
Efficient Resource Constrained
Scheduling Using Parallel Two-Phase

Branch-and-Bound Heuristics
Mingsong Chen,Member, IEEE, Yongxiang Bao, Xin Fu,Member, IEEE,

Geguang Pu, and Tongquan Wei,Member, IEEE

Abstract—Branch-and-bound (B&B) approaches are widely investigated in resource constrained scheduling (RCS). However, due to

the lack of approaches that can generate a tight schedule at the beginning of the search, B&B approaches usually start with a large

initial search space, which makes the following search of an optimal schedule time-consuming. To address this problem, this paper

proposes a parallel two-phase B&B approach that can drastically reduce the overall RCS time. This paper makes three major

contributions: i) it proposes three partial-search heuristics that can quickly find a tight schedule to compact the initial search space; ii) it

presents a two-phase search framework that supports the efficient parallel search of an optimal schedule; iii) it investigates various

bound sharing and speculation techniques among collaborative tasks to further improve the parallel search performance at different

search phases. The experimental results based on well-established benchmarks demonstrate the efficacy of our proposed approach.

Index Terms—Resource constrained scheduling, branch-and-bound, parallel two-phase pruning, high-level synthesis

Ç

1 INTRODUCTION

INCREASING complexity coupled with time-to-market con-
straints enlarge the gap between Electronic System Level

(ESL) designs and Register-Transfer Level (RTL) implementa-
tions. To enable rapid generation of hardware designs while
considering various requirements (e.g., performance, area
and power), High-Level Synthesis (HLS) [1], [2] is proposed
to automatically translate ESL designs to low-level RTL
implementations. HLS has been widely adopted in many
industry design fields, especially in the Field-Programmable
Gate Array (FPGA) domain [3].

This paper focuses onHLS scheduling under resource con-
straints, called Resource Constrained Scheduling (RCS). For
HLS, ESL specifications are converted into Data Flow Graphs
(DFGs), which are used as an intermediate representation for
the design exploration and performance estimation purpose.
Scheduling assigns each operation of a DFGwith a control step
(c-step) which indicates the start execution time of the opera-
tion. Since RCS needs to explore a huge number of possible
designs and make the trade-off among various resource con-
straints, it is a major challenge in HLS. Given a DFG and a
pre-defined set of resources (e.g., number of function units,

power, area) with specified overheads, RCS tries to find a
schedule of operationswith least overall c-steps.

Essentially, RCS is an NP-Complete problem with con-
straints of computation precedence and resource limits [4].
To avoid forcefully enumerating all possible schedules,
many approaches [5], [6], [7] are proposed to reduce the
searching time of optimal schedules. The basic idea is to
remove as many infeasible or inferior schedules during the
HLS search as possible. As a kind of promising RCS search
paradigms, the B&B RCS methods [5] are widely investi-
gated to prune the search space (i.e., the set of all combina-
tions of operation assignments). During the search, B&B
approaches update the upper-bound length estimation of
the optimal schedule searched so far dynamically when
encountering new better schedules. Such upper-bound
length information can be used to determine the inferior
schedules which are worse than the up-to-date best schedul-
ing result. Although B&B approaches are efficient in prun-
ing these inferior schedules, one major bottleneck is that
they cannot guarantee a tight initial feasible schedule to
restrict the search range of each operation, which can easily
result in a huge initial search space. Furthermore, B&B
approaches explore the state space in a recursive manner. If
the remaining operations cannot be used to derive a better
schedule, the loose dispatch range of operations and deep
recursive search will result in the stuck-at-local-search, which
is the main cause of the long search time.

Since more and more computers are equipped with multi-
core CPUs, to avoid the stuck-at-local-search problem and
improve the RCS performance, we propose a novel parallel
B&B approach which can quickly narrow down the initial
search space as well as search for optimal schedules in a col-
laborative manner. To fully utilize the capability of parallel

� M. Chen, Y. Bao, G. Pu, and T. Wei are with the Shanghai Key Lab of
Trustworthy Computing, East China Normal University, Shanghai
200062, China.
E-mail: {mschen, yxbao, ggpu}@sei.ecnu.edu.cn, tqwei@cs.ecnu.edu.cn.

� X. Fu is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77204. E-mail: xfu8@central.uh.edu.

Manuscript received 11 Mar. 2016; revised 7 Sept. 2016; accepted 21 Oct.
2016. Date of publication 27 Oct. 2016; date of current version 12 Apr. 2017.
Recommended for acceptance by M. Huebner.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2621768

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017 1299

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

search to quickly achieve an optimal schedule, our approach
tries to address following three issues:

1) How to quickly achieve a better initial schedule than
traditional B&B approaches with a small overhead?
To achieve a tight initial feasible schedule, we intro-
duce three efficient coarse-granularity partial-search
heuristics that can easily escape from the stuck-at-
local-search from different perspectives, thus reduc-
ing the search time for a shorter initial schedule.

2) How to organize parallel search tasks to enable effi-
cient exploration of optimal schedules? Based on the
proposed partial-search heuristics, we present a
novel parallel two-phase B&B approach. By group-
ing search tasks with different partial-search heuris-
tics and different operation enumeration order, the
chance of early detection of better or optimal sched-
ules increases. Therefore, our approach can reduce
the overall RCS time.

