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State-Aware Dynamic Frequency Selection Scheme
for Energy-Harvesting Real-Time Systems
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Abstract— With the increasing deployment of battery-powered
embedded systems such as sensor nodes in extreme environments,
harvesting renewable energy from ambient environments to
achieve near perpetual operation of a system has attracted
considerable research efforts in the recent past. In this paper,
the authors propose a dynamic frequency selection scheme
for energy-harvesting real-time systems. The proposed scheme
characterizes the state of a system from the perspectives of
system utilization and harvested energy with respect to a certain
period of time. A portion of the battery energy is allocated to a
group of tasks in the period of time by jointly considering the
system utilization and energy state, and the operating frequency
is selected based on the allocated energy. The derived operating
frequency is fine tuned to further enhance energy efficiency when
overflow occurs. Simulation results demonstrate the effectiveness
of the proposed scheme. Compared with the state-of-the-art
scheme that decouples the energy and timing design constraints,
the proposed scheme achieves comparable deadline miss rate
when the battery capacity is lower than 5000 J and achieves
about 11.5% lower deadline miss rate when the battery capacity
is greater than 30 000 J. The proposed scheme also outperforms
the benchmarking scheme in energy efficiency. When the battery
is near a full charge or overflow occurs, the proposed scheme
incurs less energy waste when compared with the benchmarking
algorithm, which is favorable for autonomous operation of the
system. Furthermore, the time complexity of the proposed scheme
is one order of magnitude lower than that of the benchmarking
scheme, which makes the proposed scheme well suited for
dynamic scheduling.

Index Terms— Dynamic scheduling, real-time systems,
state-aware frequency selection.

I. INTRODUCTION

POWER and energy management has become a critical
issue in designing real-time embedded systems, especially

for battery-powered systems that operate in harsh environ-
ments [1]. These systems are generally deployed in extreme
environments where human beings have no access and replac-
ing a battery is not practical. Hence, it is desirable that the
deployed system itself can harvest energy from the ambient
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environment to sustain its perpetual operation. Energy harvest-
ing is essentially the conversion of renewable generation into
electricity to power electronic devices. Of renewable energy
generations, harvesting energy with photovoltaic (PV) array is
one of the most popular techniques applied to extract solar
energy from the ambient environment.

Extensive research has been conducted in two aspects to
improve the efficiency of scavenging and utilizing solar energy.
The first aspect of research focuses on obtaining the maximum
power output from a PV array. Various PV array maximum
power point tracking (MPPT) techniques were summarized
and compared in [2]. It has been shown that the two-stage
IncCond [3], [4] and the current sweep [5] MPPT methods
are appropriate for residential areas, which can be further
combined with the irradiance forecasting scheme presented in
[6] to estimate the energy output.

The second aspect of the research investigates the system
level methods to efficiently exploit the fluctuating energy
produced by the solar panel. In [7], the authors prototyped
the use of solar energy to power wireless sensor networks.
Environment-aware task-scheduling methods were presented
to help improve the energy efficiency in distributed system
with communication constraints. In [8], throughput optimal
and mean delay optimal energy management policies are
identified for a sensor node with an energy-harvesting source.
These policies can make the system work in energy neutral
operation. In [9], the authors presented a feasibility test for
the fixed priority and earliest deadline first (EDF) scheduling
policies under energy constraints. With the feasibility test, a
scheduling scheme was proposed with considerations of the
battery capacity and the context switch between the battery
recharging mode and discharging model. The design and
implementation of a solar-powered system called Prometheus
was presented in [10]. The system can operate for an extremely
long duration for the wireless sensor network mote-Telos.
A similar design was presented in [11] that prototypes a sen-
sor node called Heliomote with energy-harvesting capability.
A lazy scheduling algorithm (LSA) was presented in [12] that
postpones the execution of a task as late as possible. The
optimal start time of the task is derived under the assumption
that the task executes at the constant processor speed until
its deadline. In [13] and [14], the authors presented a set of
algorithms and methods to optimize system performance
subject to given energy constraints. The target application
scenarios include real-time scheduling, application rate control
as well as reward maximization. Both continuous parame-
ters (such as the instantiation rates of tasks and amount of
computation) and discrete levels of services are considered
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to maximize the utility of energy-harvesting systems. These
methods optimize system performance that allows smaller
solar cells and smaller batteries; however, energy savings are
not considered in these designs.

Dynamic voltage scaling (DVS) technique has been widely
utilized to save energy in energy-harvesting systems. In [15],
the authors proposed an EDF-based real-time scheduling algo-
rithm for uniprocessor energy-harvesting systems that jointly
considers the constraints from the energy domain and from
the time domain. However, the algorithm schedules tasks at
a fixed frequency and does not employs DVS technique for
energy management.

The LSA presented in [16] is extended in [17] to enable
energy savings by using DVS. When a task arrives, it is pushed
into the ready queue, and the runtime schedule is updated for
all tasks in the ready queue in two major steps.

1) The lowest possible processor speed is found for all tasks
in the ready queue.

2) The energy availability of the system is checked. If the
available energy is not enough, the execution of the
current task is delayed such that the task has enough
energy to finish its execution, and the schedule of all
remaining tasks is verified. Otherwise if enough energy
is available, the execution of tasks follows the schedule
generated in the first step.

This process repeats whenever a new task arrives, which incurs
a time complexity of O(M2 N), where M is the number of
tasks in the ready queue and N is the number of frequency
levels supported by the processor.

The above works adopt a design strategy of decoupling
the energy constraint and timing constraint to meet system
requirements and improve system performance. However, the
energy constraint and time constraints interact, and decoupling
the two design constraints may unnecessarily lead to task
deadline violation. Scheduling a task at the lowest possible
operating frequency stretches the execution of the task, which
essentially steals the time quota of the remaining tasks. Some
of the remaining tasks may miss their deadlines due to lack
of time quota, even if there are plenty of energy.

Imagine a system that contains a processor supporting two
frequency levels ( f1 = 500 Hz and f2 = 1000 Hz) and has
three real-time tasks. The arrival time, absolute deadline, and
execution cycles of each task are given by a triple, that is,
τ1: {0, 1.2, 500}, τ2: {0, 1.5, 250}, and τ3: {1, 1.5, 300}. The
task schedule generated by the existing schemes [17] is shown
in Fig. 1(a). At t = 0, task τ1 and τ2 are in the ready queue
and are scheduled to run at f = 500 Hz. τ1 is supposed to
finish at t = 1, τ2 is supposed to finish at t = 1.5, and the two
tasks meet their deadlines. At t = 1, the execution of task τ1
is finished, τ3 arrives, and the task schedule is updated. Task
τ2 and τ3 are in the ready queue and are scheduled to run
at f = 1000 Hz. Task τ2 is supposed to finish its execution
at t = 1.25 and task τ3 misses its deadline at t = 1.5. The
timeline at the bottom of Fig. 1(a) illustrates the execution of
the three tasks.

The proposed scheme considers the scheduling of tasks in
a period of time called feasible interval. As is illustrated in
Fig. 1(b), the feasible interval at t = 0 contains all the three

(a)

(b)

Fig. 1. Motivation example. (a) Scheduling strategy of existing schemes
[17]. (b) Scheduling strategy of the proposed schemes.

tasks, which are supposed to operate at f = 1000 Hz. The
task schedule at t = 0 indicates that the task τ1, τ2, and τ3 are
supposed to finish their execution at t = 0.5, 0, 75, and 1.3,
respectively. The timeline at the bottom of Fig. 1(b) indicates
that all the three tasks meet their deadlines.

