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a b s t r a c t

In recent years, the design of mixed-criticality embedded systems suffering from transient faults has
attracted much attention. From the perspective of system users, it is desirable to optimize system
lifetime while meeting all design constraints. Existing task scheduling algorithms cannot be utilized to
maximize the lifetime of mixed-criticality embedded systems since they do not take into account the
impact of providing transient fault tolerance on system lifetime. This paper investigates the problem
of prolonging the lifetime of mixed-criticality embedded systems on a uniprocessor equipped with
dynamic voltage and frequency scaling (DVFS) technique. The transient faults and thermal cycling
incurred permanent faults are simultaneously considered in the system lifetime optimization under
the constraints of safety requirements and schedule timeliness. A mixed-integer linear programming
(MILP) formulation is first presented to deal with the task scheduling problem. Since the MILP method
is a time-consuming solution for large-scale systems, a cross-entropy method based heuristic is then
proposed to achieve a better tradeoff between the system lifetime achieved by the derived task
schedule and the runtime consumed to generate the task schedule. Experiments based on synthetic and
real-world benchmarks are conducted, and simulation results demonstrate that the proposed heuristic
improves system lifetime by up to 32.73% with acceptable runtime as compared to benchmarking
methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In many safety-related fields such as avionics and automotive
industries, tasks of different importance (i.e., criticality levels)
usually co-exist [1,2]. For example, the two tasks of music playing

✩ This work is partially supported by Shanghai Municipal Natural Science
Foundation under Grant 16ZR1409000, National Natural Science Foundation of
China under Grants 61802185 and 61872147, Natural Science Foundation of
Jiangsu Province under Grant BK20180470, and Fundamental Research Funds
for the Central Universities under Grant No. 30919011233.
∗ Corresponding author.

E-mail address: tqwei@cs.ecnu.edu.cn (T. Wei).
1 Fellow, IEEE.

and flight control in the flight management systems are obviously
with unequal criticality levels and distinct degrees of assurance.
However, traditional embedded systems only allow the existence
of tasks with a same criticality level, which indicates that the
tasks with different criticality levels need to run on multiple
separate hardware platforms. As a result, the cost, weight, and
power consumption of these hardware platforms will signifi-
cantly increase or even become unaffordable as the total number
of task criticality levels increases. A promising trend in the design
of nowadays advanced embedded systems is to integrate multiple
functionalities (i.e., tasks) with no less than two criticality levels
onto a common and shared computing platform. These emerg-
ing embedded systems that permit the co-existence of different
task criticality levels are called mixed-criticality (MC) embedded
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systems [3,4]. In an MC embedded system, tasks having higher
importance should be provided higher criticality levels for the
purpose of guaranteeing the safety requirements of these tasks.

In the past few years, there has been a widespread interest in
the investigation of MC embedded systems. However, as detailed
in [4], most of the existing techniques (e.g., mechanisms in [5–9])
dedicated for MC embedded systems cannot guarantee a depend-
able system operation because they fail to take fault-tolerance as
a design constraint. As the susceptibility of modern processors to
soft errors is dramatically increasing with the relentless scaling
of feature size and operating voltage [10,11], fault-tolerance man-
agement is deemed to be a significant and pressing research issue
in MC embedded systems. Recently, several research works [12–
16] have devoted to the design of fault-tolerant MC embedded
systems. Unfortunately, these existing task scheduling algorithms
only consider tolerating transient faults while neglecting toler-
ance for permanent faults. Directly adopting such algorithms will
inevitably accelerate processor wearouts that eventually result in
permanent faults occurring earlier and system lifetime decaying
drastically. From the perspective of system users, it is desirable
to prolong the lifetime of MC embedded systems able to handle
both permanent faults and transient faults. However, to the best
of our knowledge, there are no works on investigating the life-
time optimization of MC embedded systems that can deal with
permanent and transient faults simultaneously.

In this paper, we conduct the first study of prolonging the life-
time of MC embedded systems on a uniprocessor equipped with
dynamic voltage and frequency scaling (DVFS) technique. We take
into account both transient faults and thermal cycling incurred
permanent faults in the system lifetime optimization under the
constraints of safety requirements and schedule timeliness. By
judiciously determining (1) the task operating frequency, (2) the
task re-execution number, and (3) the task execution order, our
proposed solution can generate a lifetime-optimum task schedule
while satisfying all design requirements. The main contributions
of this paper are summarized below.

• We present a mixed-integer linear programming (MILP) for-
mulation to schedule independent real-time tasks for maxi-
mizing the lifetime of uniprocessor MC embedded systems.
• We propose a time-efficient solution developed on the

cross-entropy method (CEM) to the formulated scheduling
problem.
• Experimental results based on synthetic and real-life bench-

marks demonstrate that the developed approach prolongs
system lifetime by up to 32.73%.

The remainder of the paper is organized as follows. Section 2
surveys the related works on MC embedded systems. We briefly
introduce the system architecture and models in Section 3. In Sec-
tion 4, we describe the problem definition and give an overview
of our developed algorithms. Section 5 presents an MILP formu-
lation for the studied task scheduling problem while Section 6
shows the developed CEM-based heuristic. Section 7 numerically
investigates the performance achieved by the proposed scheme
and Section 8 gives concluding remarks.

2. Related work

Considerable research efforts have been denoted to the design
of MC embedded systems. Baruah et al. [5] presented an algo-
rithm of earliest deadline first with virtual deadlines to sched-
ule tasks with any number of defined criticality levels. Huang
et al. [6] proposed an effective scheduling algorithm integrating
the DVFS technique for optimizing the whole power dissipation
of MC embedded systems. Han et al. [7] derived a criticality-
aware utilization bound for feasibility tests and developed a novel

scheduling approach to improve task schedulability. From the
perspective of probability, Maxim et al. [8] conducted a compre-
hensive study on fixed priority preemptive task scheduling for MC
embedded systems. Davis et al. [9] presented two fixed priority
preemptive scheduling schemes integrating context switch costs,
and conducted multi-set analyses for each scheduling scheme.
However, since all the aforementioned techniques [5–9] fail to
consider tolerating transient faults as a design constraint, they
are extremely likely to generate unreliable outputs. As a result,
a dependable operation for MC embedded systems cannot be
guaranteed.

