
1

Cost-Constrained QoS Optimization for
Approximate Computation Real-Time Tasks in

Heterogeneous MPSoCs
Tongquan Wei, Junlong Zhou, Kun Cao, Peijin Cong, Mingsong Chen,

Gongxuan Zhang, X. Sharon Hu, and Jianming Yan

Abstract—Internet of Things (IoT) devices such as video-based
detectors or road side units are being deployed in emerging
applications like sustainable and intelligent transportation sys-
tems. Oftentimes, stringent operation and energy cost constraints
are exerted on this type of applications, necessitating a hybrid
supply of renewable and grid energy. The key issue of a cost-
constrained hybrid of renewable and grid power is its uncer-
tainty in energy availability. The characteristic of approximate
computation that accepts an approximate result when energy is
limited and executes more computations yielding better results
if more energy is available, can be exploited to intelligently
handle the uncertainty. In this paper, we first propose an energy-
adaptive task allocation scheme that optimally assigns real-
time approximate-computation tasks to individual processors and
subsequently enables a matching of the cost-constrained hybrid
supply of energy with the energy demand of the resultant task
schedule. We then present a quality of service (QoS)-driven task
scheduling scheme that determines the optional execution cycles
of tasks on individual processors for optimization of system QoS.
A dynamic task scheduling scheme is also designed to adapt at
runtime the task execution to the varying amount of the available
energy. Simulation results show that our schemes can reduce
system energy consumption by up to 29% and improve system
QoS by up to 108% as compared to benchmarking algorithms.

Index Terms—Hybrid Energy Systems, Real-Time MPSoCs,
Approximate Computation, QoS Optimization.

I. INTRODUCTION

AS a global infrastructure for information society, IoT has

enabled various emerging applications [1]–[3]. Sustain-

able and intelligent transportation is one of such applications

where video-based detection systems or road side unit (RSU)-

based vehicular ad-hoc networks are utilized for better traffic

planning and management. IoT devices such as video detectors

and RSUs consume power of up to 10W [4], resulting in an

unaffordable energy cost and thus hindering the deployment of

intelligent transportation systems in metropolitan cities. This

T. Wei, K. Cao, P. Cong, and J. Yan are with the Department of Computer
Science and Technology, East China Normal University, Shanghai 200062,
China. M. Chen is with the Shanghai Key Laboratory of Trustworthy Com-
puting, East China Normal University, Shanghai 200062, China. M. Chen is
the corresponding author: mschen@sei.ecnu.edu.cn.

J. Zhou and G. Zhang are with the School of Computer Science and
Engineering, Nanjing University of Science and Technology, Nanjing 210094,
China.

X. S. Hu is with the Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46656, USA.

This work was partially supported by Shanghai Municipal Natural Science
Foundation (Grant No. 16ZR1409000) and Natural Science Foundation of
China (Grant No. 61672230).

situation can potentially be mitigated from two approaches.

One is for these systems to scavenge energy from renewable

generations as complement to the energy drained from power

grid. The other one is to perform approximate computing for

applications like image or video-based object identification

such that results of best quality is obtained by consuming a

given amount of energy. In this paper, we are interested in

designing such systems that are powered by hybrid energy and

supposed to finish under budget a mission with best quality.

The key issue of a hybrid energy system under budget of

the energy cost is its uncertainty. This uncertainty stems from

the intermittence nature of renewable generation and time-

varying pricing of electric grid. A system powered by such

hybrid energy may fail to execute a task to completion by

deadline due to lack of energy, resulting in a timing fault

and degraded system performance. Approximate computation

approach [5] can minimize the possibility that a task misses

its deadline due to the non-stationarity of powering in hybrid

energy systems. In the approximate computation approach, a

task is decomposed into a mandatory part followed by an

optional part. The mandatory part must execute to completion

to produce an acceptable result while the optional part refines

the generated result. Based on the observation that a timely

approximate result is preferable to a precise result too late [5],

the approximate computation technique can be used to avoid

timing faults. This is achieved by producing an approximate

result of acceptable quality by the deadline when the system

cannot produce an exact result in time due to lack of energy. In

this paper, we explore the design of a hybrid energy real-time

system using the approximate computation technique.

The studied hybrid energy real-time system attempts to

combine renewable generation and electric grid with energy

storage to deliver a cost-constrained power supply. In fact,

real-time embedded systems powered by conventional energy

and renewable energy have been studied separately in the

recent past. With regard to real-time embedded platforms that

are either powered by batteries or directly connected to power

grid, their energy management in the last two decades has

concentrated on minimizing energy consumption for a longer

lifetime and clear financial advantages [6]. On the other hand,

for real-time embedded platforms that are powered by renew-

able generations, the focus of research is mainly on improving

the efficiency to take advantage of renewable energy, reducing

the capacity of energy storage, and minimizing the deadline

miss rate of real-time tasks. For instance, Severini et al. [7]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

presented an improved version of lazy scheduling algorithm

[8] for energy harvesting systems. The improved solution can

foresee at runtime the task energy starving, hence allows

obtaining a more conservative and efficient management of

energy with respect to the original solution. Chetto et al. [9]

showed that when the incoming ambient energy or task arrivals

have a pure stochastic nature, the EDF scheduling algorithm

remains an attractive scheduler owing to easy implementation

and no need for estimating the stored or harvested energy.

Abdeddaim et al. [10] designed an optimal fixed-priority

solution to the real-time scheduling problem that handles both

energy and timing constraints for energy harvesting systems.
All the above works on renewable powered systems focus

on improving energy efficiency and schedule timeliness for

energy harvesting embedded systems, however, the concept of

approximate execution is not considered. Stavrinides et al. [11]

combined the approximate computation and bin packing strat-

egy to evaluate the impact of input error on the performance

of a heterogeneous distributed real-time system, however, the

energy design constraint is not taken into account.
It is natural for approximate computing systems to maxi-

mize their QoS given a certain cost or energy budget. Cortes

et al. [12] designed an approach to maximize rewards for

real-time approximate computation systems. The voltage at

which each task runs and the number of optional cycles are

determined under the timing and energy constraint. Similarly,

Yu et al. [13] presented a runtime scheduling algorithm for

approximate computation tasks. The algorithm maximizes sys-

tem QoS under energy constraints by optimally redistributing

slack generated at runtime. Since these approaches assume a

constant constraint of energy, they are not well suited for cost-

constrained hybrid energy systems where the available energy

varies due to intermittence of renewable and dynamic pricing

of grid power. Considering the uncertainty in availability of

energy in embedded harvesting systems, Kooti et al. [14] de-

signed an energy management technique to maximize system

QoS. However, the scheme specifically targets applications

in which QoS constraints allow drop out of some of real-

time tasks, which doesnot comply with the stringent timing

requirements of general real-time systems. In addition, the

scheme is based on a platform of single processor only

powered by harvesting energy, thus are not applicable for the

state-of-the-art hybrid energy multi-core processor platform.
In this paper, we propose an approximate computation based

task allocation and scheduling scheme for a heterogeneous

MPSoC real-time system that is powered by a hybrid of energy

harvested from environments and drained from power grid.

The major contributions are summarized as follows.

• We present a static energy-efficient task allocation

scheme that adaptively assigns approximate computation

tasks to individual processors considering the uncertainty

in the hybrid of the renewable and grid energy. The

energy-adaptive task allocation scheme can effectively

enable the matching of the hybrid energy supply with

the energy consumption of the resultant task schedule.

• We propose a static scheduling scheme for tasks allo-

cated to individual processors. The proposed scheduling

scheme determines the number of optional cycles of

Energy
Source

Energy
Storage

 …

Energy Dissipation

Power Grid

Fig. 1: The diagram of the system architecture.

each task to be executed such that the system QoS is

maximized under budget of the cost including energy and

battery aging. The static task schedule is also adapted at

runtime to the fluctuating amount of available energy.

• We conduct extensive simulation experiments to verify

the effectiveness of the proposed schemes in improving

system energy efficiency and QoS. Simulation results

have demonstrated that the proposed schemes have better

performance as compared to benchmarking schemes.

The rest of the paper is organized as follows. Section II

introduces the system architecture and models, and Sec-

tion III defines the problem and gives the overall framework

of the proposed scheme. Section IV presents the proposed

uncertainty-aware and cost-constrained task allocation, and

Section V describes the proposed QoS-driven task scheduling.

The effectiveness of the proposed approach is verified in

Section VI and concluding remarks are given in Section VII.

II. SYSTEM ARCHITECTURE AND MODELS

The system consists of four major parts: the energy source

module, storage module, dissipation module, and power grid.

As shown in Fig. 1, the energy source module automati-

cally scavenges renewable energy from environments at the

power of Pharv(t), and converts the renewable generation

into electrical energy. The energy storage module, which is

typically in the form of a battery, serves as a buffer against the

uncertainty in harvested energy. When the harvested energy is

more than the energy consumed by the dissipation module, the

extra energy is stored in the storage module. A heterogeneous

multiprocessor system-on-chip (MPSoC) is considered as the

energy dissipation module, which drains energy at the rate of

Pcons(t) from the energy source, storage module, and/or power

grid that provide a power supply of Psup(t). We are interested

in a system that is designed under a cost budget. We assume

that the harvested energy is free, thus, the amount of energy

drained from the battery and/or grid depends upon the cost of

battery aging and the dynamic price of grid electricity.

A. Processor and Task Model

The MPSoC system consists of M processors, denoted

by Θ = {Θ1,Θ2, · · · ,ΘM}, where each processor Θm

(1 ≤ m ≤ M) is a typical DVFS-enabled processor that can

operate with a set of discrete supply voltage and frequency

pairs (vm,r, fm,r) (1 ≤ r ≤ xm), where vm,1 < · · · <
vm,r < · · · < vm,xm

, fm,1 < · · · < fm,r < · · · < fm,xm
,

and xm is the voltage/frequency level of Θm. Real-time tasks

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

are supposed to schedule and execute on the system. Consider

a task set Γ consisting of N independent real-time tasks

{τ1, τ2, · · · , τN}. The task set Γ is a frame-based task set,

in which all tasks share a common deadline d that is also the

frame. Different tasks exhibit different power consumptions

on the same processor, even executing at the same operating

speed and temperature. This is due to the fact that power

consumptions of tasks strongly rely on circuit activities and

usage patterns of different functional units [15]. Thus, the

activity factor of a task, denoted by μ (ranging in (0,1]),

is introduced to capture how intensively functional units are

being utilized by the task [16].