In this paper, the authors propose a dynamic scheduling
scheme that jointly considers the system energy availability
and system utilization state. The proposed scheme first char-
acterizes the state of the target system from the perspectives
of system utilization and harvested energy. It then allocates
a portion of the available energy to the group of tasks in
the ready queue based on the amount of energy produced
by the PV array and the value of system utilization. The
operating frequency for the group of task is selected accord-
ing to the allocated energy and the selected frequency is
fine tuned to further improve energy efficiency. It is also
noteworthy that the proposed scheme is much simpler when
compared with the existing schemes. Its time complexity is
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Fig. 2. Architecture diagram of an energy-harvesting real-time system.

one order of magnitude lower than that of the benchmarking
scheme. Experimental results show that the proposed dynamic
scheduling scheme achieves a comparable deadline miss rate
and higher energy efficiency as compared with the state-of-
the-art schemes.

The rest of this paper is organized as follows. Section II
introduces system architecture and models. Section III char-
acterizes the system in terms of system utilization state and
system energy state, and describes the proposed global energy
allocation strategy based on the two states. The state-aware
frequency selection algorithm is proposed in Section IV.
Section V presents the experimental results and analysis, and
Section VI concludes this paper.

II. SYSTEM ARCHITECTURE AND MODELS

The target energy-harvesting real-time system consists of
three major modules: the energy source module, energy stor-
age module, and energy dissipation module. As is described in
Fig. 2, the energy source module scavenges energy from the
environment at the power of ph(t), and the energy dissipation
module drains energy from either the energy source or storage
module at the rate of pd(t). When the harvested energy is
more than the energy consumed by the dissipation module,
the extra energy is stored in the energy storage module. The
typical example of an energy dissipation module is a processor
that schedules and executes real-time applications.

A. Energy Model

The energy source module converts the renewable gener-
ation such as solar, thermal, and wind energy to electrical
energy. Let ph(t) denote the harvesting power and Eh(t1, t2)
denote the energy scavenged from the environment during the
interval [t1, t2], then Eh(t1, t2) is expressed as

Eh(t1, t2) =
∫ t2

t1
ph(t)dt . (1)

Part of the harvested energy is consumed by the micro-
processor and the residuals are stored in the energy storage
module. For the case of solar energy, the energy source module
is a set of solar panels that outputs the energy of Eh(t1, t2)
during the interval [t1, t2]. The energy storage module is
typically in the form of a super capacitor or a battery. The
battery capacity is in general deemed to be limited. Let Ecap
denote the capacity of a battery, and E(t) denote the residual
energy in the battery at the time instance t , then the inequality
E(t) ≤ Ecap holds.

The target processor is an example of energy dissipation
module. The power consumption of a CMOS device can be
modeled as the sum of dynamic power consumption and static
power consumption. The average dynamic power consumption
pd can be estimated by a strictly increasing and convex
function, that is, pd ∝ f 3 [18]. Let ps denote the static power
consumption of a device, Isubn denote the sub-threshold leak-
age current, and I j denote the reverse bias junction current,
then the static power consumption of the device is given by
ps = Vdd Isubn + |Vbs|I j , where Vbs is the body bias voltage,
and Vdd is the supply voltage [19]. The total energy (Edemand)
consumed by a processor during an interval [t1, t2] when a
real-time application executes is hence estimated by

Edemand = (t2 − t1) × ps +
∫ t2

t1
pd(t)dt . (2)

B. Power Prediction Model

It has been shown that accurate prediction of the harvesting
power is crucial to the efficiency of the optimization tech-
niques for energy-harvesting systems. Power prediction mod-
els have been extensively investigated in [20]–[23]. In [20],
the authors investigated autoregressive model, neural networks
model, and the adaptive-network-based fuzzy inference system
(ANFIS) model. The three models were compared with predict
half-daily values of global solar irradiance with a temporal
horizon of three days. Khatiba et al. [21] reviewed the linear,
nonlinear, and artificial intelligence modeling techniques, and
compared the three models in terms of the prediction accuracy.
In particular, the artificial neural network models were utilized
to model and predict the solar energy for different areas in the
world in [22] and [23].

In this paper, the exponential moving average approach [24]
is adopted to predict the harvesting power of the system.
The exponential moving average is a forecasting technique
that applies the exponentially decreasing factors to time series
datum. The exponential moving average for a series can be
calculated recursively, that is

x̂t = α × xt + (1 − α) × x̂(t−1) (3)

where x̂t is the exponentially smoothed estimate at the
time instance t , xt is the observed value at the same time,
α(0 ≤ α ≤ 1) is the degree of weighting decrease, and
x̂(t−1) is the smoothed estimate at the previous time instance.
The exponential moving average approach is adopted in the
proposed scheme to estimate both the long-term and the short-
term harvesting powers. Since it assigns a larger weight to
the more recent data, the short-term estimate is more accurate
when compared with the long-term estimate.

C. Task Model

Consider a scenario that real-time tasks in a ready queue are
ordered using the EDF policy, and the task at the head of the
ready queue is to be executed on a DVS-capable processor. It is
assumed that the DVS-capable processor supports N discrete
operating frequencies { f1, . . . , fN }, and fi < f j holds for
i < j . The power consumption of the processor varies with
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frequency scaling. Let pi indicate the power consumption of
the processor at the frequency fi , then the power consumption
of the processor at different frequency levels can be modeled
as {p1, . . . , pN }.

The timing characteristics of a task τi is modeled using a
triplet τi : {ai , di , ci }, where ai is the arrival time, di is the
relative deadline, and ci is the worst case execution cycles of
the task. The absolute deadline of task τm can be expressed
as am + dm . Let sti is the start time to execute the task,
and assume that the task is scheduled to be executed at the
frequency fk , then the execution of the task cannot start until
it arrives, and must finish before its absolute deadline, as is
described by the inequality

{
ai ≤ sti
st i + ci

fk
≤ ai + di

(4)

where ci/ fk gives the worst case execution time of the
task. Note that the task τi can be either a periodic task or
an aperiodic task, and the proposed scheme can handle the
scheduling of both types of tasks. Furthermore, it is assumed
that the execution of a real-time task is preemptable. That
is, when a task of higher priority arrives, the execution of
the current task of lower priority is preempted. When the
preempted task is resumed for execution, it may execute at
the same or different processor speed, depending upon the
system state.

III. PROPOSED GLOBAL ENERGY ALLOCATION STRATEGY

The energy and timing design constraints are decoupled
in [17] to reduce design complexity. In [17], when a new
task is coming it is first push into a queue. The real-time
tasks in the queue are then scheduled at the lowest possible
processor speed and the workload is evenly (with respect
to time) allocated to the processor. The energy constraint
is considered when the task schedule satisfying the timing
constraints is generated. All the available energy is allocated
to the task being scheduled, and if the available energy is not
enough to finish the task, it is dropped and removed from the
queue. This process repeats whenever a new task comes, which
results in a high design complexity that is not well-suited for
dynamic scheduling.

On one hand, on assigning a large portion or if even all
of the available energy to the task being scheduled increases,
the possibility that remaining tasks miss their deadlines. This
is because the task consumes too much energy and remaining
tasks may not have enough energy to finish their execution. On
the other hand, assigning a small portion of available energy
to the task being scheduled will prolong its execution since it
has to execute at a relatively low frequency. The current task
consumes extra CPU time and the chances that the remaining
tasks miss their deadlines increase even if there are plenty of
energy. In fact, energy and timing design constraints interact,
hence need to be jointly optimized instead of being decoupled.
This section describes the proposed global energy allocation
strategy that enhances energy efficiency and reduces task
deadline miss rate by considering the overall system workload
and energy availability. The proposed energy allocation policy

assigns available energy to a period of time based on the
system utilization state and the system energy state, as is
detailed below.