Taking tolerating transient faults as a design constraint, Huang
et al. [12] designed a scheduling algorithm that adopts task re-
execution technique to handle transient faults. In addition, the
authors investigated and quantitatively analyzed the impact of
the three techniques of service degradation, task killing, and
task re-execution on task schedulability and system safety. Lin
et al. [13] developed a two-stage scheduling scheme to ensure the
timing requirements of mixed-criticality tasks. At offline stage,
a static algorithm is presented to guarantee that most tasks
can successfully perform their executions on time. At online
stage, a slack-reclaiming algorithm is designed to prevent the
system from computing faults without violating task deadline
constraints. Zeng et al. [14] explored the joint use of task re-
execution and task replication techniques for boosting system
safety. Besides, the two techniques of service degradation and
task killing are utilized to address the undesirable urgencies
where high criticality tasks may not finish their executions at
runtime.

Unlike the above works [12–14], Al-bayati et al. [15] mod-
eled four modes to cope with the certification and reliability
requirements of MC embedded systems. The proposed model
can retain as many low criticality tasks as possible when either
overruns or transient faults occur. Zhou et al. [16] presented an
effective scheduling solution based on the scheduling scheme
of earliest deadlines first with virtual deadlines. Several tech-
niques of period transformation, utilization of idle time, and
re-execution are utilized in this algorithm to achieve high reliabil-
ity and schedulability. However, these task scheduling algorithms
themselves [12–16] cannot be directly utilized to optimize the
lifetime of MC embedded systems as the impact of tolerating
transient faults on system lifetime is not investigated. Further-
more, to our best knowledge, no research works have focused on
optimizing the lifetime of MC embedded systems.

3. System architecture and models

This section briefly introduces the system architecture and
models including task model, temperature model, fault model,
and safety requirement model. Table 1 summarizes the main
symbols utilized in this section.

3.1. System architecture and task model

In this work, we consider the typical MC embedded systems
that only allow the co-existence of two task criticality levels: one
is the high criticality level H and the other is the low criticality
level L [4,12,16]. Following the works presented in [6,17,18],
the target MC embedded system is modeled as a DVFS-enabled
uniprocessor Θ supporting Q discrete voltage/frequency pairs
Ψ = {(vq, fq)|q = 1, 2, . . . ,Q }. For ease of presentation, we
assume that the inequality vq < vq+1 with respect to voltage
and the inequality fq < fq+1 with respect to frequency hold
for ∀q ∈ [1, 2, . . . ,Q − 1]. As shown in [6,12,16–20], tasks
independent with each other are exceedingly common in MC
embedded systems such as flight management systems and smart
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Table 1
A summary of the main symbols used in Section 3.
Notation Definition

Γ The set consisting of N tasks
d, µ The common deadline and period
τi ∈ Γ The ith task in task set Γ
χi The task τi ’s active factor
ci The task τi ’s execution cycles in worst-cases
H,L The high criticality level, low criticality level
γi ∈ {H,L} The task τi ’s criticality level
Θ The DVFS-enabled uniprocessor
(vq, fq) The qth voltage/frequency pair
α, β , δ The processor dependent non-negative constants
C, R The thermal capacitance and resistance
T (t), P(t) The temperature and power dissipation at time t
NTC The number of thermal cycles to failure
∆T ,∆Tσ The temperature cycle-range of the whole and part
λ The permanent failure rate due to thermal cycling
λi The permanent failure rate of executing task τi
Aq The fault rate on average at frequency fq
Ri,q The task τi ’s reliability at frequency fq
Cγ The failure probability in one hour at criticality γ
{A,B,C,D,E} The criticality level set defined in DO-178B

car systems. Therefore, we suppose that a set of N independent
tasks, denoted by Γ = {τi|i = 1, 2, . . . ,N}, is to be executed on
the uniprocessor Θ in this work. We will study the scheduling of
dependent real-time tasks running on MC embedded systems in
our future work. A tuple τi : {χi, ci, γi} is utilized to characterize
every task τi ∈ Γ . The parameter χi represents task active factor,
ci denotes the execution cycles in worst-cases, and γi ∈ {H,L}
is the criticality level. All tasks share a common deadline d that
equals their common period µ.

3.2. Temperature model

We adopt a simple yet accurate lumped RC thermal model
[21], as shown in Fig. 1, to characterize task thermal profiles.
This practical thermal model is commonly used in the design of
thermal-aware task scheduling algorithms [22,23], and it can be
expressed by

T (t)
R
+ C

dT (t)
dt
= P(t)+

T (0)
R
. (1)

The parameters C and R denote the thermal capacitance and
resistance, respectively. P(t) and T (t) represent the power con-
sumption and the temperature at time t , respectively. T (0) refers
to the temperature at time 0. Let T (ts) be the temperature at
initial time ts of executing task τi at pair (vq, fq) (1 ≤ q ≤ Q ) and
T (te) be the ending temperature at time te at which task τi has
just completed its execution. Eqs. (2)–(4) describe the derivation
of ending temperature T (te) by solving (1), where α, β , and δ are
non-negative constants depending on processor architecture [24].

dT (t)
dt
=

T (0)+ αRvq + (βRvq − 1)T (t)+ χiδRv2q fq
RC

(2)∫ te

ts
dt =

∫ T (te)

T (ts)

dT (t)
T (0)+αRvq+χiδRv2q fq

RC − ( 1−βRvqRC )T (t)
(3)

T (te) =
αRvq + χiδRv2q fq + T (0)

1− βRvq
− (

T (0)+ αRvq + χiδRv2q fq
1− βRvq

− T (ts))e−(
1−βRvq

RC )(te−ts) (4)

Fig. 1. The lumped RC thermal model [21].