We consider approximate computation tasks in this work.

Each task τi (1 ≤ i ≤ N) is logically decomposed into

a mandatory part with execution cycles Mi and an optional

part with execution cycles Oi [17]. The mandatory part must

execute to completion before the deadline and generate an

acceptable result, while the optional part refines and improves

the result. The characteristic of an approximate computa-

tion modeled task τi is therefore described by a quadruple

τi : {μi,Mi, Oi, d}, where μi is the activity factor, and d
is the common deadline. Mi is the mandatory cycles of τi
that must be completed before the deadline while Oi is the

maximum optional cycles of τi. Since optional cycles are

partially executed, we introduce a variable to represent the

executed optional cycles of τi, which is denoted as oi and

holds for 0 ≤ oi ≤ Oi. Then, the actual length li of τi,
measured by the total execution cycles, can be expressed as

li = Mi + oi. (1)

B. Battery SoH Degradation Model

A practical and widely used SoH degradation model of

Li-ion batteries [18]–[20] is adopted to estimate the SoH

degradation for cycled charging and discharging of a Li-

ion battery cell. Before presenting the estimation of SoH

degradation, we formally define the state-of-charge (SoC) of

a battery at first, that is,

SoC =
Cbat

Cfull
× 100%, (2)

where Cbat is the amount of charge stored in the battery and

Cfull is the battery full charge capacity. The amount of state-

of-health (SoH) degradation, denoted by DSoH , is defined as

DSoH =
Cnom

full − Cfull

Cnom
full

× 100%, (3)

where Cnom
full is nominal value of Cfull for a fresh new battery.

The adopted SoH degradation model estimates the battery

SoH degradation in a cycled charging/discharging pattern,

where a (charging/discharging) cycle is defined as a charging

process of the battery cell from SoClow to SoChigh followed

by a discharging process from SoChigh to SoClow. Thus the

average SoC and SoC swing in a cycle are calculated as

SoCavg = (SoClow + SoChigh)/2, (4)

SoCswing = SoChigh − SoClow. (5)

The battery SoH degradation DSoH,cycle during one cycle,

accounting for SoCavg and SoCswing , is given by

D1 = Kco · e(SoCswing−1) · Tref

Kex ·TB + 0.2
η

ηlife
, (6)

D2 = D1 · e4KSoC · (SoCavg−0.5) · (1−DSoH), (7)

DSoH,cycle = D2 · eKT · (TB−Tref) · Tref
TB , (8)

where Kco, Kex, KSoC , and KT are battery specific param-

eters. TB and Tref are battery’s operation temperature and

reference temperature, respectively. η is the duration of this

charging/discharging cycle and ηlife is the calendar life of

this battery. The total SoH degradation (in reference to a fresh

battery) after W charging and discharging cycles is

DSoH =
�W

w=1
DSoH,cycle(w), (9)

where DSoH,cycle(w) is the SoH degradation in the wth cycle.

However, the above SoH degradation model can only be

applied to the fixed charging/discharging pattern, that is, the

battery experiences the cycles with the same SoCswing and

SoCavg . In reality, a battery may not follow this pattern.

Hence, a cycle-decoupling method was proposed [19] to

build an improved SoH degradation model of battery for

charging/discharging cycles with arbitrary patterns. The SoH

degradation in an arbitrary cycle and the total degradation can

thus be derived using Eq. (8) and (9), respectively.

C. Energy Model

The energy of the concerned system is modeled from the

perspective of both supply and demand. We first describe the

model for energy supply. Let Pharv(t) be the harvesting power

and Eharv(t1, t2) be the energy scavenged from environments

during time interval [t1, t2], then Eharv(t1, t2) is calculated as

Eharv(t1, t2) =

� t2

t1

Pharv(t)dt. (10)

As illustrated in Fig. 1, the energy source module, storage

module, and power grid can provide the energy to the dissipa-

tion module. Let Esup(t1, t2) represent the system available

supply energy during time interval [t1, t2], and Ebat(t1, t2)
and Egrid(t1, t2) indicate the energy drained from the battery

and power grid during [t1, t2], respectively, then we have

Esup(t1, t2) = Eharv(t1, t2) + Ebat(t1, t2) + Egrid(t1, t2).
(11)

We then describe the model for energy demand. The total

energy consumption of an IoT device depends on its proces-

sors, memory, disks, cooling system, and wireless components.

Although there are many research work [21]–[23] focusing on

reducing system overall energy consumption, we only consider

processor energy consumption in the energy dissipation model

since processor is the dominant source of overall energy

consumption of some systems like IoT security authentication

system [24]–[26]. The power consumption of a processor can

be modeled as the sum of static/leakage power consumption

Psta and dynamic power consumption Pdyn. The static power

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Psta is temperature dependent and consumed by the leakage

current required to maintain basic state of circuits. The leakage

current changes super linearly with temperature. The dynamic

power Pdyn is related to processor switching activity and

can be estimated by a function of supply voltage v and

frequency f , that is, Pdyn ∝ v2f . Thus, the overall power

consumption of processor Θm when executing task τi at the

supply voltage/frequency (vm,r, fm,r) is formulated as

Pcons(τi,Θm) =ω1 · vm,r + ω2 · vm,r ·Tm(t)

+ Ceff,m ·μi · v2m,r · fm,r, (12)

where ω1 and ω2 are both non-negative architecture-dependent

constants of Θm, Tm(t) is the operating temperature of Θm at

time instance t, Ceff,m is the effective switching capacitance

of Θm, and μi is the activity factor of τi.

The static power is always consumed to maintain basic

circuits and the dynamic power is only consumed when

executing tasks. Thus, based on Eq. (12), the total energy

consumed (or demanded) by the system during the scheduling

horizon H, denoted by Edem, is calculated as

Edem =
�M

m=1

�
ω1 · vm,r ·H+

� H

0
ω2 · vm,r ·Tm(t)dt

�

+
�M

m=1

�
τi∈Γm

�
Ceff,m ·μi · v2m,r · li ·

H
d

�
, (13)

where Γm is the subset of tasks allocated to processor Θm.

Oftentimes, H is a multiple of d.

III. PROBLEM DEFINITION AND OVERALL FRAMEWORK

Our goal is to reduce the impact of uncertainties in the en-

ergy scavenged from ambient environments, and improve the

efficiency of renewable energy and QoS of the system under

a certain cost budget Costbdg,H. The following subsections

describe the system cost and QoS function, formulate the QoS

optimization problem, and overview the proposed solution.

A. System Cost Function

We adopt a slotted time model that deals with all the system

decisions and constraints in discrete time intervals of equal

length. More specifically, the whole scheduling horizon H is

divided into W time slots with equal and constant length of

Δt. We assume that the power grid has a dynamic pricing

function, and the price of one unit of energy (in kWh) during

the wth time slot is denoted by PXgrid[w]. In our formulation,

solar energy is considered free for simplicity, though its cost

can be normalized and incorporated in the formulation. Since

solar energy is free, the total cost function Costtot,H during

H is comprised of two parts. One is the cost Costaging,H
associated with battery aging and the other is the energy cost

Costgrid,H due to charges from power grid. That is,

Costtot,H = Costaging,H + Costgrid,H. (14)

Let Costbat be the cost to purchase a fresh new battery,

DSoH,H be the amount of SoH degradation during H, and

DSoH,end be the amount of SoH degradation indicating the

end-of-life of a battery, the cost of battery aging during H is

Costaging,H = Costbat
DSoH,H
DSoH,end

. (15)

Oftentimes, Costbat, the cost to purchase and replace a battery

is fixed, and the DSoH,end indicating the end-of-life of a

battery takes value of 70% [20]. Since Costbat and DSoH,end

are assumed constant, it can be seen from Eq. (15) that the cost

of battery aging can be minimized by optimizing DSoH,H, the

amount of SoH degradation during the scheduling horizon H.

For the wth time slot, let Psup[w] be the power supplied

to the energy dissipation module, Pharv[w] be the harvesting

power of energy source module, and Pbat[w] be the power

drained from the battery. We assume that the grid electricity

price PXgrid[w] and the battery aging cost in the wth time

slot is fixed. Then we define a binary variable β that is set

to 1 when the electricity cost in a time slot is greater than the

battery aging cost, and 0 otherwise. When the incurred cost

of grid electricity is different from the battery aging cost in a

time slot, the energy source of lower cost is selected to power

the MPSoC. Given these and based on the principle of energy

conservation illustrated in Fig. 1, the grid power can then be

derived as Psup[w]− Pharv[w]− β ·Pbat[w], and its cost is

Costgrid,H =
�W

w=1
PXgrid[w](Psup[w]− Pharv[w]

− β ·Pbat[w])Δt. (16)

From the viewpoint of energy dissipation module, Psup[w]
can also be written in the form of Pdem[w] +ΔP [w], that is,

Psup[w] = Pdem[w]+ΔP [w], where ΔP [w] is the difference

between the power supply and demand of energy dissipation

module. Thus, Eq. (16) can be expressed as

Costgrid,H =
�W

w=1
PXgrid[w](Pdem[w]

+ ΔP [w]− Pharv[w]− β ·Pbat[w])Δt. (17)

The solar harvesting profile Pharv[w] can be estimated using

historical data. The power drain of battery Pbat[w] can be

derived by an SoH degradation-aware battery management

policy [19] that minimizes the amount of SoH degradation

DSoH,H and hence Costaging,H. As the cost of battery aging

Costaging,H is derived and the cost budget Costbdg,H is given,

the cost of grid power Costgrid,H is then determined. In Eq.