A. System Utilization State

The system utilization is defined to be the sum of utilizations
of all tasks in the system. The state of a system can be
described by its utilization. When the utilization of a system
exceeds a threshold value, real-time tasks in the system have
higher probability of missing their deadlines due to a small-
scale variation in available energy.

The system is deemed to be overloaded in this case. When
a system is in the overload state, a portion of energy in the
battery is allocated for the system to mitigate the overload
of the workload. This strategy tries to improve the efficiency
of energy and reduce deadline miss rate of real-time tasks. It
is clear that two issues need to be addressed in system state
characterization. The first one is to derive the threshold value
that defines the overload state of the system, and the second
one is to calculate the system utilization with respect to a
certain interval.

Instead of being fixed, the threshold value essentially
changes dynamically within a range to better adapt to the
system state. Let Uth denote the threshold value, and Uth,L and
Uth,H denote the upper bound and lower bound of the thresh-
old, respectively, then Uth is in the range of [Uth,L, Uth,H].
The upper bound Uth,H is typically set to 1. The lower bound
Uth,L is determined by characteristics of real-time tasks in
the task set. For periodic tasks, an offline task schedule
generated by any energy efficient task-scheduling algorithms
gives the optimum or suboptimum operating frequencies of
tasks. Further stretching tasks and increasing system utilization
by scaling down the operating frequencies results in with high
probability an increase in task deadline miss rate. Therefore,
the system utilization of an offline task schedule, which is
calculated as the sum of utilizations of all tasks in the task
set, is defined to be the lower bound on the threshold value.
Since the arrival time of an aperiodic task is not predictable,
the lower bound on the threshold value Uth,L is set to 0 for
aperiodic tasks. When the task set contains both periodic and
aperiodic tasks, the Uth,L is determined by characteristics of
periodic tasks.

Given the upper bound and lower bound, the utilization
threshold value Uth can be easily derived. The Uth is initialized
by randomly picking a value in [Uth,L, Uth,H]. Algorithm 1
describes the procedure to dynamically update the threshold
value Uth that demarcates the boundaries of dynamic system
utilization states. On one hand, if a task is dequeued due to
lack of time, that is, if the system utilization is high and
the task cannot finish the execution before its deadline, the
threshold value Uth is decreased by one step. The decrement
of Uth indicates that the system is more likely to switch to
the overloaded state, thus, more energy is to be allocated
to mitigate the overloaded state, which in turn improves the
timing of real-time tasks. On the other hand, if a task is
dequeued due to lack of energy, that is, if the available energy
is not enough for the task to finish the execution before its
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Algorithm 1 Dynamically Update the Threshold Value
Uth That Demarcates the Boundaries of Dynamic System
Utilization States

absolute deadline, the threshold value Uth is increased by one
step. The increment of Uth indicates that the system is less
likely to switch to the overloaded state, hence less battery
energy is to be allocated to future tasks, which in fact scales
down the processor speed and conserves energy for future
tasks. The step size for threshold adaptation is an empirical
value, and 0.01 is taken in Algorithm 1. In the runtime, when
the system utilization with respect to a certain interval is
greater than or equal to the Uth, the system is deemed to be in
the overload state in the period. Otherwise, it is not overloaded
in this duration.

The system utilization at a time instance is defined with
respect to a certain interval. Suppose a queue named Q1
contains tasks that are ready to execute at time instance t .
Let Dmax denote the maximum of the latest finish times of all
tasks in the queue Q1, then the interval [t, Dmax] is defined
to be the feasible interval at the time instance t . It is clear
that all tasks in the queue Q1 finish their execution in the
feasible interval. It is likely that new tasks arrive in the feasible
interval of [t, Dmax]. Those tasks that arrive and finish their
execution in the feasible interval (t, Dmax] are push into a
queue named Q2, and those tasks that arrive in the interval of
(t, Dmax) but finish their execution beyond the time instance
Dmax are pushed into a queue named Q3. Note that Q1 is a real
queue that contains ready tasks while Q2 and Q3 are virtual
queues that are utilized to illustrate the concept of the feasible
interval. Fig. 3 illustrates the feasible interval at the time
instance t . Three tasks of τ1, τ2, and τ3 of absolute deadlines
of D1, D2, and D3 are ready to be executed at the instance t .
The maximum of the latest finish time of the three tasks is
Dmax = D2. Thus, the feasible interval at the instance t is
[t, Dmax]. It is also shown in Fig. 3 that the task τ4, τ5, and
τ6 arrive and finish their execution in the feasible interval
(t, Dmax] while the task τ7 and τ8 arrive in the feasible interval
but do not have to finish their execution in the feasible interval.
The task τ1, τ2, and τ3 are push into the queue Q1, the task
τ4, τ5, and τ6 are push into the queue Q2, and the task τ7 and
τ8 are push into the queue Q3.

Fig. 3. Illustration of feasible interval at the instance t.

The system utilization with respect to the feasible interval
[t, Dmax] is calculated by considering the tasks in the queues
Q1, Q2, and Q3. The tasks in Q1 and Q2 finish their execution
in the feasible interval [t, Dmax], thus, their contribution to the
system utilization at the instance t is determined.

Two cases are considered for tasks in the queue Q3. In
the first case, the Dmax is deemed to be an equal ratio point
of the execution time of task τi ∈ Q3 with respect to the
feasible interval (ai , Di ) of the task, where ai and Di are the
arrival time and absolute deadline of the task τi , respectively.
In other words, the ratio of the portion of the task τi being
executed before Dmax to the portion of the task being executed
after Dmax is assumed to equal the ratio of (Dmax − ai ) to
(Di − Dmax). As is shown in Fig. 3, the feasible interval
[a8, D8] of the task τ8 is divided by Dmax into two periods,
[a8, Dmax] and [Dmax, D8], and the portions of the task
executed in the two periods are proportionate with respect to
the length of the two periods. This scenario can be viewed as
an average case of task execution. In the second case, tasks
in the queue Q3 is assumed to start execution after the time
instance Dmax, and only tasks from queues Q1 and Q2 will
be executed in the interval [t, Dmax]. As is shown in Fig. 3,
the task τ8 will be executed in the interval of [Dmax, D8] in
this case and the workload in the interval of [t, Dmax] is thus
reduced to minimum.

Assume that tasks in the interval [t, Dmax] operate at
the frequency fk , and let U(t, Dmax, fk) denote the system
utilization with respect to the feasible interval [t, Dmax] at the
frequency fk , then U(t, Dmax, fk) is given by

U(t, Dmax, fk) =

∑
∀τi ∈Q1

ci

fk
+

∑
∀τi ∈Q2

ci

fk
+

∑
∀τi ∈Q3

ci

fk

Dmax − t
. (5)

With respect to the feasible interval [t, Dmax], (5) gives
the system utilization. All tasks in queues Q1, Q2, and Q3
are predetermined for periodic systems, however, tasks in
queues Q2 and Q3 are not known at the time instance t for
aperiodic systems. A simple yet efficient method is designed
in this paper to estimate tasks in queues Q2 and Q3 for
aperiodic systems. The method employs historical data to
predict the total utilizations of tasks in queues Q2 and Q3.
More specifically, based on characteristics of tasks over a
past period of time, the method first picks a time instance
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when task scheduling is performed, determines the feasible
interval at the time instance, and finds the aperiodic tasks in
queues Q2 and Q3 of the interval. It then calculates the total
utilization of tasks in queue Q2 as

∑
∀τi ∈Q2

ci/ fk and the total
utilization of tasks in queue Q3 as

∑
∀τi ∈Q3

ci/ fk , where fk is
the processor operating frequency. Finally, the method collects
a set of consecutive time instances when task scheduling is
performed, applies the exponential moving average technique
to the set to obtain average utilizations for queues Q2 and
Q3, and takes these values as the estimation for utilizations of
queues Q2 and Q3 in the current feasible interval [t, Dmax].