3.3. Fault model

3.3.1. Permanent fault
We concentrate on thermal cycling induced permanent fail-

ures. Thermal cycling refers to the wear due to unmatched ther-
mal expansion coefficients of adjacent material layers. The inelas-
tic deformation resulting from temperature variation at runtime
eventually leads to permanent failures [25]. Coffin–Manson equa-
tion is widely utilized to model the number of thermal cycles to
failure, and it is given by [25]

NTC = ϕ(∆T −∆Tσ )−ψ . (5)

The parameters ∆T and ∆Tσ represent the temperature cycle-
range of the whole and part, respectively. The parameter ϕ is
a non-negative material-dependent constant. The parameter ψ ,
commonly in the range of [1, 9], is an empirically derived Coffin–
Manson exponent [25]. Both ϕ and ψ can be determined by
fitting the Coffin-Manson equation from system lifetime mea-
surements [25,26]. Similar to the Coffin–Manson equation set-
tings described in [25,26], the parameters ϕ and ψ used in (5)
are selected as 1 and 6 for on-chip structures in our experiments,
respectively. Typically, due to ∆Tσ ≪ ∆T , the item ∆Tσ can be
dropped from (5), then we have

NTC = ϕ(∆T )−ψ . (6)

It has been shown in [27] that the peak temperature of a task can
be reached at its start/ending time instant since the temperature
is monotonically increasing or decreasing. Therefore, the number
of thermal cycles to failure of processor Θ due to the execution
of task τi is expressed as

NTC,i = ϕ(|T (te)− T (ts)|)−ψ . (7)

T (ts) and T (te) are the ending temperature and initial temperature
of task τi executing at frequency fq, respectively, both of which
can be derived by using (1). According to Miner’s rule, the per-
manent failure rate of running task τi due to thermal cycling is
readily calculated as [28]

λi =
1

NTC,i
. (8)

3.3.2. Transient fault
Exponential distribution is usually used for modeling soft er-

rors resulting from transient faults. The transient fault rate on
average at frequency fq is given by [29]

Aq = AQ10
h̄
fQ−fq
fQ−f1 . (9)

AQ represents the transient fault rate on average at maximal
frequency fQ . The parameter h̄ is a hardware specific factor and
it is larger than 0. Typically, for every task τi running at fq, its
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Table 2
The Criticality Levels Specified in DO-178B [12].
γ A B C D E
Cγ (0, 10−9) (0, 10−7) (0, 10−5) [10−5,+∞) (0,+∞)

reliability can be calculated by utilizing the exponential failure
law [29], that is,

Ri,q = e−Aqci/fq . (10)

We utilize the task re-execution technique [10] to tolerate tran-
sient faults. Furthermore, we use this technique to tolerate no
more than one transient fault due to that tolerating single-fault
is a commonly adopted assumption [16,22,30,31]. Let εi,q denote
the total execution number of task τi executing at frequency fq,
which is derived by our proposed task scheduling strategy to
satisfy system safety requirements. At runtime, an acceptance
test [32–34] is performed for every execution of task τi to check
whether task τi is successfully executed or not during the current
period. Task τi will be executed multiple times until a successful
execution is achieved. Assume that no soft errors are detected
after the ε∗i,qth (1 ≤ ε∗i,q ≤ εi,q) execution, and the previous (ε∗i,q−
1) executions fail. At that moment, the output results generated
by this execution are accepted and submitted, and the (ε∗i,q +
1)th−εi,qth executions of task τi are canceled. When soft errors
are still detected after the εi,qth execution of task τi, the execution
of task τi fails during the current period. The time overhead of
conducting an acceptance test has been thoroughly investigated
in [32–34]. It has been shown in [32–34] that compared to the
execution time of a task, the time overhead of conducting an
acceptance test is extremely small and even can be safely ignored.
In this work, the execution cycles of an acceptance test for task τi
are assumed to be c∗i . Therefore, the worst-case execution cycles
of task τi with consideration of performing an acceptance test are
thus updated by ci ← ci + c∗i .

3.4. Safety requirement model

We adopt the DO-178B safety standard [12] to characterize
safety requirements. As shown in Table 2, a total of five criticality
levels are specified in the DO-178B safety standard. For every
criticality level γ ∈ {A,B,C,D,E}, it is associated with a quantitative
failure probability per hour, denoted by Cγ , which indicates that
the failure probability on average in one hour during a given
operation interval cannot be violated by the whole criticality γ
tasks. As criticality γ decreases from level A to level E, failure
probability Cγ increases strictly. In addition, we can also observe
from Table 2 that both the level D and level E tasks have almost no
safety requirements whereas the level A, level B and level C tasks
have stringent safety requirements with very small (no more than
10−5) average failure probability.

4. Problem definition and solution overview

In this section, we first give a definition of the studied problem
and then outline the proposed solution.

4.1. Problem definition

Fig. 2 illustrates the relationship between the system lifetime
and the permanent failure rate. From a probabilistic point of
view, the integral of the permanent failure rate with respect
to the task execution time is equal to 1 in the time interval
[0,TSL], where TSL is the system lifetime [35]. Let εi be the total
execution number of task τi with neglected operating frequency
in one scheduling horizon for the sake of easy presentation. The

Fig. 2. An illustration of the relationship between system lifetime TSL and
permanent failure rate λ [35]. The processor permanent damage caused by
the εi executions of task τi in one scheduling horizon is given by Di =

λi,1Ti + λi,2Ti + · · · + λi,εiTi , where λi,εi is the permanent failure rate of εith
execution of task τi and Ti is time consumed by per execution of task τi .
For simplicity, we use the notation λi to denote the sum of λi,1, λi,2, . . . , λi,εi ,
i.e., λi = λi,1 + λi,2+, . . . ,+λi,εi . Therefore, the expression Di = λiTi holds. The
processor permanent damage of each scheduling horizon except for the last one
occurring permanent failure is easily calculated as D =

∑N
i=1 λiTi , where N is

the number of tasks.

parameter λi represents the sum of permanent failure rates of εi
executions of task τi, and Ti denotes the time consumed by per
execution of task τi. Therefore, assuming that a permanent failure
occurs after the execution of the mth task during the (j + 1)th
period [jµ, (j+ 1)µ], we can obtain the following equation about
the system lifetime TSL

N∑
i=1

jλiTi +

m−1∑
i=1

λiTi + λm(TSL −

m−1∑
i=1

Ti − jµ) = 1. (11)

By rewriting (11), TSL is thus expressed as

TSL =
1−

∑m−1
i=1 λiTi −

∑N
i=1 jλiTi

λm
+

m−1∑
i=1

Ti + jµ. (12)

Formally, the studied problem can be defined below. Given a task
set Γ with dual-criticality levels and the uniprocessorΘ support-
ing DVFS, for each task in task set Γ , determine its (1) operating
frequency, (2) execution number, and (3) execution order such
that the system lifetime TSL is maximized while both the safety
requirements and the real-time constraints are satisfied.