(17), since Costgrid,H, Pharv[w], Pbat[w], PXgrid[w], Δt are

all known, Pdem[w] + ΔP [w] is decided. When Pdem[w] is

optimized and ΔP [w] = 0, the energy consumed per execution

cycle is minimized and the energy supply matches with the

energy demand. In other words, more energy can be used to

execute task optional cycles for QoS improvement.

B. System QoS Function

It has been shown that the quality of a task can be represent-

ed as a linear or concave function of optional cycles of the task

[5]. The more cycles the optional part of the task executes, the

higher QoS the task generates. Thus, we quantitatively define

a simple yet effective QoS function for a system, which is the

sum of the executed CPU cycles of optional parts of all the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Initial/Target SoC

Battery Storage
Model

Battery SoH
Degradation Model

SoH Degradation-
Aware Battery
Management

Battery Charging
/Discharging

Profiles

Stage 1

Battery Charging/
Discharging Profiles

Energy Supply

• Set the task optional execution factor
• Allocate tasks to processors based on and DTA

Solar Profiles

Energy-Adaptive Task Allocation to Handle the
Uncertainty in Energy Supply (Offline)

…

…

Stage 2

• Sort tasks on the processor based on the energy metric
• Prove that the QoS is maximized if tasks having smaller

energy metric are selected to execute their optional parts
• Select tasks to maximize the QoS

QoS-Driven Task Scheduling under the Energy Budget
(Offline)

Set of Tasks

Set of Processors

Task Schedule Table

…

…

…

… …

Introduce to represent the energy uncertainty

Deterministic Task Allocation (DTA) to
Minimize the Energy Consumption

(Offline)

Introduce an energy metric

Dynamic Task Scheduling that Adapts Task Execution to Fluctuating
Supply of Energy at Runtime (Online) GearOffline

• Real to Virtual Model Transformation
(RVMT)

• Deterministic Task-to-(Virtual) Core
Allocation

Output

Grid Power

Fig. 2: The main design flow of the proposed scheme.

real-time tasks. It is denoted by Q and is expressed as

Q =
�N

i=1
oi. (18)

Clearly, the system QoS is a function of executed optional

cycles of real-time tasks.

C. Cost-Constrained QoS Optimization Problem

Given a set of approximate-computation real-time tasks and

a set of heterogeneous processors powered by renewable and

grid energy, design a task-to-processor allocation that adapts

to the uncertainty of system available energy, and a task

scheduling scheme that arranges assigned tasks on individual

processors to maximize the system QoS under the constraint

of a cost budget. We assume that the system energy demand

cannot exceed the energy supply, and the mandatory parts of

all the tasks must be finished before the common deadline d.

The problem is formulated into the below form.

Maximize: Q =
�N

i=1
oi

Subject to: 0 ≤ oi ≤ Oi (19)

Edem ≤ Esup (20)
�

τi∈Γm

Mi/f(τi) ≤ d (21)

Costtot,H ≤ Costbdg,H. (22)

D. Overview of the Proposed Two-Stage Scheme

The key issue of the studied system is that uncertainties in

the energy scavenged from ambient environments result in low

energy utilization and/or high deadline miss rate. We address

the problem by designing approximate computation-based task

allocation and scheduling algorithms that enhance the energy

efficiency, ensure system timing constraints, and maximize the

system QoS under the constraint of a cost budget. The design

flow of the proposed scheme is illustrated in Fig. 2. Given

cost budget of a system, the uncertainties in energy supply

of energy dissipation modules stem from the intermittence

of renewable energy and dynamic pricing of grid energy. We

tackle the uncertainties in stage 1 of the scheme by adopting an

SoH degradation-aware battery management policy [19] that

minimizes the cost of battery aging, and conducting an energy-

adaptive task allocation that minimizes the system energy

demand and adapts the energy demand to the availability of

energy supply including the grid and renewable energy.

In stage 1 of the proposed scheme, we first adopt an

SoH degradation-aware battery management policy [19] to

reduce the cost of battery aging. Based on the battery storage

and SoH degradation model adopted, the SoH degradation-

aware battery management policy [19] takes the battery initial

SoC and target SoC as input and determines the battery

charging/discharging current profile using convex optimization

techniques. The generated charging/discharging current profile

is a near-optimal charge management policy that can minimize

the battery SoH degradation, thus extend the cycle life of

battery. For a given cost budget formulated in Eq. (14), it is

preferable to utilize free renewable energy, or battery storage

and/or grid power, whichever incurs lower cost during the

scheduling horizon H. The cost of battery aging and grid

power are given in Eq. (15) and (17), respectively.

We then design an energy adaptive task allocation (ATA)

algorithm in stage 2 of the proposed scheme. The algorith-

m first introduces and initializes a variable α, named the

task optional execution factor, to represent the uncertainty

in energy supply. It allocates tasks to processors using a

deterministic task allocation (DTA) scheme that consists of

Real to Virtual Model Transformation (RVMT) and Deter-

ministic Task-to-(Virtual) Core Allocation [27] based on the α.

Then, it adapts system energy demand to renewable and grid

supply of energy by using the task optional execution factor

as a control knob to maximize the degree of match between

system energy demand and supply. Through the deterministic

task allocation and task optional execution factor tuning, the

system energy consumption is minimized, the energy supply

is fully utilized, and the cost of grid energy is reduced.

The stage 2 of the proposed scheme aims at improving

the QoS of the system after SoH degradation-aware battery

management policy minimizes the cost of battery aging and

the energy adaptive task allocation scheme reduces the cost

of grid energy. The QoS-driven task scheduling algorithm

proposed in this stage first introduces an energy metric that

indicates the importance of every task on the processor in

terms of improving system QoS, then proves that the system

QoS is maximized if tasks having smaller energy metric are

selected to execute their optional parts. It finally develops

a task selection scheme that chooses the tasks with smaller

metric under the constraint of cost budget.

The above QoS-driven task scheduling is designed for the

offline scenario under the assumption of a fixed energy supply.

However, the actual energy harvested from environments may

not be the same as the energy estimated by prediction tech-

niques due to the fluctuating nature of renewable generation. In

addition, the cost-constrained energy drained from the battery

and power grid may vary due to different initial SoC of the

battery and time varying price of grid power. Therefore, an

online QoS-driven task scheduling is designed to adapt the

offline schedules to fluctuating energy supply at runtime.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

IV. TASK ALLOCATION UNDER COST CONSTRAINT

The task allocation scheme first assumes deterministic en-

ergy sources and minimizes the energy consumption by intel-

ligently assigning tasks to processors, then iteratively adapts

the task allocation to uncertainties in energy availability.

A. DTA to Minimize Energy Consumption

The concerned system consists of heterogeneous multi-

processors, each of which is DVFS-enabled and supports a

set of discrete supply voltage and frequency pairs. Hence,

operating frequencies of tasks need to be determined during

task allocation. To this end, we propose an RVMT method

that converts the processor model with multiple voltage and

frequency levels to a model of multiple virtual cores, each

of which has a fixed supply voltage and frequency level. This

method can effectively decrease one dimension of optimization

for energy consumption by reducing task-to-(real) processor

allocation and frequency selection problem to task-to-(virtual)

core allocation problem. Below, we first show the proposed

RVMT processor model transformation, analyze the energy

optimality of allocating tasks to virtual cores and present a

theorem on optimum task allocation, then develop a task-to-

(virtual) core allocation heuristic based on the theorem.

1) Real to Virtual Model Transformation (RVMT): The

system energy consumption during the scheduling horizon H
given in Eq. (13) can be re-written as

Edem =
�M

m=1

�
ω1 · vm,r ·H+

� H

0
ω2 · vm,r ·Tm(t)dt

�
+

H
d

�M

m=1

�xm

r=1

�
Ceff,m · v2m,r

�
τi∈Γm,r

μi · li
�
, (23)

where Γm,r is the subset of tasks allocated to processor Θm

and operated at frequency fm,r. The two items of Eq. (23)

are the static and dynamic energy consumption, respectively.

The static energy consumption depends on temperature while

the dynamic energy consumption depends on task allocation.

Thus both thermal-aware task scheduling and energy-efficient

task allocation are helpful to minimize the system overall

energy consumption. Since thermal-aware task scheduling

for minimizing the static energy consumption has been well

studied in [27], we focus on energy-efficient task allocation to

minimize the dynamic energy consumption in this paper.

Let Edyn represent the dynamic energy consumption, which

can be formulated into the product of two vectors, that is,

Edyn =
H
d

�M

m=1

�xm

r=1
(Ceff,mv2m,r

�
τi∈Γm,r

μili)

=
H
d

�M

m=1

�xm

r=1
Gm,rQm,r =

H
d
GQ, (24)

where Gm,r = Ceff,mv2m,r, Qm,r =
�

τi∈Γm,r
μili, M

is the number of processors, and xm is the number of

frequency levels supported by the mth processor. Vector

G = [G1,1,G1,2, · · · ,G1,x1
, · · · · · · ,GM,1,GM,2, · · · ,GM,xM

]T

captures processor dependent parameters and vector Q =
[Q1,1,Q1,2, · · · ,Q1,x1 , · · · · · · ,QM,1,QM,2, · · · ,QM,xM

]
captures task related parameters. Here, Gm,r ∈ G is referred

to as the power dissipation factor of processor Θm, Qm,r ∈ Q

࣡ଵ,ଵ
,ଵ,ଵݒ) ଵ݂,ଵ) ⋯ (ݒଵ,௫భ, ଵ݂,௫భ)

Θଵ Θ Θெ (ݒ,ଵ, ݂,ଵ) ⋯ (ݒ,௫, ݂,௫) (ݒெ,ଵ, ெ݂,ଵ) ⋯ (ݒெ,௫ಾ, ெ݂,௫ಾ)
⋯ ⋯

Real processors characterized by ࣡ = [࣡ଵ,ଵ, ࣡ଵ,ଶ, ⋯ , ࣡ଵ,௫భ, ࣡ଶ,ଵ, ࣡ଶ,ଶ,⋯ , ࣡ଶ,௫మ,⋯ , ࣡ெ,ଵ, ࣡ெ,ଶ,⋯ , ࣡ெ,௫ಾ]்