The utilization U(t, Dmax, fk) combined with the threshold
value Uth for system utilization state demarcation is utilized
to define the dynamic system utilization state that determines
the allocation policy of the available energy, as is detailed in
Section III-C.

B. System Energy State

The energy state of a system can be characterized by
the average amount of the harvested energy with respect to
different periods of time. More specifically, when the average
harvested energy with respect to a short period is less than
the average harvested energy with respect to a long period,
the system is deemed to be in low-energy state. Let ps_solar(t)
and pl_solar(t) denote the harvesting power of the system with
respect to a short and long period of time, respectively, and
let Es_solar(t, Dmax) and El_solar(t, Dmax) denote the harvested
energy in the interval of [t, Dmax] based on the harvesting
power of the short and long period, respectively. The har-
vested energy Es_solar(t, Dmax) and El_solar(t, Dmax) are then
expressed as the integral of the harvesting power during the
feasible interval of [t, Dmax], as is given by (6) and (7)

Es_solar(t, Dmax) =
∫ Dmax

t
ps_solar(t)dt (6)

El_solar(t, Dmax) =
∫ Dmax

t
pl_solar(t)dt . (7)

It is clear that when Es_solar(t, Dmax) ≤ El_solar(t, Dmax), the
system is in the low-energy state.

Note that at the time instance t the harvesting power
of the system during the feasible interval [t, Dmax] is not
known in advance. The power prediction models described in
Section II-B are thus utilized to derive the short-term power
ps_solar(t) and the long-term power pl_solar(t).

C. Proposed Energy Allocation Strategy

The system energy available at the time instance t consists
of the energy produced by the PV panel and the energy stored
in the battery. The battery is essentially an energy buffer for
the system. On one hand, the energy produced by the PV panel
is directly consumed by the system, and the excess energy is
stored in the battery. On the other hand, the system derives
energy from the battery when it is in the low-energy state or
in the overload state. This subsection focuses on the allocation
policy for the battery energy based on the system utilization
state and system energy state.

As is described in Section III-A, a system is deemed to
be in the overloaded state when the system utilization with
respect to the interval [t, Dmax] is greater than or equal to
the system utilization threshold, that is, U(t, Dmax, fk) ≥ Uth
holds, where fk is the operating frequency of the system and
Uth is the system utilization threshold. A fraction of the battery
energy is allocated to the feasible interval [t, Dmax] when the
system is in the overloaded state. The amount of the battery
energy allocated to the feasible interval should be large enough
for the system to sustain its operation in the interval at the
lowest processor speed f1 when it is extremely overloaded.
The battery energy allocated to the feasible interval [t, Dmax],
which is denoted by E1, is thus given by

E1 =
{

�U × (Dmax − t) × p1, �U ≥ 0
0, �U < 0

(8)

where the term �U = U(t, Dmax, fk)−Uth is the degree of the
system being overloaded, the term (Dmax − t) 1 s the length of
the interval, and p1 is the processor power consumption at the
lowest operating frequency f1. When the system is strikingly
overloaded, that is, �U is becoming large, the energy allocated
to the interval [t, Dmax] will also increase. It can be seen from
the equation that the allocated battery energy E1 adapts to the
degree to which the system is overloaded.

Similarly, a fraction of the battery energy is allocated to
the feasible interval [t, Dmax] when the system is in the low-
energy state. The system energy state is defined and described
in Section III-B. The amount of the battery energy allocated to
the feasible interval should also be large enough for the system
to sustain its operation in the interval at the lowest processor
speed f1 when it is in very low-energy state. The battery
energy allocated to the feasible interval, which is denoted by
E2, is thus given by

E2 =
{

�Esolar × (t − Dmax) × p1, �Esolar ≤ 0
0, �Esolar > 0

(9)

where the term �Esolar = (Es_solar − El_solar)/El_solar is
the degree to which the system is in low-energy state, the
term (Dmax − t) is the length of the interval, and p1 is
the processor power consumption at the lowest operating
frequency f1. The Es_solar and El_solar, which are given in (6)
and (7), respectively, are the predicted short-term solar energy
and predicted long-term solar energy in the feasible interval
[t, Dmax]. The battery energy E2 is allocated to the feasible
interval when �Esolar ≤ 0 holds, that is, when the system is in
low-energy state; no battery energy is allocated to the interval
otherwise. The predicted solar energy Es_solar and El_solar are
functions of the average harvesting power ps_solar and pl_solar,
respectively, thus the allocated battery energy E2 is closely
related to the average harvesting power.

Considering the system utilization state and the system
energy state, the battery energy allocated to the feasible
interval [t, Dmax], which is denoted by Ealloc, is thus expressed
as

Ealloc = E1 + E2 (10)

where E1 and E2 are given by (8) and (9), respectively. It is
clear that the allocated battery energy (Ealloc) adapts to the
system utilization state and system energy state.
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Note that the battery energy is allocated to a feasible interval
where more than one task are likely to execute. This strategy
regards tasks in the feasible interval as a group when allocating
battery energy and performs the energy allocation computation
whenever a new task arrives. It allocates a portion of the
available battery energy to a feasible interval where multiple
tasks are likely to execute by considering both the system
utilization and energy state, which effectively enhances the
energy efficiency and system performance, as is described in
the next section.

IV. STATE-AWARE DYNAMIC FREQUENCY SELECTION

ALGORITHM

The proposed state-aware dynamic frequency selection algo-
rithm aims at achieving good energy efficiency at a low
computational complexity. The algorithm selects an operating
frequency for tasks in the feasible interval [t, Dmax] based on
the energy allocated to the interval. It first finds the lowest
possible operating frequency for the current task, then selects
the operating frequency for the feasible interval based on the
system utilization state and energy state, and finally adjusts
the operating frequency when the solar energy produced by
the PV panel is excessive. The following subsections describe
the three steps in details.

A. Frequency Selection Based on Utilization and Energy State

As is described in Section II-C, the target DVS-capable
processor is assumed to support N discrete operating fre-
quencies. Let τm be the task at the head of the ready queue,
and let flow be the lowest operating frequency for the task
without violating the timing constraint. The task can finish the
execution before its absolute deadline if the following holds:

am + dm − cm

flow
≥ max{am, t} (11)

where am, dm , and cm are the arrival time, relative deadline,
and execution cycles of the task, respectively, and t is the
current time instance. Since the am, dm , cm , and t are all
known, the lowest processor frequency flow that meets the
timing constraint of the task can be derived using the equation.

Considering the maximum processor-supported frequency
fmax = fN , the task can execute at any frequency between
flow and fmax. On one hand, when the task executes at a low
operating frequency, its execution is prolonged, which may
lead to deadline violation of remaining tasks due to lack of
time to finish the execution. On the other hand, when the
task executes at a high operating frequency, it consumes a
large portion of energy, which may lead to deadline violation
of remaining tasks due to lack of energy. As a result, a
frequency selection algorithm that jointly considers the sys-
tem energy state and utilization state in a feasible interval
is needed to identify the proper operating frequency for
the task.