4.2. Solution overview

The concentration of this paper is to optimize the lifetime of
dual-criticality systems while satisfying the constraints of safety
requirements and task schedulability. To this end, we first present
an MILP-based method for the problem of system lifetime max-
imization in Section 5. Using existing MILP solvers such as the
one developed in [36], the presented MILP-based method can
optimally solve the scheduling problem for task set with small
number of tasks. However, the MILP solvers do not have the abil-
ity to efficiently address task scheduling problems for large-scale
systems. Therefore, an effective heuristic is needed to achieve
a better tradeoff between the system lifetime attained by the
derived task schedule and the runtime consumed to generate the
task schedule. Given this, we then propose a time-efficient CEM-
based heuristic in Section 6 to overcome the shortcoming of the
MILP-based method in terms of runtime.
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Table 3
A summary of the main symbols used in Section 5.
Notation Definition

Λi,q The variable indicating whether τi is executed at fq
ϖi The task τi ’s start execution time
εi,q The task τi ’s execution number at fq
λi,k,q The permanent failure rate of kth execution on fq
D The permanent damage of each scheduling horizon
ℜ The task maximal execution number
J A constant number large enough
ΓH,ΓL The set of H or L tasks
CH, CL The safety requirement threshold of H or L tasks
C(ΓH), C(ΓL) The failure probability achieved by H or L tasks
ϖ(i,ϵ),ϖ

∗

(i,ϵ) The smaller or larger of ϖi and ϖϵ

5. MILP formulation

This section presents an MILP-based method for dealing with
the problem of lifetime maximization under the safety require-
ments and the task schedulability constraint for fault-tolerant MC
embedded systems. Table 3 summarizes the main symbols used
in this section. For ease of presentation, the following variables
are defined.

Λi,q =

{
1 if task τi is executed at frequency fq
0 otherwise (13)

ϖi : the start execution time of task τi (14)

εi,q : the total execution number of τi running at fq (15)

5.1. Objective

The objective is to maximize the lifetime of fault-tolerant MC
embedded systems, which is equivalent to minimize the system
permanent damage for every scheduling horizon. The permanent
damage caused by task execution in each scheduling horizon is
calculated as

D =
N∑
i=1

εi,q∑
k=1

Q∑
q=1

λi,k,qΛi,q
ci
fq
. (16)

The parameter λi,k,q is the permanent failure rate of kth execution
on frequency fq for task τi, and it can be derived by using (8).
Therefore, the objective function is given by

minimize: D. (17)

5.2. Constraints

The following design constraints should be satisfied.

• For every task, it has to be exactly executed at only one fre-
quency level.
Q∑

q=1

Λi,q = 1,∀i ∈ [1, 2, . . . ,N]. (18)

• For every task, its execution number at any frequency level
cannot exceed the maximal execution number ℜ specified by
the MC embedded systems.

1 ≤ εi,q ≤ ℜ,∀i ∈ [1, 2, . . . ,N], q ∈ [1, 2, . . . ,Q ]. (19)

• For every task, its finish time cannot exceed the common
deadline.

ϖi +

Q∑
q=1

Λi,q
εi,q × ci

fq
≤ d,∀i ∈ [1, 2, . . . ,N]. (20)

• The safety requirements are satisfied. Let ΓH and ΓL denote
the H task set and the L task set, respectively. Let CH
denote the safety requirement threshold of H tasks, and CL
represent the safety requirement threshold of L tasks. Both
CH and CL can be found in Table 2. Let C(ΓH) and C(ΓL)
represent the failure probability achieved by H tasks and the
failure probability achieved by L tasks, respectively. Then,
for every scheduling horizon µ (unit: hour), the constraints
of safety requirements are summarized below.

C(ΓH) =
∑
τi∈ΓH

Q∑
q=1

Λi,q(1−Ri,q)εi,q . (21)

C(ΓL) =
∑
τi∈ΓL

Q∑
q=1

Λi,q(1−Ri,q)εi,q . (22)

C(ΓH)
{
< CH × µ if H ∈ {A, B, C}
≥ CH × µ otherwise. (23)

C(ΓL)
{
< CL × µ if L ∈ {A, B, C}
≥ CL × µ otherwise. (24)

• For any two tasks on the processor, the overlapping executions
are not permitted. Let the variable ϖi and the variable ϖϵ

represent the start execution times of two tasks τi and
τϵ (1 ≤ i, ϵ ≤ N, i ̸= ϵ), respectively. Let ϖ(i,ϵ) and ϖ ∗(i,ϵ)
denote the smaller and the larger of start execution time
ϖi and start execution time ϖϵ , respectively. That is, the
two equations ϖ(i,ϵ) = min(ϖi, ϖϵ) and ϖ ∗(i,ϵ) = max(ϖi,
ϖϵ) hold. An auxiliary variable pi,ϵ is introduced to indicate
the value of ϖ(i,ϵ). In the case where ϖi < ϖϵ holds, the
variable pi,ϵ is set to 1; in the case where ϖi > ϖϵ holds,
the variable pi,ϵ is set to 0. J is a constant large enough
and it takes the value of 10000 in the experimental part.
The wi,ϵ and oi,ϵ are also two auxiliary variables utilized for
facilitating the formulation. The constraints of avoiding task
overlapping executions are listed below.