࣡ଵ,௫భ ࣡,ଵ ࣡,௫ ࣡ெ,ଵ ࣡ெ,௫ಾ ⋯ ⋯ ⋯

 ⋯ ⋯ ఞߠ̅ ఞିଵߠ̅ ℓߠ̅ ଷߠ̅ ଶߠ̅ ଵߠ̅
,ଵݒ) ଵ݂) (ݒଶ, ଶ݂) (ݒଷ, ଷ݂) (ݒℓ, ℓ݂) (ݒఞିଵ, ఞ݂ିଵ) (ݒఞ, ఞ݂)
 ఞߜ ఞିଵߜ ℓߜ ଷߜ ଶߜ ଵߜ

Sorted virtual cores characterized by ߜ = ,ଵߜ] ,ଶߜ ⋯,ଷߜ , ⋯,ℓߜ , ,ఞିଵߜ ,்[ఞߜ
satisfying ߜଵ ≤ ଶߜ ≤ ଷߜ ≤ ⋯ ≤ ℓߜ ≤ ⋯ ≤ ఞିଵߜ ≤ ఞߜ

Fig. 3: Illustration of the RVMT transformation.

is referred to as the power dissipation factor of subset Γm,r

allocated to processor Θm at frequency level fm,r, and μili
is referred to as the power dissipation factor of task τi.
It is clear that G is constant since Ceff,m and vm,r are

known for the given MPSoC system Θ while Q is not since

it depends on the task assignment and frequency selection

(e.g., Γm,r). In addition, for a given task set Γ, the sum

of power dissipation factor of tasks in the set is a constant

(denoted by V) and can be expressed as
�M

m=1

�xm

r=1 Qm,r =�M
m=1

�xm

r=1

�
τi∈Γm,r

μili =
�N

i=1 μili = V .

According to the above formulation, the power dissipation

of the MPSoC system can be characterized by vector G =
[G1,1,G1,2, · · · ,G1,x1

, · · · · · · ,GM,1,GM,2, · · · ,GM,xM
]T . S-

ince the number of power dissipation factors in the vector G
is greater than the number of processors supporting multiple

voltage levels, we propose a model transformation method that

converts the DVFS-enabled MPSoC system of multiple voltage

levels into a virtual core system, each core of which supports

only one voltage level. During the transformation, the virtual

cores obtained from a certain processor in the MPSoC system

are assumed to share the same characteristics as the processor

except for the supply voltage and frequency. As a result, each

element in the power dissipation vector G corresponds to a

core in the virtual core system. We then sort the cores in the

increasing order of power dissipation factors.

Fig. 3 illustrates the proposed RVMT processor model

transformation. As demonstrated in the figure, the virtual core

system can be represented by Θ̄ = {θ̄1, θ̄2, · · · , θ̄�, · · · , θ̄X },

where every core θ̄� ∈ Θ̄ (1 ≤ � ≤ X , and X =
�M

m=1 xm)
has a fixed voltage and frequency pair (v�, f�). The vir-

tual core system θ̄ is then characterized by vector δ =
[δ1, δ2, · · · , δ�, · · · , δX]T and δ1 ≤ δ2 ≤ · · · ≤ δ� ≤ · · · ≤ δX
holds, where δ� = Ceff,�v

2
� is referred to as the power

dissipation factor of θ̄�. Accordingly, the power dissipation

of subsets allocated to virtual cores can be represented by

vector ξ = [ξ1, ξ2, · · · , ξ�, · · · , ξX], where ξ� =
�

τi∈Γ�
μili

is referred to as the power dissipation factor of subset allocated

to θ̄�, and ξ1+· · ·+ξ�+· · ·+ξX = V holds. Thus the dynamic

energy consumption given in Eq. (24) can be expressed as

Edyn =
H
d
δξ. (25)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Algorithm 1: Deterministic task-to-core assignment

Input: 1) Task set represented by Γ = {τ1, τ2, · · · , τN}
2) MPSoC represented by Θ = {Θ1,Θ2, · · · ,ΘM}

Output: task-to-(virtual) allocation {Γ1,Γ2, · · · ,ΓX }
1 transform the real processor system Θ to virtual core system Θ̄ by
Θ̄ = RVMT(Θ), where the X cores of Θ̄ are in increasing order of
their power dissipation factors;

2 for � = 1 to X do
3 initialize the utilization and task subset of virtual core θ̄� ∈ Θ̄ by

U(θ̄�) = 0 and Γ� = ∅;

4 � = 1;
5 while Γ �= ∅ and � ≤ X do
6 sort the tasks τi ∈ Γ in the decreasing order of task power

dissipation factors μili using heapsort;
7 for i = 1 to size(Γ) do

/* use First-Fit to group tasks */
8 if RT(τi, θ̄�) == true and u(τi, θ̄�) + U(θ̄�) ≤ 1 then
9 assign task τi to core θ̄�;

10 update Γ, Γ�, and U(θ̄�) by Γ = Γ− τi, Γ� = Γ� + τi,
and U(θ̄�) = U(θ̄�) + u(τi, θ̄�);

11 � ← �+ 1;

12 if Γ �= ∅ and � > X then
13 exit(1); /* Exit when infeasible */

Let ξ∗ = [ξ∗1 , ξ
∗
2 , · · · , ξ∗� , · · · , ξ∗X] be a vector that denotes

the optimum power dissipation factors of subsets allocated

to individual virtual cores, and E∗
dyn be the dynamic energy

consumption of the optimum task allocation. We prove below

that the dynamic energy consumption Edyn given in Eq.

(25) is minimized when the virtual core with smaller power

dissipation factor (δ) ends up with the subset of its allocated

tasks having a larger power dissipation factor (ξ∗).

Theorem 1: If the virtual core power dissipation factors
δ1 ≤ δ2 ≤ · · · ≤ δX hold for δ = [δ1, δ2, · · · , δX]T , and
the sum of the corresponding task subset power dissipation
factors ξ∗1 + ξ∗2 + · · ·+ ξ∗X is fixed for ξ∗ = [ξ∗1 , ξ

∗
2 , · · · , ξ∗X],

then the dynamic energy consumption Edyn is minimized to
E∗

dyn if ξ∗1 ≥ ξ∗2 ≥ · · · ≥ ξ∗� ≥ · · · ≥ ξ∗X holds.
2) Deterministic Task-to-(Virtual) Core Allocation: We pro-

pose a sub-optimal task allocation heuristic which is motivated

by the theorem presented in Section IV-A1, that is, allocating

the subset having a larger power dissipation factor to the

virtual core having a smaller power dissipation factor can

minimize the dynamic energy consumption. The heuristic

operates as follows. Tasks in the subset with the maximum

power dissipation factor is allocated to the virtual core with the

minimum power dissipation factor, and tasks in the subset with

the next maximum power dissipation factor is allocated to the

virtual core with the next minimum power dissipation factor.

This process repeats until all subsets of tasks are allocated

to cores. In addition, the constraints of task deadline and

processor capacity limit are examined during the allocation.

The details of the heuristic are described in Alg. 1. Inputs to

the algorithm are task set Γ and processor set Θ. Let Θ̄ be the

corresponding virtual core system, and θ̄� be the �th virtual

core of the virtual system model. Let U(θ̄�) be the utilization

of virtual core θ̄�, which is calculated as the sum of utilization

of tasks assigned to the core, and u(τi, θ̄�) be the utilization of

task τi if it is assigned to virtual core θ̄�, which is calculated

as the quotient of task execution time and frame size.

The algorithm first transforms the MPSoC to a virtual

core system using Θ̄ = RVMT(Θ), in which the cores are

arranged in the increasing order of power dissipation factors.

The utilization and subset of all virtual cores θ̄� (1 ≤ � ≤ X)
are initialized by U(θ̄�) = 0 and Γ� = ∅, respectively. It

then iteratively implements the process of task-to-(virtual) core

allocation if the task set is not empty and not all the cores in

Θ̄ have been considered. Before starting the iteration, the core

index � is set to 1. In each round of iteration, the algorithm

first sorts the tasks of set Γ in the decreasing order of task

power dissipation factors μili, then allocates tasks to cores and

construct subset of tasks in a first fit manner under the real-

time constraint RT(τi, θ̄�) == true and processor capacity

limit u(τi, θ̄�) + U(θ̄�) ≤ 1. RT(τi, θ̄�) is a procedure that

checks the real-time constraint of a task and returns true if

the task is finished before its deadline, and false otherwise. If

allocating task τi to core θ̄� can satisfy these constraints, the

task is allocated to the core, and task set Γ, subset Γ�, and

utilization U(θ̄�) are hence updated. The process then moves to

the next iteration and considers the allocation of the next task.

Otherwise, the task is not assigned and the process directly

moves to the next iteration. If there is no feasible schedule for

the system under the constraints, the algorithm exits.

B. ATA to Handle Uncertainties in Energy Availability
Based on the deterministic task allocation, this section

handles the uncertainty in energy sources by adapting the

execution of approxiate-computation tasks to the energy avail-

ability. We introduce a variable α to denote the ratio of the

number of executed optional cycles to the maximum optional

cycles of a task. The α is named as task optional execution

factor and falls within the range [0, 1]. Using α, the total

execution cycles of task τi given in Eq. (1) can be re-written as

li = Mi + α ·Oi. (26)

The key issue in dealing with the energy uncertainty is

to derive the relationship between task optional execution

factors and energy demand of the system. In other words,

the optional execution factor of a task is expected to serve

as a coarse adjustment knob to control the degree of match

between system energy demand and supply. To this end, we

first show that the energy demand of a system increases

when the optional execution factor of a task in the given set

increases, as described in Theorem 2.
Theorem 2: Given task τi ∈ Γ, its two different optional

execution factors α and α′, and the task allocation scheme in
Alg. 1, the inequality Edem > E′

dem holds if α > α′, where
Edem and E′

dem are the energy demand of the generated task
schedule corresponding to α and α′ of task τi, respectively.