3) How to achieve potential synergy among parallel
tasks for the efficient search of optimal schedules?
This paper proposes a collaborative framework that
supports both the bound sharing and speculation
mechanisms among parallel search tasks, which can
further promote the pruning capability of parallel
B&B approaches.

Although [22] proposes an efficient parallel RCS framework
with the similar search task organization, it focuses on the uti-
lization of parallel structure-aware pruning rather than the
initial upper-bound optimization and bound speculation-
based collaborative search. To further reduce the RCS time,
our framework also incorporates the structure-aware pruning
as an orthogonal approach to our proposedmethods.

This paper is organized as follows. Section 2 introduces
the related work on RCS. Section 3 presents the related
background of B&B style RCS and motivates the needs of
our parallel two-phase approach. Besides introducing our
partial-search techniques which aim at finding tight initial
schedules, Section 4 proposes our parallel two-phase B&B
RCS framework in detail. Section 5 compares our approach
with both the state-of-the-art sequential and parallel B&B
approaches. Finally, Section 6 concludes the paper.

2 RELATED WORK

Unlike non-optimal HLS scheduling methods (e.g., force
directed scheduling [9]), this paper focuses on how to
quickly obtain optimal HLS schedules. As a promising way
to deal with HLS scheduling, execution interval analysis
approaches perform the lower- and upper-bound estima-
tion before real scheduling, which can reduce the RCS
searching time. For example, Timmer and Jess [19] pre-
sented a unified approach for lower-bound functional area
and cycle budget estimations based on relaxing precedence
constraints in behavioral design descriptions. By calculating
the minimal overlap among different execution intervals of
operations, Sharma and Jain tried to estimate architecture
resources and performance [10]. Ohm et al. [8] presented a
comprehensive technique for lower-bound estimation. Shen
and Jong [11] proposed a stepwise refinement algorithm for
resource estimation based on execution interval analysis.
Their approach can handle loop folding and conditional

branches at the same time. Therefore it can quickly produce
a tight bound. Although execution interval analysis can
restrict the search within a small range to save the search
time, most of existing methods are developed to find near-
optimal solutions rather than optimal ones.

Branch-and-bound approaches are effective in avoiding
unfruitful search, thus it is widely investigated in RCS.
Narasimhan and Ramanujam [5] proposed an efficient B&B
approach called BULB, which can prune fruitless or inferior
schedules based on the estimation of the lower and upper
bounds of optimal schedules. Hansen and Singh [16] gave
an efficient B&B approach that can reduce the scheduling
time considering various resource constraints. To enhance
the pruning capability of B&B approaches, Chen et al. [17]
proposed an efficient pruning approach based on the struc-
tural information of schedules. Although the above B&B
approaches are promising in finding optimal results
quickly, so far most B&B methods search for optimal RCS
solutions in a sequential way using a single core.

Parallelism is an important topic in RCS. Various
approaches are proposed to save the overall scheduling time.
For example, to reduce the Integer Linear Programming (ILP)-
based RCS models, various parallel branch-and-cut heuristics
[21] have been investigated. Although such methods allow
designers to describe RCS problems in a natural way, the
number of variables in ILPmodels increases very fast with the
size of graph-based models. Consequently, solving complex
RCS problems using ILP models may need a prohibitively
long time. As an alternative, Chen et al. [18] described a
bound-oriented parallel B&B approach to improve the RCS
time in HLS. By combining both bound speculation and
search space partitioning heuristics among sub-search tasks,
their approach can drastically reduce the overall search time
of optimal schedules. In [22], Chen et al. proposed a parallel
structure-aware pruning technique that can drastically reduce
the overall RCS time by sharing level bound information
among collaborative search tasks. Nevertheless, these B&B
approaches do not consider how to achieve a tight feasible
schedule at the beginning of the RCS to reduce the initial
search space. Furthermore, they only considered the upper-
bound speculation without studying the effect of the lower-
bound update during the parallel searching.

Although B&B approaches are promising in pruning
search space, most of them adopt the heuristics such as list
scheduling [4] to achieve a feasible schedule first, which
cannot always guarantee a tight initial search space. There-
fore, it can easily cause a prohibitively long search time. To
the best of our knowledge, our approach proposed in this
paper is the first attempt to utilize the parallel tasks to con-
duct both the partial-search and bound-based search collab-
oration to further reduce the overall RCS time.

3 PRELIMINARY KNOWLEDGE

This section presents the basic knowledge for the resource
constrained scheduling in HLS, including the graph-based
notations and a classic B&B RCS algorithm named BULB.

3.1 Notations for the RCS Problem

HLS scheduling generally employs DFGs to describe its
behavior. A DFG is a Directed Acyclic Graph (DAG)
G ¼ ðV;EÞ, where V is a set of vertices (nodes) designating

1300 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

different functional operations, and E is a set of directed
edges describing operation dependencies. For any two
nodes vi; vj 2 V , hvi; vji 2 E indicates that the operation of
vi must be complete before the start of the operation of vj.
As an example shown in Fig. 1, the DFG consists of five
nodes and five directed edges. In an HLS DFG, each vi is
associated with an operation opi, where typeðopiÞ indicates
the functional unit type occupied by opi and delayðopiÞ
denotes the time delay of opi. Operations without any pred-
ecessors are input operations, and operations without any
successors are output operations.