ϖ(i,ϵ) ≤ ϖi (25)

ϖ(i,ϵ) ≤ ϖϵ (26)

ϖ(i,ϵ) ≥ ϖi − J × (1− pi,ϵ) (27)

ϖ(i,ϵ) ≥ ϖϵ − J × pi,ϵ (28)

pi,ϵ = 1, 0 (29)

ϖ ∗(i,ϵ) = ϖi +ϖϵ −ϖ(i,ϵ) (30)

wi,ϵ = J × (ϖi −ϖ
∗

(i,ϵ))+ϖϵ (31)

ϖi − wi,ϵ ≥

Q∑
q=1

Λϵ,q
εϵ,q × cϵ

fq
(32)

oi,ϵ = J × (ϖϵ −ϖ
∗

(i,ϵ))+ϖi (33)

ϖϵ − oi,ϵ ≥
Q∑

q=1

Λi,q
εi,q × ci

fq
(34)

Algorithm 1: MILP-Based Method for System Lifetime Maximiza-
tion
Input: 1) Task set Γ , 2) Processor Θ;
Output: Schedule table Ω;

1 Produce schedule table Ω by using the MILP solver developed
in [36] to solve the formulated MILP;

2 Return Schedule table Ω .



170 K. Cao, G. Xu, J. Zhou et al. / Future Generation Computer Systems 100 (2019) 165–175

Table 4
A summary of the main symbols utilized in Section 6.
Notation Definition

ζ ∗ The target/optimal variable value
Z(x) The objective function of the optimization problem
℧ The state space of the optimization problem
Pk(x) The kth element in probability class PK
Wk The expected value corresponding to Pk(x)
V The threshold or level parameter
V∗ The value of Z(x) when x = ζ ∗
G The number of candidate samples
U(·) The indicator function
k The iteration counter
Vk The threshold at kth iteration
K The maximum iteration number
P0 The initial probability vector
Pk The probability vector at kth iteration
η The number of samples with best performance
ϑ The index set of η best samples
xρ,i The ith element in sample Xρ
Pk,i,ϱ The probability of mapping xρ,i to ϱ at kth iteration
P f

k The probability vector of task execution frequency
Pε

k The probability vector of task re-execution number
Peo

k The probability vector of task execution order

5.3. Algorithm of MILP-based method

Algorithm 1 describes the pseudo-code of MILP-based lifetime
optimization method. Inputs to Algorithm 1 are the DVFS-enabled
uniprocessor and the task set. By solving the formulated MILP
presented in this section, we can obtain an optimal task schedule
that maximizes system lifetime under the constraints of safety
requirements and task schedulability.

6. CEM-Based heuristic

The MILP-based method generates a lifetime-optimum task
schedule with consideration of all design constraints. However,
this method cannot efficiently tackle the studied scheduling prob-
lem as the size of the problem increases. Given this, we develop a
time-efficient CEM-based heuristic to overcome the shortcoming
of MILP-based method in terms of runtime. This section first
outlines the CEM’s theoretic foundation, and then describes in
detail the developed CEM-based heuristic. Table 4 summarizes
the main symbols used in this section.

6.1. Theoretical foundation

Unlike most of the traditional optimization techniques (e.g.,
genetic algorithm [37] and particle swarm optimization [38]),
CEM has a well-established theoretical foundation for tackling
combinatorial or continuous optimization problems. For a de-
terministic optimization problem to be solved, the CEM first
converts it into an associated stochastic optimization problem,
and then addresses this converted problem by utilizing an it-
erative sampling scheme [39,40]. In every round of iteration, a
plurality of random samples are produced, and the generated ran-
dom samples converge in a probabilistic manner to the optimal
solution to the original problem. For a detailed introduction to
the CEM, we recommend readers to refer to literatures [39,40].

Considering a general combinatorial optimization problem of
finding an optimal mapping so that function Z(x) takes the min-
imum value when variable x ∈ ℧ is identical to ζ ∗, that is,

Z(ζ ∗) = V∗ = min
x∈℧

Z(x). (35)

The above deterministic optimization problem can be converted
into the below probability estimation problem [39]

ξ (V) = Pk(Z(X ) ≤ V) = Wk(U{Z(X )≤V}) (36)

The probability Pk(x) is an element of probability class PK =

{Pk(x)|k = 1, 2, . . . , K }. X denotes the sample set containing
G random samples {Xρ |ρ = 1, 2, . . . ,G} that are generated by
probability Pk(x). The parameter V is a threshold, Pk(Z(X ) ≤ V)
is the probability that Z(X ) is no more than threshold V , and
Wk(U{Z(X )≤V}) represents the expected value of U{Z(X )≤V}. The
U{Z(X )≤V} refers to the indicator function, and it takes the value of
1 when the condition Z(x) ≤ V holds; otherwise it takes the value
of 0. For the probability estimation problem defined in (36), the
CEM attempts at finding the maximum Vmax that makes ξ (Vmax)
close to 0. Obviously, the probability that Z(X ) is greater than
Vmax is close to 1 at that moment, which indicates that Vmax is
the maximum lower bound on Z(x) for ∀x ∈ ℧ and it is therefore
the desired solution to the original problem defined in (35). The
following steps describe the main process of the CEM for solving
the converted problem defined in (36).

i. Initialize counter k← 1 and probability vector P0;
ii. Produce G random samples X = {Xρ |ρ = 1, 2, . . . ,G}

using probability Pk−1;
iii. Calculate the performance Z(X ) = {Z(Xρ), |ρ = 1, 2, . . . ,

G} achieved by G random samples;
iv. Choose η best random samples from G random samples ac-

cording to sample performance Z(X ), and derive threshold
Vk using:

Vk ←
1
η

∑
ι∈ϑ

Z(Xι), (37)

where ϑ denotes the index set of best random samples.
v. Derive probability vector Pk of kth round of iteration

Pk,i,ϱ =

∑G
ρ=1 U{Z(Xρ )≤Vk}U{xρ,i=ϱ}∑G

ρ=1 U{Z(Xρ )≤Vk}

. (38)

The parameter xρ,i represents the ith element of random
sample Xρ . The parameter Pk,i,k denotes the probability of
mapping xρ,i to ϱ (i.e., xρ,i = ϱ).

vi. Exit if the predefined stopping criteria are satisfied; else,
update k ← k + 1 and return to step ii for next round of
iteration.