Since the optional execution factor of a task is positively

related to system energy demand, we can determine the task

optional execution factor for given energy demand by using a

simple yet effective binary search-based approach. We assume

that the optional execution factor of every task is the same

such that the adaptive task allocation is conducted at a coarse

granularity. We refine the optional execution factors of tasks

such that each task has its own optional execution factor at

the task scheduling stage, as shown in Section V.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Algorithm 2: Iterative task allocation based on task optional execu-

tion factors

Input: Task set Γ && MPSoC Θ && cost budget Costbdg,H && a
sufficiently small positive number ε

Output: task to virtual core assignment {Γ1,Γ2, · · · ,ΓX }
1 derive available energy Esup during [t, t+H] using Eq. (11);
2 min = 0,max = 1, α = (min+max)/2;
3 calculate task execution cycles for all tasks using Eq. (26) based on
α, call Alg. 1 to allocate tasks, and calculate energy demand Edem

using Eq. (13);
4 while |Esup − Edem| > ε do
5 if Edem > Esup then
6 max = α, α = (min+max)/2;

7 else
8 min = α, α = (min+max)/2;

9 update li for all tasks using Eq. (26) based on α;
10 allocate tasks using Alg. 1 based on li;
11 update Edem of the task schedule using Eq. (13);

To handle the uncertainty in energy availability, we adapt

system energy demand to fluctuating energy supply by using

the task optional execution factor as a coarse-grain control

knob to adjust the system energy consumption. The proposed

adaptive task allocation algorithm is described in Alg. 2. It

takes as input task set Γ, processor set Θ and the given cost

budget Costbdg,H, and outputs X subsets {Γ1,Γ2, · · · ,ΓX }.

It first derives the budget-constrained energy Esup that is

available to support the system operation during the scheduling

horizon H based on Eq. (11). It then utilizes a binary search-

based approach to derive a common task optional execution

factor for all tasks in set Γ. It initializes the common task

optional execution factor α to 0.5. It calculates task execution

cycles using Eq. (26), calls Alg. 2 to allocate tasks, and

computes energy demand Edem using Eq. (13). Once energy

demand Edem of the task allocation is derived, the algorithms

iteratively adapt the energy demand to the fluctuating supply

of energy Esup according to |Esup − Edem| > ε, where ε
is a sufficiently small positive number. Alg. 2 stops when

energy demand of the generated schedule closely matches to

the energy supply, and returns the allocation solution.

V. QOS-DRIVEN TASK SCHEDULING

This section maximizes the system QoS by determining

tasks whose optional parts should be executed. Once these

tasks are picked out, a runtime scheme needs to be designed

to adapt task schedule to the fluctuating energy availability.

A. Static Task Selection for QoS optimization
As given in Eq. (18), the QoS of a system is defined as the

sum of executed CPU cycles of optional parts of all tasks in the

given set. To maximize the QoS of a system under the energy

constraint, we propose to develop a task selection scheme that

chooses certain tasks and executes the optional parts of these

tasks. Let E� denote the energy consumed by tasks in subset

Γ� allocated to the virtual core θ̄�, then E� is given by

E� =
�

τi∈Γ�

Pcons(τi, θ̄�) · oi +Mi

f�
=
�

τi∈Γ�

Pcons(τi, θ̄�)

f�
· oi +
�

τi∈Γ�

Pcons(τi, θ̄�)

f�
·Mi, (27)

where Pcons(τi, θ̄�) is the power consumption of task τi on

core θ̄�, f� is the operating frequency of core θ̄�, oi is the actual

optional execution cycles of task τi, and Mi is the mandatory

part of task τi. The energy demand or consumption of the

system can be expressed as the sum of energy E� consumed by

individual cores. It approximates closely to the energy supply

of the system by a parameter ε > 0 since tasks are assigned

to individual cores using the energy adaptive algorithm (i.e.,

Alg. 2) presented in Section IV-B. Thus, we have

Esup ≈ Edem =
X�

�=1

E� =
X�

�=1

�

τi∈Γ�

Pcons(τi, θ̄�)

f�
· oi

� �� �
Eoptl

+
�X

�=1

�
τi∈Γ�

Pcons(τi, θ̄�)

f�
·Mi

� �� �
Emand

, (28)

where the first item Eoptl is the energy consumed by executing

optional parts while the second item Emand is the energy con-

sumed by executing mandatory parts of real-time tasks. When

a scheduling decision is made at the start of the scheduling

horizon H, the estimated energy supply Esup is a fixed value.

In addition, the Emand shows that the energy consumed by

all allocated mandatory parts during the scheduling horizon H
is invariable. As a result, the total energy consumption of the

optional parts given by the Eoptl is fixed.

The problem of selecting tasks for QoS optimization is

hence refined into finding optimal optional cycles for all

allocated tasks under the energy budget constraint. Let

EC�,i =
Pcons(τi, θ̄�)

f�
(29)

be an energy metric that gives the energy consumption of task

τi on core θ̄� per execution cycle. Since every task is only

allowed to bind with one core, we use ECi rather than EC�,i

to denote the energy metric of τi on θ̄� after task assignment

is determined. In addition, we sort all tasks allocated to cores

in ascending order of ECi for the sake of easy presentation.

Thus, the energy consumed by optional parts of all tasks is

Eoptl = EC1 · o1 + EC2 · o2 + · · ·+ ECN · oN , (30)

and EC1 < EC2 < · · · < ECN holds. In Eq. (30), the

metric ECi and task executed optional cycles oi = α ·Oi are

determined once tasks are bound to individual cores. However,

the α is derived in the task allocation for maximizing energy

efficiency. Now we aim to maximize system QoS in the

task scheduling under the energy budget by re-determining

the executed optional cycles oi of tasks using an individual

optional execution factor αi.

Clearly, ECi is determined once tasks are bound to individ-

ual cores. Moreover, the LHS of Eq. (30) is determined after

task allocation. Thus, our goal of optimization for system QoS,

which is given in Eq. (18) as the sum of executed optional

cycles of all tasks, becomes maximizing the sum of oi for

1 ≤ i ≤ N under the constraint of Eq. (30). This can be

achieved by developing a task selection scheme that wisely

chooses certain tasks and executes their optional cycles. Given

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Algorithm 3: Determine task optional execution cycles

Input: Subsets of assigned tasks produced by Alg. 2
Output: Tasks with optional execution cycles updated

1 for � = 1 to X do
2 for i = 1 to size(Γ�) do
3 calculate the energy metric ECi;

4 sort the tasks allocated to core θ̄� in ascending order of ECi

using heapsort;

5 Eoptl = Esup − Emand;
6 for � = 1 to X do
7 for i = 1 to size(Γ�) do
8 if Eoptl > 0 then
9 if ECi ×Oi ≤ Eoptl then

10 oi = Oi, αi = 1;

11 else
12 oi =

Eoptl

ECi
, αi =

Eoptl

ECi×Oi
;

13 Eoptl− = ECi × oi;

14 else
15 oi = 0, αi = 0;

16 i ← i+ 1;

these, we present and prove a theorem below, which shows the

QoS is maximized if the tasks having smaller energy metric

are selected to execute their optional parts.

Theorem 3: Given the energy budget Eoptl of optional parts
of the task set Γ, the QoS of the system, as defined in Eq.
(18), is maximized if the tasks having smaller energy metric
are selected to execute their optional parts.

Based on the theorem, we conclude that executing optional

parts of tasks with smaller energy metric can improve the

system QoS. A heuristic is thus designed to determine the

execution cycles of optional parts of all tasks, which is

shown in Alg. 3. The algorithm describes the procedure to

re-determine optional execution cycles of tasks in subsets for

maximizing the system QoS. The algorithm first calculates

EC, the energy metric that gives the energy consumption

per execution cycle of a task and sorts the tasks allocated

to individual cores in ascending order of the metric, then

calculates the energy budget Eoptl for optional parts of all

tasks. It derives optional execution cycles for each task based

on the analysis that executing optional parts of tasks with

smaller energy metric can improve the system QoS. Given

energy metric ECi and maximum optional cycles Oi of τi, the

energy consumed by the task can be expressed as ECi ×Oi.

If energy budget Eoptl for optional parts is large enough,

maximum optional cycles of τi can be executed by oi = Oi;

otherwise, only oi = Eoptl/ECi optional cycles can be

executed. No optional execution cycles will be executed if the

energy budget is exhausted. After τi is examined, the energy

budget is updated accordingly and the process moves to the

next task. The algorithm outputs all tasks once their optional

execution cycles oi are updated.

B. Dynamic Energy Adaptation for QoS Optimization

The proposed scheme generates a cost-constrained task

schedule at design time by mapping tasks to processors and

executing optional cycles of those tasks that can maximize

the system QoS. However, due to the fact that the amount

Algorithm 4: Adapt task execution to fluctuating energy at runtime

Input: Optional execution cycles {o1, o2, · · · , oN} determined by
Alg. 3 && subset Γ� of tasks on core θ̄�

1 sort tasks in Γ� in ascending order of metric EC using heapsort;

2 h� =

size(Γ�)

i=1
ECi · (Mi+oi)

f−1(Costbdg)
;

3 i ← 1;
4 while i ≤ size(Γ�) do
5 li = (oi +Mi);

6 while ECi · li > h� · f−1(Costbdg) · li
f�H && li ≥ Mi do

7 li = σ · li; /* scale the length li to reduce
energy demand of task τi */

8 while h� · f−1(Costbdg) · li
f�H − ECi · li > ε && li ≥ Mi do

9 li = (1 + σ) · li; /* scale the length li to
increase energy demand of task τi */

10 if h� · f−1(Costbdg) · li
f�H − ECi · li ≤ ε && li ≥ Mi then

11 execute task τi with execution cycles of li;

12 else
13 drop task τi and li = 0; /* drop τi when the

energy supply is insufficient */

14 update battery storage;
15 i ← i+ 1;

of renewable and grid energy available under a cost budget

fluctuates, the static task schedule needs to be adjusted at

runtime. Therefore, we provide a dynamic task scheduling

algorithm that adapts task execution to fluctuating energy

available at runtime. The dynamic algorithm is developed

based on the QoS-aware static algorithm described in Alg. 4.