Various graph notations are used to facilitate the HLS
scheduling analysis. In this paper, we use G0 ¼ ðV 0; E0Þ to
represent a sub-graph of G ¼ ðV;EÞ where V 0 � V and
E0 � E. The sub-graph including the nodes vi and all its
direct and indirect predecessors is denoted by GpreðviÞ. The
sub-graph with the node vi and all its connected successors
is denoted as GðviÞ. A path is a sequence of nodes that starts
from an input operation and ends with an output operation.
The size of a path is the number of nodes along the path. We
use PlðGÞ to denote the size of a path in G with maximum
nodes. The length of a path is the sum of operation delays of
the nodes along the path. The path with the longest length
is called critical path. We use CPwðGÞ to denote the length of
a critical path of G.

In a DFG, each node v is associated with level informa-
tion, which indicates the largest size of all sub-paths that
start from input nodes to v, i.e., LevelðvÞ ¼ PlðGpreðvÞÞ. Dur-
ing RCS, the dispatching order of operation opi is deter-
mined by the value of CPwðGðviÞÞ in a non-ascending
manner. As an example shown in Fig. 1, r ¼<v1; v2; v4;
v3; v5> can be a candidate of scheduling orders, since
CPwðGðv1ÞÞ ¼ 5, CPwðGðv2ÞÞ ¼ 5, CPwðGðv3ÞÞ ¼ 4, CPwðG
ðv4ÞÞ ¼ 4 and CPwðGðv5ÞÞ ¼ 2. For each node v, LsðvÞ and
LeðvÞ denote the indices of the first and last dispatched
operations within the same level of v, respectively. Assum-
ing that r is the dispatching order of operations in Fig. 1, we
can get Lsðv3Þ ¼ Lsðv4Þ ¼ 4 and Leðv3Þ ¼ Leðv4Þ ¼ 3, since v4
is the first dispatched operation and v3 is the last dispatched
operation in the level 2.

In HLS, the c-step is the basic time unit. An operation will
occupy a specific number of continuous c-steps for execu-
tion on its corresponding function unit during the schedul-
ing. The start time of an operation is regarded as the first c-
step of its execution. To restrict the start time of operations,
the B&B search assigns each operation with an interval
½ASAP ðopiÞ; ALAP ðopiÞ�, where ASAP (As-Soon-As-Possible)

and ALAP (As-Late-As-Possible) indicate the earliest and lat-
est dispatching time for operations, respectively. For exam-
ple, in Fig. 1 the start c-step of op3 should be within the
interval ½2; 5�. Since RCS search space can be represented by
the Cartesian product of all the operation intervals, to
achieve a better RCS performance, it is required that the
intervals of operations need to be as tight as possible. The
following definition presents two widely used approaches
to calculate the initial ASAP and ALAP values.

Definition 3.1. Let G be a DFG for RCS, and opi (i 2 ½1; N�) be
the operation of node vi 2 V . ASAPGðopiÞ denotes the earliest
time when the operation opi can be dispatched, where

ASAPGðopiÞ ¼ CPwðGpreðviÞÞ þ 1� delayðopiÞ:
ALAPGðopiÞ indicates the latest time when the operation opi
can be dispatched. Let leðSÞ be the length of a feasible schedule
S. It can be calculated using the formula

ALAPGðopi; leðSÞÞ ¼ leðSÞ � CPwðGðviÞÞ:
Note that leðSÞ has to be determined before calculating

the ALAPs of operations. As an efficient method, list sched-
uling [5] can achieve such a feasible schedule quickly. How-
ever, so far there is no approach that can guarantee a tight
initial schedule before RCS.

According to Definition 3.2, a schedule is an assignment
function S which dispatches each operation opi at c-step
SðopiÞ 2 Zþ. Here, the condition (1) indicates the prece-
dence relation between operations, and condition (2) asserts
that at any time the number of specific resource required by
operations should be no more than available ones. Let S be
a feasible schedule. Its length leðSÞ is the largest finished
time of all the operations, i.e., leðSÞ ¼ maxfSðopiÞ þ delay
ðopiÞ j opi 2 V g. A schedule is optimal if it is the shortest one
among all the explored feasible schedules so far. The global
optimal schedule is the optimal schedule when all of the state
space has been explored. During the RCS search, we use the
upper-bound and lower-bound to estimate the maximum pos-
sible and minimum possible lengths of the global optimal
schedule, respectively. Generally, leðSÞ can be used as an
upper-bound of the global optimal schedule. Based on the
method proposed in [12], the lower-bound can be calculated
assuming that there are unlimited resources.

Definition 3.2. Let G ¼ ðV;EÞ be a DFG, and OP be the set of
operations corresponding to V , where jV j ¼ jOP j ¼ N .
Assume that the target implementation supplies M types of
functions, S ¼ fp1; . . . ;pMg, and there are numðpiÞ units of
pi (1 � i � M). A function S : OP ! Zþ is a feasible sched-
ule of G, iff all the following conditions satisfy:

(1) If hopi; opji 2 E, then SðopiÞ þ delayðopiÞ � SðopjÞ
holds.