6.2. Algorithm of CEM-based heuristic

Algorithm 2 describes the pseudo-code of our CEM-based
heuristic. The presented heuristic is composed of an initialization
stage and an iteration stage. At the initialization stage, line 1
and line 2 first initialize the iteration counter and maximum
number of iterations, respectively. Lines 3–9 then initialize three
probability vectors: the probability vector of task execution fre-
quency, the probability vector of task re-execution number, and
the probability vector of task execution order. At the iteration
stage, lines 10–21 iteratively search the sample with optimal
system lifetime. To be specific, a total of M samples are first
generated according to the current three probability vectors, and
G candidate samples are then picked by using the acceptance–
rejection technique (lines 11–12). In the cases of finding no
candidate samples, lines 13–17 terminate this round of iteration.
The calculation of the performance of every candidate sample is
performed by line 18. According to the calculation results, the
three probability vectors utilized for next round of iteration are
hence derived by lines 19–21. Based on the last round of iteration,
the lifetime-optimum task schedule is output in line 22.
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Algorithm 2: The CEM-Based Heuristic CEMH
Input: 1) Task set Γ , 2) Processor Θ;
Output: Schedule table Ω;

/* Initialization stage */
1 Set iteration counter k = 1;
2 Initialize maximum number K of iterations;
3 for each task τi ∈ Γ do
4 for each frequency fq ∈ Ψ do
5 Initialize probability vector P f

k of task execution
frequency: set the probability P

fq
k,i ∈ P f

k of task τi
executed at fq to 1/Q ;

6 for n = 1 : 1 : ℜ do
7 Initialize probability vector Pεk of task re-execution

number: set the probability Pq,n
k,i ∈ Pεk of n executions

at fq for task τi to 1/ℜ;
8 for j = 1 : 1 : N do
9 Initialize probability vector Peo

k of task execution
order: set the probability Pq,n,j

k,i ∈ Peo
k of τi

performed in the jth order to 1/N;

/* Iteration stage */
10 while k ≤ K do
11 Produce M samples based on {P f

k ,P
ε
k ,P

eo
k } using importance

sampling technique;
12 Choose G candidate samples satisfying (20)–(24) using

acceptance–rejection method;
13 if G == 0 then
14 if k == 1 then
15 Return false.
16 else
17 break;

18 Derive the permanent damage achieved by every candidate
sample using (16);

19 k← k+ 1;
20 Calculate threshold Vk,1 for P f

k , Vk,2 for Pεk , and Vk,3 for Peo
k

using (37);
21 Obtain {P f

k ,P
ε
k ,P

eo
k } using (38);

22 Return Schedule table Ω corresponding to the optimal sample
generated at the last iteration.

6.3. Time complexity of CEM-based heuristic

The time complexity O(·) of our proposed CEM-based heuristic
CEMH is analyzed as follows. The initialization stage in lines 1–9
can be conducted in O(ℜQN2) time, where N is the task number,
ℜ is the task maximal execution number specified by the MC em-
bedded systems, and Q is the total number of processor operating
frequencies. The iteration stage in lines 10–21 can be performed
in O(KMℜQN2) time, where K denotes the maximum iteration
number and M represents the number of samples in each itera-
tion of the CEM-based heuristic CEMH. Therefore, the overall time
complexity of our CEM-based heuristic CEMH is O(KMℜQN2). In
addition to theoretically analyzing the time complexity, we also
compare the measured runtime of various task scheduling algo-
rithms for validating the effectiveness of our CEM-based heuristic
CEMH. The comparison results will be demonstrated later in the
next experimental part (i.e., Section 7).

Table 5
The parameters of five real-world benchmarks [3,12,20].
Benchmark Task number H/L H number L number

1 70 A/C 40 30
2 50 A/B 15 35
3 65 C/D 20 45
4 55 B/C 20 35
5 80 A/B 40 40

Table 6
The default parameter settings of tool HotSpot [41].
Parameter Symbol Value Unit

Processor area – 4.56× 4.56 mm2

Die thickness – 0.20 mm
Heat spreader side – 25 mm
Heat sink side – 66 mm
Thermal resistance R 1.83 ◦C/W
Thermal capacitance C 112.2 mJ/◦C
Initial temperature T (0) 45 ◦C

7. Numerical results

7.1. Simulation setup

Two sets of simulations are carried out: one is conducted on
synthetic benchmarks, and the other is conducted on real-world
benchmarks. In the first set of simulation experiments, a random
task generator implemented in C++ is used to produce multiple
synthetic benchmarks (i.e., task sets). For each task in a synthetic
benchmark, its worst-case execution cycles incorporating the CPU
cycles of an acceptance test are randomly selected from the in-
terval of [4×107, 6×108

], which are generated on the embedded
benchmark suite MiBench [27]. As detailed in [23], the active
factor of a task captures how intensively functional units of a
processor are being utilized by the task, and it is typically in the
range of [0.4, 1]. Adopting the same setting in [23], we randomly
choose the active factor of a synthetic task from the interval of
[0.4, 1].

The task number N of each synthetic benchmark is in the range
between 100 and 200, in steps of 10. The common deadline d of N
synthetic tasks is deemed to 1.5×

∑
τi∈Γ

ci/fQ [22]. Two criticality
levels A and C defined in Table 2 are selected as the system
safety requirements. The criticality level of each synthetic task is
generated in a random way. In the second set of simulation ex-
periments, five real-world benchmarks, borrowed from [3,12,20],
of flight management systems are tested, and their parameters
including the total task number, task criticality levels, and the
number of high criticality or low criticality tasks, are shown in
Table 5. Note that the original flight management system only
consists of 26 real-time tasks with two criticality levels B and C.
To investigate system schedulability with respect to task number
and criticality levels, we make the following two changes to the
original tasks. First, we randomly select some original tasks to
copy these tasks once. Each copy task is regarded as a new task,
but has the same criticality level and execution cycles as the
original task. Second, the two criticality levels B and C can be
augmented or degraded. For example, criticality levels B and C
are augmented to A and B for benchmark 2, and degraded to C
and D for benchmark 3. The maximum iteration number K of
the proposed heuristic and the maximum execution number ℜ
of every task are set to 10 [42] and 3 [12], respectively.

