899–1908, 2013.

[7] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling
for energy harvesting sensor nodes,” Real Time Syst., vol. 37, no. 3,
pp. 233–260, 2007.

[8] M. Chetto and A. Queudet, “Clairvoyance and online scheduling in
real-time energy harvesting systems,” Real Time Syst., vol. 50, no. 2,
pp. 179–184, 2014.

[9] Y. Abdeddaïm, Y. Chandarli, and D. Masson, “The optimality
of PFPasap algorithm for fixed-priority energy-harvesting real-time
systems,” in Proc. ECRTS, Paris, France, 2013, pp. 47–56.

[10] G. L. Stavrinides and H. D. Karatza, “Scheduling real-time DAGs in
heterogeneous clusters by combining imprecise computations and bin
packing techniques for the exploitation of schedule holes,” Future Gener.
Comput. Syst., vol. 28, no. 7, pp. 977–988, 2012.

[11] L. A. Cortes, P. Eles, and Z. Peng, “Quasi-static assignment of voltages
and optional cycles in imprecise-computation systems with energy con-
siderations,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14,
no. 10, pp. 1117–1129, Oct. 2006.

[12] H. Yu, B. Veeravalli, and Y. Ha, “Dynamic scheduling of imprecise-
computation tasks in maximizing QoS under energy constraints for
embedded systems,” in Proc. ASPDAC, Seoul, South Korea, 2008,
pp. 452–455.

[13] H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh, “Energy budget
management for energy harvesting embedded systems,” in Proc. RTCSA,
Seoul, South Korea, 2012, pp. 320–329.

[14] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs energy
optimization for DVFS-enabled processors in embedded systems,” in
Proc. ISQED, San Jose, CA, USA, 2007, pp. 204–209.

[15] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu, “Throughput
maximization for periodic real-time systems under the maximal temper-
ature constraint,” ACM Trans. Embedded Comput. Syst., vol. 13, no. 2,
pp. 1–22, 2014.

[16] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and management
of QoS in real-time databases supporting imprecise computations,” IEEE
Trans. Comput., vol. 55, no. 3, pp. 304–319, Mar. 2006.

[17] A. Millner, “Modeling lithium ion battery degradation in electric
vehicles,” in Proc. CITRES, Waltham, MA, USA, 2010, pp. 349–356.

[18] Y. Wang, X. Lin, Q. Xie, N. Chang, and M. Pedram, “Minimizing state-
of-health degradation in hybrid electrical energy storage systems with
arbitrary source and load profiles,” in Proc. DATE, Dresden, Germany,
2014, pp. 1–4.

1746 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

[19] T. Cui et al., “Optimal control of PEVs for energy cost minimization
and frequency regulation in the smart grid accounting for battery state-
of-health degradation,” in Proc. DAC, San Francisco, CA, USA, 2015,
pp. 1–6.

[20] C. Perera, D. S. Talagala, C. H. Liu, and J. C. Estrella, “Energy-efficient
location and activity-aware on-demand mobile distributed sensing plat-
form for sensing as a service in IoT clouds,” IEEE Trans. Comput. Soc.
Syst., vol. 2, no. 4, pp. 171–181, Dec. 2015.

[21] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523, Dec. 2015.

[22] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of energy-cognizant scheduling techniques,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 7, pp. 1447–1464, Jul. 2013.

[23] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling
on heterogeneous computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 11, pp. 2867–2876, Nov. 2014.

[24] W. Trappe, R. Howard, and R. S. Moore, “Low-energy security: Limits
and opportunities in the Internet of Things,” IEEE Security Privacy
Mag., vol. 13, no. 1, pp. 14–21, Jan./Feb. 2015.

[25] P. Schaumont, “Security in the Internet of Things: A challenge of scale,”
in Proc. DATE, Lausanne, Switzerland, 2017, pp. 674–679.

[26] J. Zhou et al., “Thermal-aware task scheduling for energy
minimization in heterogeneous real-time MPSoC systems,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8,
pp. 1269–1282, Aug. 2016.

[27] S. Saha, Y. Lu, and J. S. Deogun, “Thermal-constrained energy-
aware partitioning for heterogeneous multi-core multiprocessor real-time
systems,” in Proc. RTCSA, Seoul, South Korea, 2012, pp. 41–50.