The state-aware frequency selection procedure given in
Algorithm 2 is expected to produce a processor-supported fre-
quency that jointly considers energy and time to improve sys-
tem performance and enhance energy efficiency. The desired

Algorithm 2 Select the Operating Frequency Based on System
Utilization and Energy State

frequency is denoted by fselect, where select is defined to be
the index of the frequency. The algorithm takes as input the
task τm at the head of the ready queue Q. It first derives the
maximum absolute deadlines of all tasks in the ready queue
(Dmax), which gives the upper bound of the feasible interval
[t, Dmax] (line 1). It then calculates the lowest processor
frequency flow that guarantees the timing constraint of the
task τm using (11) (line 2). The system could be in overload
state or low-energy state in the feasible interval. The battery
energy is allocated to the feasible interval when the system is
in either state, as is given by (10). In addition to the battery
energy, the system consumes solar energy generated by the PV
panel, which is given by (6). Note that instead of the long-
term predicted solar energy El_solar, the short-term predicted
solar energy Es_solar given in (6) is utilized to estimate the
solar energy fed to the system. This is because the short-term
prediction is more precise when compared with the long-term
estimation. The energy supplied to the feasible interval, which
is denoted by Esupply, is hence expressed as the sum of the
allocated batter energy and the estimated solar energy, as is
given by

Esupply = Ealloc + Es_solar (12)

where Ealloc and Es_solar is given in (10) and (6), respectively.
Since Ealloc is closely related to the harvesting power and
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Es_solar is an integral function of the harvesting power, the
supply energy Esupply adapts to the harvesting rate of the
system.

The energy demand for the feasible interval [t, Dmax], which
is denoted by Edemand, is defined as the sum of the static
energy and the dynamic energy consumed during the interval.
Equation (2) gives the energy demand for the interval, and is
rewritten as

Edemand = (Dmax − t) × ps +
∫ Dmax

t
pd(t)dt (13)

where ps is the static power consumption and pd(t) is the
dynamic power consumption of the processor.

The algorithm proceeds to identify the operating frequency
for the current task from lines 3 to 14. It starts from the
maximum operating frequency fmax = fN , examines each
frequency, and breaks the loop when the lowest frequency
flow is reached (lines 4–8) or when the desired frequency that
jointly considers the energy and time is selected (lines 9–13).
Since the lowest frequency obtained using (11) may not be the
processor-supported frequency, the lines 5–8 of the algorithm
map this frequency to the processor-supported frequency. The
algorithm calculates the energy supply in line 9, calculates the
energy demand in line 10, and compares the energy supply
and energy demand in line 11. If Esupply ≥ Edemand holds, the
current frequency is taken as the operating frequency for the
task. Otherwise, the algorithm proceeds to the next frequency
level to repeat the process.

If the processor frequency fselect is selected, the timing
constraint of the task is satisfied but the system may not have
enough energy to finish the execution of the task. The energy
needed for the task τm: {am, dm, cm} to finish the execution at
fselect is expressed as

(pd + ps) × cm

fselect

and the energy available for the task τm is given by

E(t) + Es_solar(t, am + dm)

where pd and ps are the processor dynamic power consump-
tion and static power consumption, respectively. E(t) and
Es_solar(t, am + dm) are the battery energy at the instance t
and the harvested solar energy in the duration of [t , am +dm],
respectively. If the amount of the needed energy is greater than
that of the available energy, the task cannot finish the execution
before its absolute deadline. It is then removed from the queue,
and the task variable τm is set to null, as is shown from lines
15 to 19.

The schedulability of the current task being scheduled (τm )
is guaranteed since fselect is limited in the range of [ flow,
fmax]. In fact, the algorithm aims at selecting a frequency for
the task at the head of the ready queue. It considers the impact
of scheduling the current task on remaining tasks from aspects
of both energy and time. All tasks in the ready queue are taken
into account when the energy supply and demand with respect
to the feasible interval are calculated, and it is assumed that
these tasks will execute at the same frequency fselect. This
strategy reduces the probability that the current task consumes

Algorithm 3 Fine-Tune the Selected Frequency fselect When
Overflowing and Derives the Optimal Start Time for Task τm

too much energy and time so that the remaining tasks will miss
their deadlines due to lack of energy or time. The remaining
tasks in the ready queue may not be schedulable at the fselect,
their schedulability will be verified by calling the frequency
selection algorithm when they arrive at the head of the ready
queue.

B. Fine-Tune the Selected Frequency and Derive the Start
Time for Current Task

One of the major goals of designing an energy-harvesting
system is to efficiently utilize the renewable energy. As far as
the proposed design is concerned, the solar energy produced
by the PV panel is directly fed to the microprocessor, and
the excess energy is stored in a battery. The battery capacity
is in general limited, and a battery may not be able to
store all the excess solar energy. This necessitates the fine-
tuning of the selected operating frequency to enhance energy
efficiency.

The energy of the system overflows when the difference
between the available energy and the energy demand exceeds
the battery capacity. In other words, when the excess energy
is too much such that it cannot be stored in the battery, the
overflow occurs. One effective approach to eliminate energy
overflow is to increase the operating frequency of the system,
which can both utilize excess solar energy and generate slack
time for remaining tasks.

Algorithm 3 derives the fine-tuned operating frequency
fselect (lines 4–12) and calculates the optimal start time for
the current task using 14 (line 13). It first checks whether the
current task τm is null (lines 1–3). It then checks whether the
system energy overflows. Let Ecap denote the energy capacity
of the battery in the target system. If E(t)+Es_solar(t, Dmax)−
Edemand > Ecap holds, the overflow occurs. In this case,
the algorithm increases the operating frequency by one level,
updates the energy demand Edemand using (13), and checks
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whether the energy still overflows (lines 5–11). This process
is repeated until the overflow is eliminated or the frequency
fmax = fN is reached without eliminating the overflow. In the
later case, the fmax is taken as the operating frequency for the
current task.

After fine-tuning the operating frequency, the algorithm
derives the optimal start time for the current task, which
is achieved using the LSA [12]. The LSA proposed by
Moser et al. [12] is designed to schedule real-time tasks for
energy-harvesting system under the EDF scheduling policy. It
postpones the execution of a task as late as possible under the
assumption of a constant operating frequency.

Let stm denote the optimal start time of task τm , then stm
can be derived using the LSA scheduling algorithm, and is
given by

stm = max{st∗m , st
′
m} (14)

where st∗m is given by

st∗m = am + dm − E(t) + Es_solar(t, am + dm)

pd + ps

and st
′
m can be derived using the equation

Es_solar(t, st
′
m) − Ecap = Es_solar(t, am + dm)

+ (st
′
m − am − dm)(pd + ps).

The am , dm , pd , and ps are the arrival time, relative
deadline, dynamic power consumption, and static power con-
sumption of the task, respectively. E(t) is the energy in storage
module at the time instance t , Es_solar(t, am + dm) is the
harvested energy from the instance t to the absolute deadline
(am + dm) of the task τm and Es_solar(t, st

′
m) is the harvested

energy from the instance t to the instance st
′
m . Ecap is the

battery capacity.

C. State-Aware Frequency Selection Algorithm

Algorithm 4 outlines the proposed state-aware frequency
selection algorithm by assembling the above described major
steps given in Algorithms 1–3. The system utilization thresh-
old Uth is initialized by randomly picking a value in
[Uth,L, Uth,H], where Uth,L and Uth,H are, respectively, the
lower bound and upper bound on the system utilization
threshold, which is described in Section III-A. The algorithm
maintains a ready queue Q that is sorted based on the EDF
scheduling policy, that is, the task of the earliest deadline is
kept at the head of the queue and is assigned the highest prior-
ity. If the ready queue Q is not empty, the algorithm first picks
the task at the head of the queue as the current task τm and
updates the utilization threshold Uth using Algorithm 1. It then
selects a proper operating frequency by jointly considering
the system utilization and energy state in the feasible interval
(Algorithm 2). The selected operating frequency is fine tuned
when overflow in energy occurs, and the optimal start time of
the task is derived using the LSA (Algorithm 3). If the task
τm is not null, it will execute at the scheduled start time and
frequency. The task is removed from the ready queue and the
τm is reset to null when the execution is finished.