We utilize the Alpha 21264 processor as the hardware plat-
form since it is the only publicly available processor integrat-
ing complete power and thermal models [43,44]. The voltage
(V)/frequency (GHz) pairs supported by the processor are set to
(0.7, 1.0), (0.8, 1.25), (0.9, 1.5), (1.0, 1.75), (1.1, 2.0), and (1.2,
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Fig. 3. The normalized system lifetime achieved by various algorithms when executing synthetic benchmarks.

Fig. 4. The schedulability achieved by various algorithms when executing synthetic benchmarks.

2.25), as in [43]. We use the commonly adopted simulation tool
HotSpot [41] to capture task thermal profiles. The parameters
used in our simulations are listed in Table 6, all of which are
the default values of HotSpot. As demonstrated in [32], the fault
arrival rate AQ and the parameter h̄ are typical in the intervals of
[10−8, 10−7] and [1,10], respectively. Therefore, we set the fault
arrival rate AQ and the parameter h̄ to 10−8 and 1, respectively. In
both sets of simulations, we compare the system lifetime, sched-
ule feasibility, and measured runtime of our proposed heuristic
CEMH with that of MILP, MINE, DPAS, GENE, PSOA, and CEMP.
The benchmarking scheme MILP is the MILP-based method for
system lifetime maximization, as demonstrated in Algorithm 1.
Other mentioned benchmarking algorithms for comparison are
described below.

• MINE [45] is an MILP based framework to determine the
scheduling of real-time tasks with a same criticality level
such that the whole energy dissipation can be minimized
while the system lifetime constraint and the temperature
limit constraint are simultaneously satisfied. The developed
framework fails to take into account both transient faults
and the heterogeneity of tasks in terms of criticality levels.
• DPAS [46] is an algorithm to maximize system lifetime

through analyzing the influence of operating temperature
on thermal cycling and system lifetime. Its main idea is to
minimize the thermal cycling wear by wisely controlling
processor operating frequencies. Transient faults and the
heterogeneity of tasks in terms of criticality levels are also
neglected in this strategy. We utilize the notation DPAS-0 to
denote the original algorithm without tolerating transient
faults and the notation DPAS-1 to represent the improved
algorithm using task re-execution technique introduced in
Section 3.3.2 to tolerate transient faults. For method DPAS-
1, it first sets the execution number of every task τi to the

task maximal execution number ℜ and then runs method
DPAS-0 to genette a task schedule.
• GENE is an approach that adopts the well-known genetic

algorithm [37] to deal with the system lifetime problem
defined in Section 4.1. A detailed introduction to genetic
algorithm can be found in [37]. Task re-execution technique
is used to tolerate transient faults as our proposed algorithm
CEMH. We leverage the available GENE toolbox [47] to call
this algorithm for achieving system lifetime maximization.
• PSOA is a method that utilizes the traditional particle swarm

optimization algorithm [38] to tackle the lifetime optimiza-
tion problem defined in Section 4.1. A detailed introduction
to particle swarm optimization algorithm is given in [38].
Task re-execution technique is adopted to tolerate transient
faults as our proposed heuristic CEMH. We utilize the open-
source PSOA toolbox [48] to call this algorithm for solving
the problem of system lifetime maximization.
• CEMP, similar to our proposed heuristic CEMH, is also a

CEM-based method to tackle the studied lifetime optimiza-
tion problem defined in Section 4.1. The only difference
between CEMP and CEMH is that the former adopts task
replication technique [22] to tolerate transient faults while
the latter uses task re-execution technique to tolerate tran-
sient faults. The task maximal replica number in CEMP is set
to 3, which is equal to the task maximal execution number
adopted in our proposed heuristic CEMH. For fault-tolerance
algorithms based on task replication technique, they should
execute all replicas of any task at runtime, even though the
output of first replica is completely correct [22].

The above algorithms are all implemented in C++, and both sets
of simulation experiments are carried out on a desktop computer
equipped with 32GB memory and Intel i7 Eight-Core 4.9 GHz
processor. For each synthetic or real-world benchmark under
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Table 7
The normalized runtime consumed to derive the schedule of synthetic
benchmarks.
Task
number

MINE DPAS-0 DPAS-1 GENE PSOA CEMP CEMH MILP Sp

100 5.87 1.00 1.10 1.74 2.29 1.33 1.33 7.21 5.44
110 6.31 1.04 1.16 1.90 2.44 1.41 1.41 7.53 5.32
120 6.49 1.05 1.30 2.03 2.50 1.56 1.56 8.18 5.25
130 6.95 1.07 1.36 2.16 2.64 1.64 1.64 8.68 5.31
140 7.04 1.16 1.54 2.24 2.84 1.89 1.89 9.47 5.01
150 7.61 1.28 1.60 2.58 3.28 1.96 1.96 10.51 5.37
160 7.91 1.33 1.69 2.62 3.40 2.03 2.03 11.92 5.87
170 8.79 1.42 1.88 2.83 4.06 2.28 2.28 13.14 5.77
180 9.98 1.52 1.95 3.04 4.64 2.49 2.49 14.22 5.70
190 10.02 1.59 2.00 3.24 5.03 2.60 2.60 14.97 5.76
200 11.55 1.63 2.12 3.56 5.93 2.90 2.90 15.72 5.41
Avg. 8.05 1.28 1.54 2.54 3.55 1.84 1.84 11.05 5.99

Table 8
The normalized runtime consumed to derive the schedule of real-world
benchmarks.
Benchmark MINE DPAS-0 DPAS-1 GENE PSOA CEMP CEMH MILP Sp

1 5.52 1.00 1.16 1.81 2.34 1.40 1.40 6.17 4.41
2 8.50 1.09 1.27 2.17 2.77 1.46 1.46 9.42 6.47
3 9.57 1.13 1.38 2.33 3.11 1.66 1.66 11.67 7.02
4 11.62 1.23 1.67 2.43 3.39 1.77 1.77 13.52 7.64
5 13.18 1.28 1.75 2.65 4.19 1.80 1.80 15.91 8.85
Avg. 9.68 1.14 1.44 2.28 3.16 1.62 1.62 11.34 6.88

test, we produce 1000 benchmark instances for obtaining the
simulation data of schedule feasibility and the average simulation
data of system lifetime.