Consider core θ̄� with allocated tasks in subset Γ�. Energy

available for core θ̄� to execute tasks includes renewable

energy harvested from environments, and energy drained from

battery and grid. Due to the intermittence of renewable energy

and time varying price of grid power, the amount of energy

available to support the operation of the system under a given

cost budget fluctuates. Assume that the actual energy available

will be allocated to individual cores in proportion to the

optimal energy value derived using Alg. 4. The actual energy

available is then weighted by a factor h�, which is defined as

the ratio of the energy consumed by size(Γ�) tasks on core θ̄�
to the energy available for the system under the cost budget

of Costbdg . Let f−1(Costbdg) denote the energy available for

the given cost budget Costbdg , then the factor h� is given by

h� =

�size(Γ�)
i=1 ECi · (Mi + oi)

f−1(Costbdg)
. (31)

The dynamic algorithm running on core θ̄� is given in

Alg. 4. It takes as input the N task optional execution cycles

determined by Alg. 4 and the subset Γ� of tasks allocated to

core θ̄�. To achieve a higher system QoS, the algorithm sorts

tasks on the core in ascending order of energy metric EC so

that it first executes tasks with smaller energy consumption

per execution cycle. It calculates the factor h� for θ̄� using

Eq. (31). For task τi in subset Γ�, the algorithm calculates the

execution cycles li of the task. The energy demand of the task

is expressed as ECi · li and the energy available on θ̄� during

time interval li
f�

is expressed as h� · f−1(Costbdg) · li
f�H . The

dynamic algorithm aims to adapt the static task schedule to the

variation in energy supply. That is, it tries to reduce the runtime

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

mismatch between the energy supply and demand before a task

is executed. On one hand, if energy demand of τi is greater

than energy supply of the task, then execution cycles of the

task and in turn the energy demand of the task are iteratively

reduced by an empirical factor σ ∈ [0, 1]. The iteration stops

when the energy demand is less than or equal to the energy

supply. On the other hand, if the energy supply of τi is greater

than the energy demand of the task by a small positive number

ε > 0, the execution cycles of the task and in turn the energy

demand of the task are iteratively increased by an empirical

factor σ ∈ [0, 1]. After execution cycles and energy demand

of τi are updated in accordance with the fluctuation of energy

supply, the task is executed if its execution cycles li is greater

than its mandatory cycles Mi; otherwise, τi is dropped and li
is reset to 0. The energy available for core θ̄� is updated and

the procedure moves to the next task.

VI. EVALUATION

A. Experimental Settings

We validate the proposed cost-constrained task allocation

and scheduling scheme through two sets of simulation ex-

periments. The first set of simulations is based on synthetic

real-time tasks while the second set of simulations is based

on real-life benchmarks. As introduced in Section IV and V,

our scheme is composed of four algorithms. The first one

is a deterministic task allocation (DTA, Alg. 1) proposed

in [27] that minimizes the energy consumption by utilizing

heterogeneities of both processors and tasks. The second one is

an adaptive task allocation (ATA, Alg. 2) that uses a common

optional execution factor to handle the uncertainty in energy

availability and adopts DTA to allocate tasks. The third one is

a static task selection (STS, Alg. 3) that selects certain tasks

to complete their optional parts for maximizing QoS under the

energy budget. The tasks with smaller EC are given higher

priority to execute optional parts. The three algorithms are

developed at design time. The fourth one is a dynamic task

scheduling (DTS, Alg. 4) which adjusts the static schedule to

adapt to the fluctuating harvested energy at runtime.

Accordingly, four comparative experiments are carried out

in each set of simulations to validate our scheme from different

perspectives. First, we compare the energy consumption of our

DTA scheme [27] with that of the hybrid worst-fit genetic

algorithm (HWGA) [28] to validate the efficiency of our

ATA algorithm in saving energy, which is developed based

on DTA. We also investigate the degree of match between

energy demand and supply by using our ATA to validate

the efficiency of our ATA in utilizing the energy supply,

which specifically exploits an optimal common task optional

execution factor to maximize the degree of match. Second,

we compare the QoS of our ATA with that of DTA under a

given cost constraint to validate the efficiency of our scheme in

improving QoS at task allocation stage. Third, we compare the

QoS of our STS with that of baseline method RAND, RVS,

and benchmarking algorithm critical-task-first (CTF) [14] to

validate the efficiency of our scheme in improving QoS at task

scheduling stage. Finally, to validate the effectiveness of our

runtime scheme DTS, we compare the QoS of DTS with that

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
or

m
al

iz
ed

En
er

gy
 C

on
su

m
pt

io
n

Task Set

HWGA DTA

Fig. 4: Normalized energy consumption of 30 task sets using

our DTA and benchmarking algorithm HWGA [28].

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
or

m
al

iz
ed

 E
ne

rg
y

Task Set

Supply Demand

Fig. 5: Normalized energy supply and demand of our proposed

ATA algorithm for executing 30 task sets.

of the dynamic algorithm, gradient curve shifting (GCS) [13].

These algorithms are described below.

• DTA [27] is an energy-efficient task allocation algorithm

designed for systems of deterministic energy supply. It

can minimize dynamic energy consumption by assigning

the subset of tasks having a large power dissipation factor

to the processor having a small power dissipation factor.

• HWGA [28] is a state-of-the-art approach that integrates

a worst-fit based partitioning heuristic with the genetic

algorithm to generate a task allocation that reduces the en-

ergy consumption while satisfying all system constraints.

• RAND is a method that randomly selects tasks whose

optional parts are to be completed under the budget.

• RVS is a method that selects the task whose energy metric

is larger to execute first, which is exactly the opposite of

our proposed task selection algorithm STS.

• CTF [14] is a method that assigns QoS-critical jobs

higher priorities such that their optional cycles can be

completed first. The QoS-critical jobs are defined as tasks

with larger maximum optional cycles.

• GCS [13] is a dynamic scheduling method that deter-

mines the best allocation of slack cycles generated at

runtime for maximizing QoS under energy constraint.

B. Simulation for Synthetic Real-Time Tasks

We perform this simulation based on an MPSoC system

with 8 heterogeneous processors (M = 8). Our processor

model is built on 65nm technology and the parameters of

processors can be found in [27], [29], [30]. Task activity

factors μ are uniformly distributed in the interval [0.4, 1],
demonstrating the heterogeneous nature of tasks [16]. The

size N of task set Γ is set to 200. The worst case execution

cycles (WCEC) of tasks in the set Γ are assumed to be in the

range of [4 × 107, 6 × 108]. Each task τi is instantiated by

randomly picking two WCECs from the range, one is for its

mandatory part Mi and the other is for its maximum optional

part Oi. The common deadline d of tasks is assumed to be

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

1.5
�N

i=1 Mi/fmax, where fmax is the maximum frequency.

Multiple task sets are constructed to validate the proposed

scheme in the simulation.

Solar source is selected as the renewable generation, and

the trace of harvesting power Pharv(t) is generated according

to the equation Pharv(t) =
�
�ψ ·Ψ(t) · cos(t

70π) · cos(t
100π)

�
�

[8], [31], where ψ is a coefficient and Ψ(t) is a normally

distributed random variable with variance 1 and mean 0. The

ψ is used to generate two different Pharv(t), the first of

which is taken as predicted harvesting power and the second

of which is used as actual harvesting power. The real-time

pricing model offered by Ameren Illinois Corporation [32]

is adopted as the pricing model of grid electricity. A Li-lion

battery bank equipped with 4Ah normal capacity and 15V

terminal voltage [19] is served as the energy storage module.

The whole scheduling horizon H is set to 24 hours and divided

into 24 time slots with equal and constant length of 1 hour.

1) Evaluate the Effectiveness of Our ATA Scheme in Energy
Management: Our ATA scheme is developed based on the

energy-efficient DTA scheme [27] that minimizes the system

energy consumption by fully exploiting the heterogeneities

of both processors and tasks, and an optimal task common

optional execution factor that can maximize the degree of

match between system energy demand and supply. To evaluate

the effectiveness of our ATA in energy management, we first

compare our DTA with benchmarking algorithm HWGA [28]

in terms of energy consumption, then investigate the degree

of match between energy demand and supply using our ATA.

Fig. 4 shows the normalized energy consumption of 30 task

sets using our DTA scheme [27] and benchmarking algorithm

HWGA [28]. It has been demonstrated in the figure that our

DTA consumes less energy as compared to HWGA. To be

specific, the energy consumption of DTA is 19.7% lower than

that of HWGA on average. Furthermore, the energy savings

achieved by DTA over HWGA can be up to 29.0%. For

example, the normalized energy consumed by executing task

set 1 using HWGA and DTA are 0.854 and 0.607, respectively.

In addition to the efficiency of reducing energy consumption

achieved by DTA, our scheme ATA can make the most of

energy supply by introducing task optional execution factor.

Fig. 5 plots the energy supplied by the harvesting system and

the energy demanded by our ATA for executing 30 task sets.

It can be easily seen from the figure that our scheme achieves

a close match between energy supply and demand.

2) Evaluate the Effectiveness of Our ATA and STS Scheme
for QoS Improvement: Two comparative experiments are car-

ried out to validate the effectiveness of our proposed static

QoS-aware task selection scheme under varying cost budgets.