Algorithm 4 State-Aware Frequency Selection Algorithm

The time complexity of Algorithms. 1–3 are O(1), O(M N),
and O(N), respectively, where M is the number of tasks
in the ready queue and N is the processor-supported fre-
quency levels. The overall time complexity of the proposed
state-aware frequency selection algorithm is O(M N). The
time complexity of the benchmarking algorithm presented
in [17] is O(M2 N).

The number of elementary operations of the two algo-
rithms is further investigated for the time complexity analysis.
Let Tproposed denote the number of elementary operations
of the proposed scheme, and let Thadvfs denote the num-
ber of elementary operations of the benchmarking algorithm
HA-DVFS. The Tproposed is then given by

Tproposed ≤ M(N + 1) + 5N + 17 (15)

and Thadvfs is given by

Thadvfs ≤ (M2 + 17M)N

4
+ logM

dmax
+6M + 8 (16)

where M is the length of the ready queue, N is the processor-
supported frequency levels, and dmax is the maximum relative
deadline of tasks in the ready queue.

Fig. 4 shows the log–log plot of the time complexity
for the proposed algorithm and the benchmarking algorithm
HA-DVFS. The plot is based on the number of elementary
operations of the two algorithms running on a processor with
6 frequency levels. It has been shown in the figure that the
proposed algorithm has much lower time complexity when
compared with the benchmarking scheme, which is more
suitable for dynamic scheduling.
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Fig. 4. Log–log plot of the time complexity.

The kernel part of the algorithm is the frequency selec-
tion scheme based on system utilization and energy state.
Unlike the existing work that decouples the energy and timing
constraint [17], the proposed scheme jointly accounts for
constraints arising from both the energy and time domain.
This strategy is motivated by the fact that the energy and
time constraint interleave, and a joint scheduling approach
will further improve system performance, as is demonstrated
in Section V.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

Extensive simulation experiment has been performed to
validate the proposed scheme in energy efficiency and deadline
miss rate. The proposed scheme is implemented in C++ and
run on a laptop equipped with an Intel Core i5 processor of
2.40 GHz, a 1 GB RAM, and the Ubuntu 10.04 operating sys-
tem. The proposed algorithm is compared with benchmarking
algorithms including the LSA [12] and HA-DVFS [17]. The
LSA proposed by Moser et al. postpones the execution of a
task as late as possible and the DVS technique is not employed
to scale down the operating frequency. In other words, the
LSA algorithm operates at a fixed operating frequency. The
LSA algorithm is implemented in this paper for comparison
study and it is assumed that the algorithm operates at the
maximum processor-supported frequency. Unlike the LSA
algorithm, the HA-DVFS algorithm proposed in [17] employs
the DVS technique to scale the processor to the lowest possible
frequency, and increases the operating frequency to enhance
energy efficiency when overflow occurs. For the sake of fair
comparison, the simulation settings adopted for the experiment
are similar to those adopted in benchmarking schemes.

An Intel XScale processor supporting five frequency levels
was utilized to estimate the energy consumption. The discrete
frequencies, supply voltage, TDP power, and idle power of
the processor are listed in Table I [25]. The solar energy is
selected as the renewable generation in the experiment. The
trace of harvesting power ph(t) is generated according to

ph(t) =
∣∣∣∣10 · N(t) · cos

(
t

70π

)
· cos

(
t

100π

)∣∣∣∣ (17)

where N(t) is a random variable with variance of 1 and mean
of 0 [12]. Fig. 5 shows the obtained power trace in a frame

Fig. 5. Example of the obtained solar power trace.

TABLE I

XSCALE FREQUENCIES, SUPPLY VOLTAGES, AND POWER [25]

of about 7000 time units, which is about five days long.
The average harvesting power ph of the system is derived
from this power trace.

The designed sets of real-time tasks are composed of
arbitrary number of periodic and aperiodic tasks, and each
task in a task set is generated based on the average harvesting
power. The period of a periodic task is randomly drawn from
the set {10, 20, 30, . . . , 120} under the assumption that each
value in the set has the same probability of being selected.
The relative deadline of a periodic task is assumed to equal the
period of the task. This approach is also utilized to generate the
relative deadlines of aperiodic tasks. Similarly, the release time
of an aperiodic task is randomly generated in the simulation
duration based on the uniform distribution of the probability.
The energy of a task τm , which is denoted by em , is generated
based on the uniform distribution of the probability in the
interval of [0, ph × dm], where ph is the average harvesting
power and dm is the relative deadline of the task τm . The worst
case execution time of the task is given by em/pN , where
pN is the power consumption of the processor running at the
maximum frequency fN .

A. Comparison of the Deadline Miss Rate for Fixed
Battery Capacity

The proposed task-scheduling algorithm is compared with
the HA-DVFS algorithm in deadline miss rate. The battery
capacity is assumed to be 1000 J and the initial energy stored
in the battery is assumed to be 500 J. The system utilization,
which is calculated as the sum of the utilizations of all tasks
in the task set, takes the values of 0.2, 0.4, 0.6, and 0.8. 3000
task sets are generated for each value of the system utilization.
Real-time tasks in each task set are scheduled using one of the
three scheduling schemes and the simulation is run for 12 h.
The ratio of the number of tasks that miss deadlines to the total
number of tasks in a task set is defined to be the deadline miss
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TABLE II

COMPARE THE PROPOSED ALGORITHM WITH HA-DVFS [17] WITH

RESPECT TO DEADLINE MISS RATE

rate of the task set. The deadline miss rate given in Table II
is the average value over the 3000 task sets.

Table II shows that the deadline miss rate of the proposed
scheme is close to that of the HA-DVFS. Note that the time
complexity of the proposed scheme is O(M N) while the
time complexity of the HA-DVFS is O(M2 N), where M is
the number of tasks in the task set and N is the processor-
supported frequency levels. It also has been shown in the
table that when the system utilization is low (e.g., 0.2), the
deadline miss rate of the proposed scheme approaches 0 while
the deadline miss rate of the HA-DVSF converges to a small
constant value. This is because the HA-DVSF decouples the
energy and time by always scaling the processor speed down
to the lowest possible frequency even if the system utilization
is small and large amount of energy is available, which may
lead to task deadline violation.

B. Comparison of the Deadline Miss Rate for Varying
Battery Capacity

The proposed scheme has been compared with the LSA [12]
and HA-DVFS [17] algorithm with respect to deadline miss
rate when the battery capacity varies. 3000 sets of real-time
tasks are generated and simulation is performed for each task
set for 12 h. The obtained deadline miss rate is averaged over
the 3000 sets of tasks. Let U denote the system utilization.

Fig. 6 shows the comparison of the proposed scheme, LSA,
and HA-DVFS algorithm when the battery capacity is small
(Ecap < 1000 J). Since the LSA algorithm runs at the highest
processor speed and does not utilize DVS technique to save
energy, thus, it depletes the battery energy fast and incurs much
higher deadline miss rate when compared with the proposed
scheme and the HA-DVFS algorithm. The HA-DVFS is an
aggressive scheme that always scales down the processor
frequency to the lowest possible level while the proposed
algorithm that jointly considers system utilization and energy
state is more conservative. When the battery capacity is small
the energy constraint becomes more critical, which is favorable
for the HA-DVFS algorithm. As is shown in Fig. 6, the
HA-DVFS outperforms the proposed algorithm for different
values of utilization when the battery capacity is less than
30 J .

Fig. 7 shows the comparison of the proposed scheme, LSA,
and HA-DVFS algorithm when the battery capacity is large
(Ecap > 1000 J). When the battery capacity increases, the

Fig. 6. (a)–(d) Compare the proposed scheme with LSA [12] and
HA-DVFS [17] in deadline miss rate when battery capacity Ecap < 1000 J.