(2) For any time t and any operation of type pj, jfopi j
typeðopiÞ ¼ pj ^ ð½SðopiÞ; SðopiÞ þ delayðopiÞ�

T

½t; t�Þ 6¼ ;gj � numðpjÞ.
Let the pair ðopi; SðopiÞÞ denote the scheduling informa-

tion for operation opi and its dispatching time. Assume that
there are only one adder and one multiplier for the imple-
mentation in the example shown in Fig. 1. The binary rela-
tion fðop1; 1Þ, ðop2; 2Þ, ðop3; 3Þ, ðop4; 5Þ, ðop5; 7Þg represents a

Fig. 1. An HLS DFG example.

CHEN ET AL.: EFFICIENT RESOURCE CONSTRAINED SCHEDULING USING PARALLEL TWO-PHASE BRANCH-AND-BOUND HEURISTICS 1301

feasible schedule with a length of 8 for the DFG. The binary
relation fðop1; 2Þ, ðop2; 1Þ, ðop3; 4Þ, ðop4; 2Þ, ðop5; 6Þg indicates
a global optimal schedule with a length of 7.

3.2 BULB Approach

Based on the given ½ASAP;ALAP � intervals of operations,
enumerating all the feasible schedules in RCS is extremely
time-consuming. To reduce the fruitless search efforts, the
BULB approach [5] was proposed to prune inferior
schedules in a branch-and-bound manner. Besides
½ASAP;ALAP � intervals which restrict the search range of
operations, B&B approaches [5], [16] use two other impor-
tant data structures to prune inferior schedules: i) Sbsf

which keeps the optimal schedule searched so far, and ii) S
which is the current enumerating schedule with unsched-
uled operations. Based on the estimation of the upper- and
lower-bounds of Sbsf and S, B&B approaches can avoid the
unfruitful search during the RCS exploration.

Fig. 2 presents a typical scenario which illustrates how
BULB makes the pruning on the example shown in Fig. 1. In
this example, we use v to specify the upper-bound of Sbsf

(i.e., UpperBound). Initially, v is equal to the length of a fea-
sible schedule determined by the list scheduling approach.
Then v decreases dynamically when a shorter feasible
schedule is found during the search of global optimal sched-
ules. We use � (i.e., LowerBound) to indicate the lower-
bound length of Sbsf . According to [12], � can be calculated
assuming that there are unlimited resources. As shown in
the right part, the current schedule S has only three opera-
tions (in solid ovals) dispatched. It also associates with two
bound estimations, i.e., lower and upper, which denote the
lower- and upper-bound of S respectively based on the dis-
patched operations of S. Assuming that there exist unlim-
ited resources, we can get lower ¼ 7. In Fig. 2, the dotted
ovals indicate the virtual dispatching of the remaining
unscheduled operations, which can be used to infer the
value of upper (i.e., 9). In this example, we can find that
lower is equal to v. Therefore, the scheduling for the unex-
plored operations of S can be terminated, since there is no
chance that S can be shorter than Sbsf . Consequently, the
operation enumeration based on S is useless. During the
RCS search, if upper is smaller than v, it means that a sched-
ule better than Sbsf has been found. Then, Sbsf will be
replaced by the new schedule for the following pruning. If
v equals �, it indicates that Sbsf is a global optimal schedule
and the search will be terminated.

Algorithm 1 presents the details of the BULB approach. In
this algorithm, Sbsf as well as v are initialized with a feasible
schedule obtained using the list scheduling approach. Before
an operation can be dispatched, both the precedence and
resource constraints of the operation should be satisfied. We
use the procedure PrecedenceðopiÞ to check whether all the
precedents of operation opi are complete and use the proce-
dure ResAvailbleðopi; stepÞ to check whether the resources
required by opi are enough at a given c-step. Note that the
BULB approach can be extended to solve RCS problems
under various kinds of non-functional constraints (e.g., area,
energy, power) [16]. For example, if we want to incorporate
power constraints in Fig. 1, we only need to put a checker in
the procedure ResAvailableðopi; stepÞ to detect whether the
dispatching of opi at c-step step violates the power budget.

Algorithm 1. BULB Algorithm

Input: i) An HLS DFGDwith resource constraints;
ii) Ordered operations set OP ¼ fop1; . . . ; opNg;
iii) Sbsf , optimal schedule searched so far ofDwith

lengthv;
iv) S, which stores the current incomplete schedule.