We utilize a normalized cost budget in the comparative study,

the maximum of which is set to 1. That is, the normalized

cost budget varies in the range of (0, 1]. The first comparative

study is conducted from the perspective of task allocation,

where two allocation schemes, the DTA without considering

energy uncertainty and ATA considering energy uncertainty,

are compared with respected to QoS. Fig. 6 presents the

normalized QoS obtained when executing the optional cycles

of tasks in 10 sets over a scheduling horizon of 24 hours

using the proposed DTA and ATA scheme under varying cost

Fig. 6: Normalized QoS of 10 synthetic task sets over 24 hours

using the proposed DTA and ATA scheme under varying cost

budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

Fig. 7: Normalized QoS of 10 synthetic task sets over 24

hours using the proposed STS and baseline method RVS under

varying cost budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

budgets. As compared to DTA, ATA achieves higher QoS of up

to 55.1%, especially when the cost budget is low. For example,

the average QoS of ATA are 51.8% and 42.1% higher than that

of DTA for Costbgt = 0.6 and 0.7, respectively.

The second comparative experiments investigate the impact

of STS on system QoS. To be specific, we compare the

QoS of our STS with that of baseline task selection meth-

ods RAND, RVS, and benchmarking algorithm CTF [14] to

validate the efficiency of our scheme in improving QoS at

the task scheduling stage. Fig. 7 shows the normalized QoS

obtained when executing optional cycles of tasks in 10 sets

of tasks using the proposed STS and the baseline method

RVS under the cost budget of Costbgt = 0.6 and 0.7. As

compared to RVS, the average QoS of our STS scheme are

97.6% and 72.4% higher in the case of Costbgt = 0.6 and 0.7,

respectively. Fig. 8 compares the proposed STS and baseline

method RAND in terms of the QoS obtained when executing

Fig. 8: Normalized QoS of 10 synthetic task sets over 24 hours

using the proposed STS and baseline method RAND under

varying cost budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

Fig. 9: Normalized QoS of 10 synthetic task sets over 24 hours

using our STS and benchmarking method CTF [14] under

varying cost budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

optional cycles of tasks under the cost budget of Costbgt = 0.6
and 0.7, respectively. It can be seen from the figure that the

average QoS of STS are 75.2% and 51.8% higher than that of

RAND for Costbgt = 0.6 and 0.7, respectively. A comparative

study of the proposed STS and benchmarking method CTF is

demonstrated in Fig. 9. The figure indicates that the average

QoS of our STS scheme are 61.2% and 39.7% higher than that

of the CTF method for Costbgt = 0.6 and 0.7, respectively.

From the above analyses, we can draw the followings.

• From the perspective of task allocation, the ATA that con-

siders the uncertainty in energy availability outperforms

the DTA that doesnot in terms of system QoS.

• As to selecting tasks on individual processors to be

executed, the STS outperforms methods RVS, RAND,

and CTF in terms of system QoS. This is because our

STS utilizes heterogeneities of both tasks and processors

for QoS improvement under given cost constraints.

• Our ATA and STS scheme outperform the benchmarking

methods regarding to system QoS improvement, espe-

cially when the given cost budget is low. This is be-

cause when the given cost budget and the corresponding

available energy is low, our ATA and STS scheme can

efficiently utilize the intermittent available energy so that

a larger portion of the optional part of a task is finished.

3) Evaluate the Effectiveness of Our DTS Scheme for
QoS Improvement: The effectiveness of our dynamic task

scheduling scheme, referred to as DTS, is also verified in the

simulation. We compare the proposed dynamic task scheduling

scheme DTS with benchmarking algorithm GCS [13] in terms

of runtime QoS. Fig. 10 gives the normalized QoS achieved

when executing optional cycles of tasks in 10 sets under the

cost budget of Costbgt = 0.6 and 0.7, respectively.

We can observe from the figure that the average QoS of

our DTS scheme are 17.7% and 15.1% higher than that of the

GCS [13] algorithm for Costbgt = 0.6 and 0.7, respectively.

This is primarily due to the fact that our proposed DTS

utilizes heterogeneities of both processors and tasks to enhance

system energy efficiency in a way so that the energy consumed

per execution cycle is minimized. Owing to the enhanced

energy efficiency achieved by judiciously assigning tasks to

processors, DTS could not only guarantee the completion of

task mandatory parts, but also execute more task optional

parts. In addition to the enhanced energy efficiency that leads

to a higher QoS, the DTS could directly improve QoS by

intelligently selecting tasks on individual processors to execute

their optional parts. On the contrary, the GCS [13] improves

system QoS by only using slack claimed in the runtime, which

renders relatively small headroom for QoS improvement.

C. Simulation for Real-Life Benchmarks

In this simulation, a heterogeneous MPSoC system [24] that

consists of an AMD Athlon processor with three supply volt-

age/frequency levels and an TI DSP processor with two supply

voltage/frequency levels is adopted. The three supply voltage

and frequency pairs of AMD Athlon are (0.89V, 1.8GHz),
(1.12V, 2.4GHz), (1.34V, 3GHz), and the two supply volt-

age and frequency pairs of TI DSP are (0.98V, 2.0GHz),

Fig. 10: Normalized QoS of 10 synthetic task sets over 24

hours using our DTS and benchmarking method GCS [13] un-

der varying cost budgets: (a) Costbgt = 0.6, (b) Costbgt =0.7.

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

En
er

gy
 C

on
su

m
pt

io
n

Task Set

HWGA DTA

Fig. 11: Normalized energy consumption of 10 real-life task

sets using our DTA and benchmarking algorithm HWGA [28].

(1.42V, 3.0GHz) [24], respectively. The settings of solar

source, Li-lion battery bank, and real-time pricing are the

same as that of simulation for synthetic real-time tasks. The

tool MEGA [33] that incorporates approximate computation

is utilized in this simulation to generate real-life benchmarks.

1) Evaluate the Effectiveness of Our ATA Scheme in Energy
Management: Fig. 11 shows the normalized energy consump-

tion of 10 real-life task sets using our DTA scheme [27] and

benchmarking algorithm HWGA [28]. It has been demon-

strated in the figure that our DTA consumes less energy as

compared to HWGA. To be specific, the energy consumption

of DTA is 16.9% lower than that of HWGA on average. Fur-

thermore, the energy savings achieved by DTA over HWGA

can be up to 21.7%. For example, the normalized energy

consumed by executing the real-life task set 4 using HWGA

and DTA are 0.896 and 0.701, respectively. Fig. 12 plots

the energy supplied by the harvesting system and the energy

demanded by our ATA scheme for executing 10 real-life task

sets. It can be easily seen from the figure that our scheme

achieves a close match between energy supply and demand.

2) Evaluate the Effectiveness of Our ATA and STS Scheme
for QoS Improvement: Fig. 13 presents the normalized QoS

obtained when executing the optional cycles of real-life tasks

in 10 sets over a scheduling horizon of 24 hours using the

proposed DTA and ATA scheme under varying cost budgets.

Compared to DTA, ATA achieves a higher QoS of up to

68.8%, especially when the cost budget is low. For example,

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 E
ne

rg
y

Task Set

Supply Demand

Fig. 12: Normalized energy supply and demand of our pro-

posed ATA algorithm for executing 10 real-life task sets.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

Fig. 13: Normalized QoS of 10 real-life task sets over 24

hours using our DTA and ATA scheme under varying cost

budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

Fig. 14: Normalized QoS of 10 real-life task sets over 24 hours

using our STS and baseline method RVS under varying cost

budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

the average QoS of ATA are 59.6% and 48.3% higher than

that of DTA for Costbgt = 0.6 and 0.7, respectively. Fig. 14

shows the normalized QoS obtained when executing optional

cycles of real-life tasks in 10 sets using the proposed STS

algorithm and baseline method RVS under the cost budget of

Costbgt = 0.6 and 0.7. As compared to RVS, the average

QoS of STS are 108.6% and 63.8% higher for Costbgt = 0.6
and 0.7, respectively. Fig. 15 compares the proposed STS

algorithm and baseline method RAND in terms of the QoS

obtained when executing optional cycles of real-life tasks in

10 sets under the cost budget of Costbgt = 0.6 and 0.7,

respectively. It can be seen from the figure that the average

QoS of STS are 78.6% and 40.4% higher than that of RAND

for Costbgt = 0.6 and 0.7, respectively. A comparative study

of the proposed STS algorithm and benchmarking method

CTF is demonstrated in Fig. 16. The figure indicates that the

average QoS of STS are 69.9% and 26.7% higher than that of

CTF for Costbgt = 0.6 and 0.7, respectively.

Fig. 15: Normalized QoS of 10 real-life task sets over 24 hours

using our STS and baseline method RAND under varying cost

budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

Fig. 16: Normalized QoS of 10 real-life task sets over 24 hours

using our STS and baseline method CTF [14] under varying

cost budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

Fig. 17: Normalized QoS of 10 real-life task sets over 24 hours

using our DTS and benchmarking method GCS [13] under

varying cost budgets: (a) Costbgt = 0.6, (b) Costbgt = 0.7.

3) Evaluate the Effectiveness of Our DTS Scheme for QoS
Improvement: Fig. 17 gives the normalized QoS achieved

when executing optional cycles of real-life tasks in 10 sets

under the cost budget of Costbgt = 0.6 and 0.7, respectively.

We can observe from the figure that the average QoS of our

DTS scheme are 20.8% and 13.5% higher than that of the

GCS [13] algorithm for Costbgt = 0.6 and 0.7, respectively.

VII. CONCLUSION

We propose to utilize the characteristic of approximate

computation to intelligently handle uncertainties in energy

availability of an MPSoC real-time system that is powered by

a hybrid of energy harvested from environments and drained

from power grid. For systems of such power supply, we

design a static energy-adaptive task allocation scheme and an

QoS-driven task scheduling scheme that not only reduce the

energy consumption but also improve the system QoS. We

also design a dynamic task scheduling algorithm that adapts

task execution to fluctuating energy available at runtime. We

conduct extensive simulations to validate the effectiveness of

our schemes. Results show that our algorithms can reduce

energy consumption by up to 29% and improve system QoS

by up to 108% as compared to benchmarking schemes.