Fig. 7. (a)–(d) Compare the proposed scheme with LSA [12] and
HA-DVFS [17] in deadline miss rate when battery capacity Ecap > 1000 J.

amount of energy in a full battery is enough to finish task
execution. In this scenario, the energy constraint becomes less
critical when compared with the timing constraint. As a result,
the HA-DVFS algorithm that decouples the energy and timing
constraint has higher deadline miss rate as compared with the
proposed scheme that jointly considers the energy and time.
For the case of U = 0.6, the proposed scheme outperforms
the HA-DVFS in deadline miss rate when battery capacity is
greater than 15000 J . For the case of U = 0.8, the deadline
miss rate of the HA-DVFS exceeds that of the proposed
scheduling algorithm by about 4.1% and 11.5% when battery
capacity is greater than 5000 and 30 000 J , respectively, as is
shown in Fig. 7(d).

With the increase in battery capacity, the deadline miss
rate of the LSA algorithm decreases since there is enough
energy to finish task execution. As is shown in Fig. 7(d), the
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Fig. 8. (a)–(d) Amount of the current battery energy from 7:00 A.M. to
1:00 A.M. of the next day for system utilization U = 0.2, 0,4, 0.6, and 0.8.

LSA algorithm outperforms the HA-DVFS and the proposed
scheme when the battery capacity approaches 30 000 and
40 000 J , respectively, which is the typical capacity of two
to three pieces of zinc–carbon AA battery.

C. Comparison of Current Energy in the Battery

The battery capacity is crucial to system performance of
an energy-harvesting system. For given battery capacity, it is
desirable that the wasted energy due to overflow is minimal
and the current amount of energy in the battery is large enough
to maintain the normal operation of the system even in the
worst case of energy-harvesting condition. Thus the current
amount of energy in the battery is an important indicator of
system performance.

It is assumed that the battery capacity is 1000 J and the
initial energy stored in the battery is 500 J. The system
utilization takes the values of U = 0.2, 0,4, 0.6, and 0.8,
and simulation is performed for each value of the utilization.
The current amount of energy in the battery is averaged over
3000 generated sets of real-time tasks, and the simulation for
each task sets is run from 7:00 A.M. to 1:00 A.M. of the next
day, which lasts for 18 h.

Fig. 8 shows that the amount of current energy in the battery
varies with different scheduling algorithms. Of the three algo-
rithms, the LSA has the smallest amount of current energy as it
operates at the highest processor-supported frequency and does
not employs DVS to save energy. Both the proposed scheme
and the HA-DVFS store the excess solar energy in the day
and save energy for perpetual operation in the night.

For the case of U = 0.2, the system workload is so low
that the timing constraints of real-time tasks can be satisfied
even at the lowest frequency level. Since the system does not
switch to the overloaded state and the harvesting rate is low
in this scenario, the proposed scheme is essentially reduced

Fig. 9. (a)–(d) Snapshot of the current battery energy in areas A, B, and C
for utilization U = 0.6.

to the HA-DVFS algorithm, thus, the current battery energy
is close under the two scheduling policies. For the case of
U = 0.4, the HA-DVFS algorithm that scales down the
processor to the lowest possible frequency tries to minimize
the amount of battery energy to be used, however, the proposed
scheme that jointly considers the energy and time may allocate
a portion of battery energy to mitigate the overloaded state.
As a result, the battery energy of the proposed scheme is less
than that of the HA-DVFS before the system adapts to the
harvesting power rate, as is shown in Fig. 8(b). For the case of
U = 0.8, the system workload is heavy and both algorithms
run at a relatively high processor speed without waste of the
harvested energy, thus, the curve for the current battery energy
is close.

Fig. 8(c) (U = 0.6) shows that when compared with
the HA-DVFS, the proposed algorithm is more conservative
when the harvesting rate is low (0 ∼ 104 s), builds up
the battery energy earlier when the harvesting rate increases
(104 ∼ 2 × 104 s), maintains a near full battery energy for
a longer period of time when the harvesting rate is high
(2 × 104 ∼4.5 × 104 s), and depletes the battery energy later
when the harvesting rate decreases (4.5 × 104 ∼ 6 × 104 s).
The proposed algorithm wastes less energy via its adaptive
characteristics when the harvesting rate is high. As a result, it
finishes the execution of more workload when the harvesting
power is high, which leaves more space to scale down the
processor speed when the harvesting power is low. This
property of the proposed algorithm contributes strikingly to
the lower deadline miss rate of the algorithm.

Fig. 9 gives snapshots of the Fig. 8(c). The areas A, B,
and C for the curve U = 0.6 are enlarged and details are
shown in the figure. It has been shown in the figure that when
the battery is near a full charge, both the proposed scheme
and the HA-DVFS attempt to enhance energy efficiency by
increasing processor speed. However, the HA-DVFS exceeds
the battery capacity of Ecap = 1000 J more frequently than
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TABLE III

COMPARE THE PROPOSED ALGORITHM AND THE HA-DVFS

ALGORITHM [17] IN SCHEDULING OVERHEADS

the proposed scheme does, which indicates that the HA-DVFS
incurs more energy loss. This is also due to the different design
principle of the two schemes. The HA-DVFS decouples the
energy and time constraints, and allocates the available energy
to the next single task to be executed. When excess solar
energy is produced, a single task cannot consume all the excess
energy. On the contrary, the proposed scheme jointly considers
system utilization and energy state, and allocates the excess
solar energy to multiple tasks in the feasible interval, which
effectively reduces energy waste.

D. Scheduling Overheads Analysis

The runtime performance of the proposed scheme and the
benchmarking algorithm HA-DVFS is evaluated using the
SimpleScalar, an open source computer architecture simu-
lator that is capable of providing cycle level estimation of
C-based applications [26]. The scheduling overheads of the
two algorithms are examined from the perspectives of the
queue length, the number of elementary operations, and the
number of SimpleScalar simulation-based instructions.

Five types of real-time task sets are generated, each of which
contains 10, 20, 40, 80, and 100 tasks, respectively. 1000 task
set instances are generated for each type, the scheduling of
real-time tasks in each instance is simulated for 3600 s, and
all the reported results are averaged over the 1000 task set
instances.

Let M denote the average queue length, let T denote the
average number of elementary operations for scheduling a sin-
gle task, and let I denote the average number of SimpleScalar
simulation-based instructions for scheduling tasks in a task set.
Note that the M and I are generated using SimpleScalar tool
set while the T is calculated based on the generated M using
(15) and (16). In fact, the T derived using the two equations
can be deemed as the theoretically computed scheduling over-
heads while the I can be considered the practical scheduling
overheads.

Table III compares the proposed scheme and the bench-
marking algorithm HA-DVFS in scheduling overheads. It
has been shown in the table that for task sets of varying
sizes, the average queue length M of the two algorithms are
close; however, the HA-DVFS has more computed scheduling
overheads T and more practical scheduling overheads I when
compared with the proposed scheme. For a task set of 100
real-time tasks, the average queue length of the two schemes
is about 95 while the computed and the practical scheduling
overheads of the HA-DVFS are about 24 and 7 times those of
the proposed scheme.

It also has been shown in the table that the computed
scheduling overheads T of the two algorithms conform well
with the practical scheduling overheads I . when the task
set size increases from 10 to 100, the computed T and
the practical I of the proposed algorithm increase by about
6.6 and 5.4 times, respectively, and the computed T and
the practical I of the HA-DVFS increase by about 37.9 and
32.3 times, respectively. This result is consistent with the time
complexity of the proposed and the HA-DVFS algorithms,
which is O(M N) and O(M2 N), respectively, where M is
the queue length and N is the processor-supported frequency
levels.