Output: A global optimal schedule and its length forD
1 BULB(D, N , i, S, Sbsf , v) begin
2 if i � N then
3 for step ¼ ASAP ðopiÞ to ALAP ðopiÞ do
4 if Precedence(opi) ^ ResAvailable(opi; step) then
5 lower ¼ leðLBoundðS; iÞÞ;
6 upper ¼ leðUBoundðS; iÞÞ;
7 if upper < v then
8 v ¼ upper;
9 Sbsf ¼ UBoundðS; iÞ;
10 if v ¼¼ � then
11 Return (Sbsf , v);
12 end
13 UpdateALAP ðÞ;
14 end
15 if lower < v then
16 SðopiÞ = step;
17 ResOccupy(step,type(opi),delay(opi));
18 BULBðD;N; iþ 1; S; Sbsf ;vÞ;
19 ResRestore(step,type(opi),delay(opi));
20 end
21 end
22 end
23 end
24 Return (Sbsf , v).
25 end

In Algorithm 1, if both operation precedence and resource
availability constraints hold, lines 5 and 6 will schedule
undetermined operations in two different ways: i)
LBoundðS; iÞ dispatches the undetermined operations with-
out considering the resource constraints, hence it obtains the
lower-bound length lower for S; and ii) UBoundðS; iÞ gener-
ates a feasible schedule for the undetermined operations
using the list scheduling method so that the upper-bound
length upper of S can be obtained. If upper is smaller than v,
it means that UBoundðS; iÞ is shorter than Sbsf . Therefore, the
Sbsf and v will be updated based on UBoundðS; iÞ in lines 8
and 9. If v equals �, it indicates that an optimal schedule has
been found. Therefore, line 11 will terminate the whole

Fig. 2. A schedule pruning scenario in BULB.

1302 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

BULB search. To further restrict the search space, line 13
updates the ALAP values of operations with a smaller v. If
lower is smaller than v, lines 16-19 will dispatch the next
ordered operation recursively. Otherwise, the current
incomplete schedule S can be pruned safely. Finally, the
algorithm returns a shortest schedule under the constraints.

4 OUR PARALLEL TWO-PHASE APPROACH

4.1 Two-Phase Search Space Reduction

From Section 3.2, we can find that v plays an important role
in determining the BULB performance. A wise use of v can
not only compact the initial [ASAP , ALAP] intervals (i.e.,
RCS search space), but also can accelerate the pruning of
the inferior schedules. In BULB, the initial v value is calcu-
lated using the list scheduling approach, which often fails
to get a tight value for v. A large initial v value will result in
a huge initial search space. As an example of an RCS prob-
lem, let v and v0 be two feasible initial scheduling candi-
dates, where v > v0. Since B&B approaches count all the
operation ½ASAP;ALAP � intervals in the recursive HLS
searching, the search space SS corresponding to v will be
much larger than the search space SS0 corresponding to v0.
Since SS is larger than SS0, the chance of vain search in S is
higher. Consequently, the search space will shrink slowly,
which will easily result in deep recursive procedure calls,
i.e., stuck-at-local-search. In other words, a large initial
search space can disable the pruning efficiency due to the
slow convergence of v to its optimal value. Therefore, how
to quickly get a tight initial search space determines the
HLS scheduling performance. However, for the current ver-
sion of BULB approach, it is hard to guarantee an enough
tight initial feasible schedule.

To achieve a tight initial schedule, we propose a parallel
two-phase approach as shown in Fig. 3 which aims to
improve the overall RCS performance. Fig. 3a shows the
searching using the classical BULB approach. Due to a large
initial v, the BULB search needs a quite long time to find
the optimal schedule (denoted by the black dot). To tighten
the initial search space, we partition the BULB approach
into two phases: partial-search phase and full-search phase.
Partial-search represents the search which tries to explore
only a small subset of the search space, and the full-search
does the same job as the original BULB approach. Fig. 3b
illustrates an example of our parallel two-phase approach
which requires much less time than the BULB approach. In

Fig. 3b, there are two parallel collaborative search tasks T1
and T2, which start from different corners of the search
space. We use TX Y to indicate the Y th search phase of task
TX. During the collaborative search, the partial-search T2 1
quickly obtains a shorter initial schedule with a length of v0.
It notifies T2 about the newly found upper-bound immedi-
ately. Based on v0, the search space of both T1 and T2 can
be drastically reduced to SS0 at the same time and the prun-
ing capability of both tasks can be improved. Assume that
in the full-search T1 2 can ensure it has found an optimal
schedule earlier than T2 2. Then both T1 2 and T2 2 can be
terminated. In this example, due to the incomplete search
space, the overhead of T1 1 and T2 1 is quite small. How-
ever, within the shrunken search space, the full-search of
T1 2 and T2 2 requires much less time than the BULB
approach as shown in Fig. 3a. Therefore the overall RCS
time can be drastically reduced.

Based on the example shown in Fig. 3, the parallel search
can benefit this two-phase heuristic. First of all, if different
partial-search heuristics are employed in the parallel search,
the chance of finding a shorter initial scheduledwill increase.
Next, the bound information sharing enables the search
space reduction for both partial- and full-search phases,
which in turn can reduce the overall search time. Moreover,
if the BULB approach itself is one of the parallel search tasks,
we can guarantee that the parallel two-phase search can be
no worse than the BULB approach. Therefore, it is natural to
adopt the parallel search tasks to conduct the two-phase
search of optimal schedules. The following sections will
introduce our parallel two-phase search framework in detail.