VIII. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their helpful suggestions. The proof of theorems are

omitted due to page limit.

REFERENCES

[1] M. Elhebeary, M. Ibrahim, M. Aboudina, and A. Mohieldin, “Dual-source self-start
high-efficiency micro-scale smart energy harvesting system for IoT applications,”
IEEE TIE, 2017.

[2] J. Zhou, J. Yan, T. Wei, M. Chen, and X. Hu, “Energy-adaptive scheduling of
imprecise computation tasks for QoS optimization in real-time MPSoC systems,”
DATE, pp. 1402-1407, 2017.

[3] K. Huang, B. Hu, L. Chen, A. Knoll, and Z. Wang, “ADAS on COTS with OpenCL:
a case study with lane detection,” IEEE TC, 2017.

[4] Peek Traffic Corporation, Video Detection Products, available at http://peektraffic.
com/products video detection.php.

[5] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao, “Algorithms for scheduling
imprecise computations,” Springer US, 1991.

[6] M. Bambagini, M. Marinoni,H. Aydin, and G. Buttazzo, “Energy-aware scheduling
for real-time systems: a survey,” ACM TECS, vol. 15, no. 1, 2016.

[7] M. Severini, S. Squartini, and F. Piazza, “Energy-aware lazy scheduling algorithm
for energy-harvesting sensor nodes,” NCA, vol. 23, no. 7-8, pp. 1899-1908, 2013.

[8] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling for energy
harvesting sensor nodes,” RTS, vol. 37, no. 3, pp. 233-260, 2007.

[9] M. Chetto and A. Queudet, “Clairvoyance and online scheduling in real-time energy
harvesting systems,” RTS, vol. 50, no. 2, pp. 179-184, 2014.

[10] Y. Abdeddaim, Y. Chandarli, and D. Masson, “The optimality of PFPasap algorithm
for fixed-priority energy-harvesting real-time systems,” ECRTS, pp. 47-56, 2013.

[11] G. Stavrinides and H. Karatza, “Scheduling real-time DAGs in heterogeneous
clusters by combining imprecise computations and bin packing techniques for the
exploitation of schedule holes,” FGCS, vol. 28, no. 7, pp. 977-988, 2012.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

[12] L. Cortes, P. Eles, and Z. Peng, “Quasi-static assignment of voltages and optional
cycles in imprecise-computation systems with energy considerations,” IEEE TVLSI,
vol. 14, no. 10, pp. 1117-1129, 2006.

[13] H. Yu, B. Veeravalli, and Y. Ha, “Dynamic scheduling of imprecise-computation
tasks in maximizing QoS under energy constraints for embedded systems,” ASPDAC,
pp. 452-455, 2008.

[14] H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh, “Energy budget management
for energy harvesting embedded systems,” RTCSA, pp. 320-329, 2012.

[15] Y. Liu, R. Dick, L. Shang, and H. Yang, “Thermal vs energy optimization for
DVFS-enabled processors in embedded systems,” ISQED, pp. 204-209, 2007.

[16] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu, “Throughput maximization
for periodic real-time systems under the maximal temperature constraint,” ACM
TECS, vol. 13, no. 2s, 2014.

[17] M. Amirijoo, J. Hansson, and S. Son, “Specification and management of QoS in
real-time databases supporting imprecise computations,” IEEE TC, vol. 55, no. 3,
pp. 304-319, 2006.

[18] A. Millner, “Modeling Lithium Ion battery degradation in electric vehicles,”
CITRES, pp. 349-356, 2010.

[19] Y. Wang, X. Lin, Q. Xie, N. Chang, and M. Pedram, “Minimizing state-of-health
degradation in hybrid electrical energy storage systems with arbitrary source and
load profiles,” DATE, 2014.

[20] T. Cui, S. Chen, Y. Wang, S. Nazarian, Q. Zhu, and M. Pedram, “Optimal control
of PEVs for energy cost minimization and frequency regulation in the smart grid
accounting for battery state-of-health degradation,” DAC, 2015.

[21] C. Perera, D. Talagala, C. Liu, and J. Estrella, “Energy-efficient location and
activity-aware on-demand mobile distributed sensing platform for sensing as a
service in IoT clouds,” IEEE TCSS, vol. 2, no. 4, pp. 171-181, 2015.

[22] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: dynamic resource and task
allocation for energy minimization in mobile cloud systems,” IEEE JSAC, vol. 33,
no. 12, pp. 2510-2523, 2015.

[23] S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey of
energy-cognizant scheduling techniques,” IEEE TPDS, vol. 24, no. 7, pp. 1447-
1464, 2013.

[24] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling on
heterogeneous computing systems,” IEEE TPDS, vol. 25, no. 11, pp. 2867-2876,
2014.

[25] W. Trappe, R. Howard, and R. Moore, “Low-energy security: limits and opportu-
nities in the Internet of Things,” IEEE Security & Privacy Magazine, vol. 13, no.
1, pp. 14-21, 2015.

[26] P. Schaumont, “Security in the Internet of Things: A challenge of scale,” DATE,
pp. 674-679, 2017.

[27] J. Zhou, T. Wei, M. Chen, J. Yan, X. Sharon Hu, and Y. Ma, “Thermal-aware task
scheduling for energy minimization in heterogeneous real-time MPSoC systems,”
IEEE TCAD, vol. 35, no. 8, pp. 1269-1282, 2016.

[28] S. Saha, Y. Lu, and J. Deogun, “Thermal-constrained energy-aware partitioning
for heterogeneous multi-core multiprocessor real-time systems,” RTCSA, pp. 41-50,
2012.

[29] W. Liao, L. He, and K. Lepak, “Temperature and supply voltage aware performance
and power modeling at microarchitecture level,” IEEE TCAD, vol. 24, no. 7, pp.
1042-1053, 2005.

[30] G. Quan and V. Chaturvedi, “Feasibility analysis for temperature constraint hard
real-time periodic tasks,” IEEE TII, vol. 6, no. 3, pp. 329-339, 2010.

[31] J. Chen, T. Wei, and J. Liang, “State-aware dynamic frequency selection scheme for
energy-harvesting real-time systems,” IEEE TVLSI, vol. 22, no. 8, pp. 1679-1692,
2013.

[32] Day Ahead Pricing, Ameren Illinois, avialable at https://www2.ameren.com/
RetailEnergy/RealTimePrices.

[33] Y. Tirat-Gefen, D. Silva, and A. Parker, “Incorporating imprecise computation into
system-level design of application-specific heterogeneous multiprocessors,” DAC,
pp. 58-63, 1997.

Tongquan Wei (M’11) received the Ph.D. degree in
electrical engineering from Michigan Technological
University, Houghton, MI, USA, in 2009. He is
currently an Associate Professor with the Depart-
ment of Computer Science and Technology, East
China Normal University, Shanghai, China. His cur-
rent research interests include real-time embedded
systems, green and reliable computing, parallel and
distributed systems, and cloud computing.

Junlong Zhou (S’15-M’17) received the Ph.D. de-
gree in Computer Science from East China Normal
University, Shanghai, China, in 2017. He was a
Visiting Scholar with the University of Notre Dame,
Notre Dame, IN, USA, during 2014-2015. He is
currently an Assistant Professor with the School of
Computer Science and Engineering, Nanjing Univer-
sity of Science and Technology, Nanjing, China. His
research interests include real-time embedded sys-
tems, cloud computing, and cyber physical systems.

Kun Cao is currently pursuing the Ph.D. degree with
the Department of Computer Science and Technolo-
gy, East China Normal University, Shanghai, China.
His current research interests are in the areas of high
performance computing, multiprocessor systems-on-
chip and cyber physical systems.

Peijin Cong received the B.S. degree from the De-
partment of Computer Science and Technology, East
China Normal University, Shanghai, China, in 2016.
She is currently pursuing the master degree with the
Department of Computer Science and Technology,
East China Normal University, Shanghai, China. Her
current research interest is in the area of power
management in mobile devices.

Mingsong Chen (S’08-M’11) received the B.S. and
M.E. degrees from the Department of Computer
Science and Technology, Nanjing University, Nan-
jing, China, in 2003 and 2006, respectively, and
the Ph.D. degree in Computer Engineering from
the University of Florida, Gainesville, FL, USA,
in 2010. He is currently a full Professor with the
Department of Embedded Software and Systems,
East China Normal University, Shanghai, China. His
current research interests include design automation
of cyber-physical systems, formal verification tech-

niques, and mobile cloud computing.

Gongxuan Zhang (SM’12) received the B.S. degree
in electronic computer from Tianjin University in
1983 and the M.S. and Ph.D. degrees in Computer
Application from the Nanjing University of Science
and Technology in 1991 and 2005, respectively. He
was a Senior Visiting Scholar in Royal Melbourne
Institute of Technology from 2001.9 to 2002.3 and
University of Notre Dame from 2017.7 to 2017.10.
Since 1991, he has been with the Nanjing University
of Science and Technology, where he is currently a
professor in the School of Computer Science and

Engineering. His current research interests include multicore and parallel
processing and distributed computing.

Xiaobo Sharon Hu (S’85-M’89-SM’02-F’16) re-
ceived the B.S. degree from Tianjin University,
Tianjin, China, the M.S. degree from the New York
University Tandon School of Engineering, Brooklyn,
NY, USA, and the Ph.D. degree from Purdue Uni-
versity, West Lafayette, IN, USA. She is currently a
Professor with the Department of Computer Science
and Engineering, University of Notre Dame, Notre
Dame, IN, USA. She has authored more than 250
papers in the related areas. Her current research
interests include real-time embedded systems, low-

power system design, and computing with emerging technologies.

Jianming Yan received the master’s degree from the
Department of Computer Science and Technology,
East China Normal University, Shanghai, China, in
2016. He is currently a senior software engineer with
Meituan.com Corporation, Beijing, China. His re-
search interests include task allocation and schedul-
ing techniques in heterogeneous real-time MPSoC
systems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2772896

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