7.2. Results for synthetic benchmarks

In the comparative study, the system lifetime is normalized to
the range of (0, 1]. Fig. 3 plots the system lifetime achieved by our
proposed solution and benchmarking schemes when executing
synthetic benchmarks. The results clearly demonstrate that our
heuristic CEMH achieves impressive system lifetime improve-
ment. For example, when the task number is set to 100, the
system lifetime achieved by CEMH is 32.73%, 25.86%, 23.73%,
and 29.20% higher than that of DPAS-1, GENE, PSOA, and CEMP,
respectively. Meanwhile, the results shown in the figure also
demonstrate that the system lifetime of the proposed heuristic
CEMH is second to that of the schemes MINE, DPAS-0, and MILP.
Moreover, DPAS-0 is superior to the proposed two algorithms
MILP and CEMH in terms of system lifetime. This is because both
DAPS-0 and MINE adopt no techniques to tolerate transient faults,
and providing transient fault tolerance is antagonistic to the ob-
jective of lifetime maximization. Specifically, as indicated in (16)
and illustrated in Fig. 2, the permanent damage of processor Θ
in each scheduling horizon is calculated as the sum of permanent
damages caused by the executions (including re-executions) of
all tasks. Once a task triggers re-execution, it certainly incurs
the permanent damage that is calculated as the product of task
execution time and corresponding permanent failure rate, as both
the task execution time and the corresponding permanent failure
rate are larger than zero (see (7) and (20)).

Table 7 demonstrates the measured runtime of different
schemes when deriving the schedule table of synthetic tasks. The
metric Sp indicates the speedup in terms of measured runtime
attained by the developed heuristic CEMH as compared with
the algorithm MILP. The results show that our heuristic CEMH
achieves a significant reduction in the runtime consumed to
derive task schedule. For example, when the task number is set
to 100, CEMH achieves 5.44 times of speedup compared to MILP.

Fig. 5. The normalized system lifetime achieved by various algorithms when
executing real-world benchmarks.

Fig. 6. The schedulability achieved by our proposed solution and benchmarking
algorithms for real-world benchmarks.

Fig. 4 exhibits the schedulability achieved by our proposed
solution and benchmarking schemes for synthetic benchmarks.
For a synthetic benchmark with fixed task number, its schedula-
bility is given by the number of benchmark instances that can be
feasibly scheduled under task safety and real-time constraints to
the number of tested benchmark instances in total (i.e., 1000 in
our experiments). As demonstrated in this figure, the proposed
heuristic CEMH achieves 100% schedulability regardless of the
number of tasks. On the contrary, the benchmarking schemes
MINE, DPAS-0, DPAS-1, GENE, and PSOA cannot guarantee that
synthetic tasks can be feasibly scheduled. From the results il-
lustrated in Figs. 3 and 4, and Table 7 we can observe that
our proposed CEM-based heuristic achieves a better tradeoff be-
tween the system lifetime attained by the derived task schedule
and the runtime consumed to generate the task schedule while
guaranteeing task safety and real-time constraints.

7.3. Results for real-life benchmarks

Fig. 5 depicts the normalized system lifetime of various
scheduling algorithms when executing five real-world bench-
marks. Similar to the results presented in Fig. 3, we can clearly
see from Fig. 5 that the system lifetime achieved by our proposed
algorithm MILP or CEMH is better than that of benchmarking
algorithms DPAS-1, GENE, PSOA, and CEMP for comparison. To be
specific, the proposed heuristic CEMH can achieve up to 21.15%,
14.29%, 17.78%, 13.86%, and 13.54% system lifetime improvement
for benchmarks 1–5, respectively.

The runtime consumed to derive the schedule of real-world
tasks using different schemes is listed in Table 8. The table ev-
idently demonstrates that our heuristic CEMH can significantly
reduce the scheduling overhead as compared to scheme MILP. To
be specific, CEMH achieves 4.41, 6.47, 7.02, 7.64, and 8.85 times
of speedup for benchmarks 1–5 as compared to scheme MILP,
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respectively. The schedulability achieved by our proposed two al-
gorithms MILP and CENH when executing five real-world bench-
marks is presented in Fig. 6. The results illustrate that the pro-
posed schemes MILP and CEMH can always achieve 100% schedu-
lability while other task scheduling algorithms MINE, DPAS-0,
DPAS-1, GENE, and PSOA cannot guarantee 100% schedulabil-
ity. This observation is consistent with the experimental results
demonstrated in Fig. 4 and it again validates the effectiveness
of the two proposed algorithms MILP and CEMH in terms of
schedulability.

8. Conclusion

In this paper, we tackle the lifetime optimization problem for
MC embedded systems via designing effective task scheduling
schemes. We consider both transient faults and thermal cycling
incurred permanent faults. In addition to an MILP-based algo-
rithm, we also present a time-efficient CEM-based heuristic to
achieve system lifetime maximization. Task re-execution tech-
nique is utilized in the two algorithms to tolerate transient faults.
Two sets of simulation experiments based on synthetic task sets
produced by a random task generator and real-world benchmarks
of flight management systems are conducted to demonstrate
the performance of our developed algorithms and benchmarking
approaches in terms of system lifetime, schedule feasibility, and
measured runtime. The simulation results reveal that our pro-
posed algorithms can drastically prolong system lifetime while
meeting the safety requirements and task timeliness constraints.
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