4.2 Partial-Search Heuristics

The partial-search time has a dominant effect on the overall
performance. It should be as small as possible. Therefore,
how to quickly find a schedule with small v in partial-
search phase is becoming a key challenge in our two-phase
approach. Based on our observation, the long time search in
BULB is mainly caused by the lack of pruning chances.
When v 2 ½lower; upper�, the remaining unscheduled opera-
tions need to be investigated recursively. Especially when
the search goes deep down, the backtrack will become diffi-
cult. To ease the escape from the stuck-at-local-search, this
section will introduce three kinds of partial-search heuris-
tics which can quickly find a tight upper-bound length with
small overhead.

4.2.1 Bounded Operations

Generally, less DFG nodes involved in the recursive enumera-
tion will lead to a quicker termination of partial-search, since
this can efficiently avoid the deep recursion. Based on the
above observation, our bounded operation-based partial-search
(B.O.) tries to avoid the deep recursive search by limiting the
number of the operations enumerated in the recursive search.
It does not mean that we do not consider all the other opera-
tions for the scheduling. Our approach sets the input opera-
tions to be the bounded operations. In other words, during the
partial-search, only the input nodes are investigated in the
recursive enumeration. The other non-input nodes will be
involved in the estimation of the upper-bound and lower-
bound lengths of optimal schedules. Due to the incomplete

Fig. 3. Comparison between BULB and our approach.

CHEN ET AL.: EFFICIENT RESOURCE CONSTRAINED SCHEDULING USING PARALLEL TWO-PHASE BRANCH-AND-BOUND HEURISTICS 1303

enumeration during the search, the partial-search will be
much quicker than the original complete search.

As an example shown in Fig. 1, assume that the opera-
tions are dispatched in an order r ¼<v1; v2; v3; v4; v5> . In
the bounded operation-based partial-search, only the input
operations (i.e., op1 and op2) are involved in the recursive
B&B search. For the remaining operations, we adopt the list
scheduling method to achieve a feasible schedule based on
the enumeration of dispatching time of op1 and op2. As
aforementioned, the optimal scheduling needs seven c-
steps. This happens only when the dispatch time of op1
equals 2. It means that, when the c-step of op1 is not equal to
2, the search is unfruitful. In this case, the BULB approach
needs quite a long search time before Sðop1Þ equals 2, since
there are four operations that have to be fully enumerated.
In our approach, we only completely enumerated the two
bounded operations, i.e., op1 and op2. Therefore, the partial-
search needs much less time to achieve the enumeration
where Sðop1Þ ¼ 2. For the following full-search phase, due
to the tighter initial search space, the full-search perfor-
mance on this space can be improved drastically.

4.2.2 Non-Chronological Backtrack

In BULB, operations are sorted and scheduled in a specific
order. When the pruning happens, the exploration of the
unscheduled operations will be terminated. Assume that
the operations are dispatched in an order r ¼<v1; v2; v3;
v4; v5> in the example shown in Fig. 1 and the initial v
value is 8. Let S0 ¼ fðop1; 1Þ; ðop2; 2Þg be the current incom-
plete schedule. By using the list scheduling method on S0,
we can estimate that the upper-bound of S0 is equal to v

(i.e., 8). Then the enumeration will be continued from op3,
and the new incomplete schedule will be S00 ¼ fðop1;
1Þ; ðop2; 2Þ; ðop3; 3Þg. In this case, the stuck-at-local-search
happens, since the following recursive search based on S00

will be unfruitful.
From the above example, we can find that current B&B

methods cannot quickly approach to an optimal schedule
due to the vain deep recursive search. To avoid such scenario
and find a better schedule in the neighborhood of the current
incomplete search, we adopt the non-chronological back-
track which can jump back to a non-adjacent operation. Our
non-chronological partial-search (N.C.) is based on the DFG
level structure. During the partial-search, when all the nodes
of a DFG level have been scheduled, a check of backtrack
condition (called level-check condition) will be triggered.
Assume that the current incomplete schedule is S0 and the
current ith level has the operations opi1 ; opi2 ; . . . ; opik in a

sorted order. After the dispatching of opik , we need to check

whether for all the operations opij (1 � j � k) such that

SbsfðopijÞ � S0ðopijÞ. If the level-check condition is satisfied, a

distant backtrack will be conducted. In original B&B
approach, we will stay at opik if ALAP ðopikÞ > S0ðopikÞ or

backtrack to the last dispatched operation otherwise. In the
non-chronological approach, we will jump back to the first
dispatched operation of this level, i.e., opi1 . Assume that

fðop1; 1Þ, ðop2; 2Þ, ðop3; 3Þ, ðop4; 5Þ, ðop5; 7Þg is a feasible sched-
ule in Fig. 1. When the current incomplete schedule is
S0 ¼ fðop1; 1Þ;ðop2; 2Þg, the search will backtrack to op1, and
the new incomplete schedule will be S00 ¼ fðop1; 2Þ; ðop2; 1Þg.

Therefore, the search of the optimal schedule fðop1; 2Þ,
ðop2; 1Þ, ðop3; 4Þ, ðop4; 2Þ, ðop5; 6Þgwill be accelerated.