VI. CONCLUSION

This paper proposes a dynamic frequency selection scheme
for energy-harvesting real-time systems. The proposed scheme
is featured by system state characterization from perspectives
of the system utilization and harvested energy with respect to
a certain interval. It maintains a queue for ready tasks. When
a new task arrives, it updates the ready task queue by inserting
the new task into the queue according to the EDF scheduling
policy, performs the state-aware frequency selection procedure
for tasks in the ready queue, and executes the task at the head
of the queue at the derived frequency. A task is removed from
the ready queue when its execution is finished. Simulation
results demonstrate the effectiveness of the proposed scheme.
Compared with the state-of-the-art scheme HA-DVFS, the
proposed scheme achieves comparable deadline miss rate for
varying values of system utilization at one order of magnitude
lower time complexity. When the battery capacity is greater
than 30 000 J, the deadline miss rate of the proposed scheme is
about 11.5% lower than that of the HA-DVFS. The results also
demonstrate that the proposed scheme achieves higher energy
efficiency and is more resilient to the intermittent nature of
solar energy.

When the battery is near a full charge or overflow occurs, the
HA-DVFS exceeds the battery capacity more frequently than
the proposed scheme does, indicating more energy waste. The
future work seeks to investigate the dynamic task allocation
and frequency selection scheme for multiprocessor systems
based on the scheduling scheme proposed in this paper.

REFERENCES

[1] K. Lampka, K. Huang, and J. Chen, “Dynamic counters and the efficient
and effective online power management of embedded real-time systems,”
in Proc. Int. Conf. Hardw. Softw. Codesign Syst. Synthesis, 2011,
pp. 267–276.

[2] T. Esram and P. Chapman, “Comparison of photovoltaic array maximum
power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22,
no. 2, pp. 439–449, Jun. 2007.

[3] K. Kobayashi, I. Takano, and Y. Sawada, “A study on a two stage
maximum power point tracking control of a photovoltaic system under
partially shaded insolation conditions,” in Proc. IEEE Power Eng. Soc.
General Meeting, Jul. 2003.

[4] K. Irisawa, T. Saito, I. Takano, and Y. Sawada, “Maximum power point
tracking control of photovoltaic generation system under non-uniform
insolation by means of monitoring cells,” in Proc. 28th IEEE Conf. Rec.
Photovolt. Specialists Conf., Sep. 2000, pp. 1707–1710.

[5] M. Bodur and M. Ermis, “Maximum power point tracking for low
power photovoltaic solar panels,” in Proc. 7th Medit. Electrotech. Conf.,
Apr. 1994, pp. 758–761.



1692 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 8, AUGUST 2014

[6] E. Lorenz, J. Hurka, D. Heinemann, and H. Beyer, “Irradiance forecast-
ing for the power prediction of grid-connected photovoltaic systems,”
IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 2, no. 3,
pp. 2–10, Mar. 2009.

[7] A. Kansal, D. Potter, and M. Srivastava, “Performance aware tasking for
environmentally powered sensor networks,” in Proc. Int. Conf. Meas.
Model. Comput. Syst., 2004, pp. 223–234.

[8] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy
management policies for energy harvesting sensor nodes,” IEEE Trans.
Wireless Commun., vol. 9, no. 4, pp. 1326–1336, Apr. 2010.

[9] Y. Abdeddaim and D. Masson, “Real-time scheduling of energy har-
vesting embedded systems with timed automata,” in Proc. Int. Conf.
Embedded RTCSA, 2012, pp. 31–40.

[10] X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally powered
sensor networks,” in Proc. Int. Symp. Inf. Process. Sensor Netw., 2005,
pp. 463–468.

[11] J. Hsu, A. Kansal, J. Friedman, V. Raghunathan, and M. Srivastava,
“Energy harvesting support for sensor networks,” in Proc. Int. Symp.
Inf. Process. Sensor Netw., 2005.

[12] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling
for energy harvesting sensor nodes,” Real-Time Syst. J., vol. 37, no. 3,
pp. 233–260, Dec. 2007.

[13] C. Moser, J. Chen, and L. Thiele, “An energy management framework
for energy harvesting embedded systems,” ACM J. Emerging Technol.
Comput. Syst., vol. 6, no. 2, pp. 1–7, Jun. 2010.

[14] C. Moser, L. Thiele, D. Brunelli, and L. Benini, “Adaptive power man-
agement for environmentally powered systems,” IEEE Trans. Comput.,
vol. 59, no. 4, pp. 478–491, Apr. 2010.

[15] H. Ghor, M. Chetto, and R. Chehade, “A real-time scheduling framework
for embedded systems with environmental energy harvesting,” J. Com-
put. Electr. Eng., vol. 37, no. 4, pp. 498–510, Jul. 2011.

[16] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling
with regenerative energy,” in Proc. 18th Euromicro Conf. Real-Time
Syst., 2006, pp. 1–10.

[17] S. Liu, Q. Qiu, and Q. Wu, “Harvesting-aware power management for
real-time systems with renewable energy,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1473–1486, Aug. 2011.

[18] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A
System Perspective. Reading, MA, USA: Addison-Wesley, 1992.

[19] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” in Proc. 41st DAC, Jul. 2004,
pp. 275–280.

[20] L. Martín, L. Zarzalejo, J. Polo, A. Navarro, R. Marchante, and
M. Cony, “Prediction of global solar irradiance based on time series
analysis: Application to solar thermal power plants energy production
planning,” Solar Energy Elsevier, vol. 84, no. 10, pp. 1772–1781,
Oct. 2010.

[21] T. Khatib, A. Mohamed, and K. Sopian, “A review of solar energy
modeling techniques,” Renew. Sustain. Energy Rev. Elsevier, vol. 16,
no. 5, pp. 2864–2869, 2012.

[22] D. Fadare, “Modelling of solar energy potential in Nigeria using an
artificial neural network model,” Appl. Energy Elsevier, vol. 86, no. 9,
pp. 1410–1422, 2009.

[23] A. Mellit and A. Pavan, “A 24-h forecast of solar irradiance using
artificial neural network: Application for performance prediction of a
grid-connected PV plant at Trieste, Italy,” Solar Energy Elsevier, vol. 84,
no. 5, pp. 807–821, May 2010.

[24] A. Palit and D. Popovic, Computational Intelligence in Time Series
Forecasting. New York, NY, USA: Springer-Verlag, 2005.

[25] Intel Corp. (2004). Intel XScale Processor Family Electrical,
Mechanical, and Thermal Specification Datasheet, Santa Clara, CA,
USA [Online]. Available: http://developer.intel.com

[26] (2010). SimpleScalar Computer Architecture Simulator
[Online]. Available: http://www.simplescalar.com

Jing Chen is currently pursuing the master’s degree
with the Department of Computer Science and Tech-
nology, East China Normal University, Shanghai,
China.

Her current research interests include the manage-
ment of energy and reliability for real-time embed-
ded systems.

Tongquan Wei (M’11) received the B.S. degree in
electronics engineering from the Dalian University
of Technology, Dalian, China, in 1995, the M.S.
degree in computer engineering from the University
of Missouri-Rolla (now Missouri University of Sci-
ence and Technology), Rolla, MO, USA, and the
Ph.D. degree in electrical engineering from Michi-
gan Technological University, Houghton, MI, USA,
in 2003 and 2009, respectively.

He has been with East China Normal University,
Shanghai, China, since 2009, where he is currently

an Associate Professor with the Department of Computer Science and Tech-
nology. His current research interests include real-time systems, low power,
fault tolerance, and hardware-software co-design.

Jianlin Liang received the M.S. degree in electrical
engineering from the University of Southern Cali-
fornia, Los Angeles, CA, USA, in 2002.

He was with Broadcom Corporation, San Diego,
CA, USA, from 2007 to 2011, on Bluetooth related
digital ASIC backend design. His current research
interests include digital ASIC design and embedded
systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