[28] W. Liao, L. He, and K. M. Lepak, “Temperature and supply voltage
aware performance and power modeling at microarchitecture level,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 7,
pp. 1042–1053, Jul. 2005.

[29] G. Quan and V. Chaturvedi, “Feasibility analysis for temperature-
constraint hard real-time periodic tasks,” IEEE Trans. Ind. Informat.,
vol. 6, no. 3, pp. 329–339, Aug. 2010.

[30] J. Chen, T. Wei, and J. Liang, “State-aware dynamic frequency selec-
tion scheme for energy-harvesting real-time systems,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 8, pp. 1679–1692,
Aug. 2013.

[31] Day Ahead Pricing, Ameren Illinois, St. Louis, MO, USA,
2017. [Online]. Available: https://www2.ameren.com/RetailEnergy/
RealTimePrices

[32] Y. G. Tirat-Gefen, D. C. Silva, and A. C. Parker, “Incorporating
imprecise computation into system-level design of application-specific
heterogeneous multiprocessors,” in Proc. DAC, Anaheim, CA, USA,
1997, pp. 58–63.

Tongquan Wei (M’11) received the Ph.D. degree in
electrical engineering from Michigan Technological
University, Houghton, MI, USA, in 2009.

He is currently an Associate Professor with the
Department of Computer Science and Technology,
East China Normal University, Shanghai, China. His
current research interests include real-time embed-
ded systems, green and reliable computing, parallel
and distributed systems, and cloud computing.

Junlong Zhou (S’15–M’17) received the Ph.D.
degree in computer science from East China Normal
University, Shanghai, China, in 2017.

He was a Visiting Scholar with the University of
Notre Dame, Notre Dame, IN, USA, from 2014 to
2015. He is currently an Assistant Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology,
Nanjing, China. His current research interests
include real-time embedded systems, cloud comput-
ing, and cyber physical systems.

Kun Cao is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Technology, East China Normal University,
Shanghai, China.

His current research interests include
high performance computing, multiprocessor
systems-on-chip, and cyber physical systems.

Peijin Cong received the B.S. degree from the
Department of Computer Science and Technology,
East China Normal University, Shanghai, China, in
2016, where she is currently pursuing the master’s
degree.

Her current research interest includes power man-
agement in mobile devices.

Mingsong Chen (S’08–M’11) received the B.S. and
M.E. degrees from the Department of Computer
Science and Technology, Nanjing University,
Nanjing, China, in 2003 and 2006, respectively,
and the Ph.D. degree in computer engineering from
the University of Florida, Gainesville, FL, USA, in
2010.

He is currently a Full Professor with the
Department of Embedded Software and Systems,
East China Normal University, Shanghai, China. His
current research interests include design automation

of cyber-physical systems, formal verification techniques, and mobile cloud
computing.

Gongxuan Zhang (SM’12) received the B.S. degree
in electronic computer from Tianjin University,
Tianjin, China, in 1983, and the M.S. and Ph.D.
degrees in computer application from the Nanjing
University of Science and Technology, Nanjing,
China, in 1991 and 2005, respectively.

He was a Senior Visiting Scholar with the Royal
Melbourne Institute of Technology, Melbourne, VIC,
Australia, from 2001 to 2002 and the University
of Notre Dame, Notre Dame, IN, USA, in 2017
for three months. Since 1991, he has been with

the Nanjing University of Science and Technology, where he is currently a
Professor with the School of Computer Science and Engineering. His current
research interests include multicore and parallel processing and distributed
computing.

Xiaobo Sharon Hu (S’85–M’89–SM’02–F’16)
received the B.S. degree from Tianjin University,
Tianjin, China, the M.S. degree from the New York
University Tandon School of Engineering, Brooklyn,
NY, USA, and the Ph.D. degree from Purdue
University, West Lafayette, IN, USA.

She is currently a Professor with the Department
of Computer Science and Engineering, University
of Notre Dame, Notre Dame, IN, USA. Her cur-
rent research interests include real-time embedded
systems, low-power system design, and computing

with emerging technologies. She has authored over 250 papers in the above
areas.

Jianming Yan received the master’s degree from the
Department of Computer Science and Technology,
East China Normal University, Shanghai, China,
in 2016.

He is currently a Senior Software Engineer with
Meituan.com Corporation, Beijing, China. His cur-
rent research interest includes task allocation and
scheduling techniques in heterogeneous real-time
MPSoC systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