4.2.3 Search Space Speculation

The ½ASAP;ALAP � intervals of operations play an impor-
tant role in RCS. Although the methods defined in Section 3
are promising to achieve tight ½ASAP;ALAP � intervals, gen-
erally it is hard to determine the tightest ASAP and ALAP
values for each operation. During the B&B search, one major
reason for the stuck-at-local-search is that it tries to enumer-
ate all the c-step combinations of undispatched operations.
If the intervals of undispatched operations are large, then
the search time will be intolerant. Instead, if the search
range of some operation can be reduced to a half, the overall
search space will be reduced by half too. Based on this
observation, our search space speculation based partial-search
(S.S.) tries to speculate about better schedules by halving
the search range of each operation on-the-fly.

Our search space speculation approach adopts a greedy
strategy. It assumes that during the partial search the global
optimal result will be always located in the first half of the
range of the current dispatching operation. As an example
in Fig. 1, during the partial-search the operation op1 will be
dispatched within the range ½1; 2�. Similarly, the partial-
search only considers the range ½2; 3� for operation op4. Since
the search range of all operations are halved, the partial-
search need much less time than the full B&B search. If one
shorter schedule can be obtained during the partial-search,
it will be beneficial to the overall B&B search.

4.3 Collaborative Two-Phase Searching Framework

When adopting the two-phase RCS approach, “how to guaran-
tee that the worst case execution time of the two-phase search is no
worse than the BULB approach?” and “how to reduce the time of
both partial- and full-search as much as possible?” are the two key
issues. This section presents a parallel two-phase searching
framework, which can fully explore the synergy among paral-
lel search tasks in a collaborative manner to reduce the overall
RCS time.

4.3.1 Generation and Organization of Search Tasks

The order of operation dispatching plays an important role
in the parallel B&B search [22]. To maximize the effect of
parallel search, parallel tasks should be scattered over the
search space evenly, and the behavior variability among
parallel tasks should be large. To achieve these two goals in
task generation, our approach tunes the dispatching order
of operations based on their level information. In BULB,
each operation has a weight which indicates the dispatching
priority. By adding a variance (generated by a random
value in between ½0; 1�) together with the level information
(indicated by CPwðGÞ), we can derive a new order for the
operations. Let BðiÞ be the binary format of the index of
search task Ti. We tune the weight of operations using the
following heuristic.

� If i==0, the operation weight will not be changed.
� If i!=0 and the jth least significant bit of BðiÞ equals

1, the weight of operations on the jth level will be
increased by ðrandð0; 1Þ � jÞ � CPwðGÞ, where

1304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

randð0; 1Þ generates a random number within the
range ð0; 1Þ.

� If i!=0 and the jth least significant bit of BðiÞ equals
0, the operation weight on the jth level will be
increased by �j� CPwðGÞ.

As an example in Fig. 1, the BULB approach can have
an operation dispatching order r ¼<v1; v2; v3; v4; v5>
based on the CPwðGðviÞÞ (1 � i � 5) values presented in
Section 3.1. Assume the current search task is T3. Since
Bð3Þ ¼ ð011Þ2, the dispatching order of operations at the
first and second levels will be tuned. For example, if the
new weights of operations are 5þ ð0:2� 1Þ � 5 ¼ 1:0,
5þ ð0:3� 1Þ � 5 ¼ 1:5, 5þ ð0:7� 2Þ � 5 ¼ �1:5, 5þ ð0:8�
2Þ � 5 ¼ �1:0, 5þ ð�3Þ � 5 ¼ �10:0 for operations v1-v5,
respectively. We can get <v2; v1; v4; v3; v5> as a possible
operation dispatching permutation for T3 It is important to
note that task T0 has the same dispatching order as the origi-
nal BULB approach.

We propose a framework that can manage tasks to collab-
oratively conduct the parallel search. Fig. 4 shows the organi-
zation of parallel collaborative search tasks. In this
framework, parallel tasks with different partial-search heu-
ristics are grouped into clusters, and each cluster has four
tasks. To identify the partial-search type a task within a clus-
ter, each task is assignedwith a CID. Assuming that there are
N search tasks (i.e., T0; T1; . . . ; TN�1) in total, a task Ti

(0 � i � N � 1) will have a CID i%4 within the ði=4Þth clus-
ter. In a cluster, the task running the BULB search has a CID
0. The other three two-phase tasks in the same cluster are
based on our proposed partial-search heuristics (the CIDs for
B.O., S.S., andN.C. are 1, 2, and 3, respectively). To guarantee
the RCS time of collaborative search tasks, we assume that
the number of CPU cores is larger or equal to the number of
parallel search tasks. In other words, during the RCS search
the four tasks in a cluster are running on different CPU cores.

4.3.2 Bound Sharing Among Search Tasks

Sharing upper-bound information among parallel search
tasks has been investigated in [18]. However, so far none of
existing approaches considers the lower-bound sharing in
parallel B&B RCS searching. As shown in Fig. 4, our frame-
work has a global data structure called global bound informa-
tion which keeps the current lowest upper-bound (i.e.,
GUpper) and highest lower-bound (i.e., GLower) of all the
parallel search tasks during the search. Since in our
approach each search task is created using a process, to
facilitate the communication among tasks, the global bound
information resides in an allocated shared memory. Along
with the dynamic change of upper- and lower-bound esti-
mation of the optimal schedule, the search space of parallel

search tasks will be reduced synchronously. For example, if
one search task finds one larger lower-bound, it will update
the global bound information. By periodically querying the
global bound information to obtain the latest bound infor-
mation, other collaborative search tasks can shrink their
search space earlier. Due to the tight bound estimations, the
overall RCS performance can be improved.

Unlike traditional upper- and lower-bound based prun-
ing approach in B&B searching, level-bound based pruning
enables early termination of fruitless search by comparing
the best schedule searched so far with the currently enumer-
ated operations on a specific level [17]. The synergy between
two pruning methods can further improve the overall RCS
performance of the BULB approach. In parallel search with
different operation dispatching order, search tasks may
keep different best schedule searched so far with different
structures. If all these information can be shared, the chance
of level-bound pruning may increase. However, if one task
needs to check the level-bound condition against the best
schedules of all the parallel search tasks, the RCS perfor-
mance may be degraded. Therefore, to enable the level-
bound pruning with small overhead, our framework only
allows the sharing of best schedules among the tasks in the
same cluster. For each cluster with an index of c, we allocate
a data structure LBInfoc in the shared memory to hold the
best schedules searched so far for all the tasks within cluster
c. During the level-bound condition checking, parallel tasks
in cluster c need to compare their current incomplete sched-
ule with the four best schedules searched so far saved in
LBInfoc. To simplify the construction of LBInfoc, in our
approach, the local level-bound information only contains
the initial feasible schedules of the four search tasks within
cluster c. There is no update of the level-bound information
during the search.

Algorithm 2 presents the details of bound sharing opera-
tions among parallel collaborative search tasks. Functions
getGU, setGU, getGL, and setGL are used to query and update
the bound estimation information of global optimal sched-
ules. To avoid the conflict of updating GLower and GUpper
simultaneously, we use the globally defined mutexes upper_
bound_mutex and lower_bound_mutex to ensure the exclusive
update of bound information. Based on the level-bound prun-
ing proposed in [17],MLBCheck enables the structure-aware
pruning. In the function, lines 22-24 determine whether opi is
the last undispatched operation in level LevelðopiÞ. Based on
the operations achieved from line 25, lines 26-30 check the cur-
rent schedule against all the collected schedules in LBInfo
using the operations in the ðLevelðopiÞÞth level. Note that
MLBCheck can be used to check both the level-check condi-
tion for N.C. partial-search and level-bound condition for
structure-aware pruning (see details inAlgorithm 3).

4.3.3 Bound Speculation Among Search Tasks

Without considering the level-bound sharing among paral-
lel tasks, in the full-search phase a parallel search task needs
to enumerate a huge set of feasible schedules, and the over-
lap of such sets between different search tasks is quite large.
In other words, there exist many redundant search efforts
among the parallel search tasks. Inspired by the work in
[18], we use the static and dynamic upper-bound specula-
tion to further reduce the repetitive search among the search

Fig. 4. Organization of our parallel search tasks.

CHEN ET AL.: EFFICIENT RESOURCE CONSTRAINED SCHEDULING USING PARALLEL TWO-PHASE BRANCH-AND-BOUND HEURISTICS 1305

tasks in the same cluster. Note that our dynamic upper-
bound speculation is different from [18]. It is driven by the
lower-bound update.

Algorithm 2. Operations on Shared Bound Information

1 getGU() begin
2 Return GUpper;
3 end
4 setGU(upper) begin
5 if upper < GUpper then
6 upper_bound_mutex :lockðÞ;
7 GUpper ¼ upper;
8 upper_bound_mutex :unlockðÞ;
9 end
10 end
11 getGL() begin
12 Return GLower;
13 end
14 setGL(lower) begin
15 if lower > GLower then
16 lower_bound_mutex :lockðÞ;
17 GLower ¼ lower;
18 lower_bound_mutex :unlockðÞ;
19 end
20 end
21 MLBCheck(S; opi; rank) begin
22 if i 6¼ LhðopiÞ then
23 Return false;
24 end
25 OP ¼ fopi1 ; . . . ; opikg ¼ ðLevelðopiÞÞth level;
26 for each S0 2 LBInforank=4 do
27 ifV

1�j�k ðS0ðopijÞ � SðopijÞÞ &
W

1�j�kðS0ðopijÞ 6¼ S ðopijÞÞ
28 Return true;
29 end
30 end
31 Return false;
32 end

In our approach, static upper-bound speculation is per-
formed at the beginning of two-phase RCS. Since there are
four tasks in a cluster, the upper-bound speculation divides
the interval ½GLower;GUpper� into four parts evenly.
Assuming that the search task has a CID of ci (0 � ci � 3),
the speculation assigns the task with an upper-bound

bGUpper� ðGUpper�GLowerÞ�ci
4 c. Note that each cluster has a

BULB search task (with CID = 0) that has an initial upper-
bound GUpper. During the search, if some parallel search
task finds a schedule shorter than GUpper, the value of
GUpperwill be updated accordingly.

When adopting the upper-bound speculation, if one
search task Ti (with CID i%4 and upper bound vi) finishes
the two-phase search and finds no better schedule than the
speculated one with an upper bound vi, it means that the
length of optimal schedules should be longer than vi. There-
fore, the GLower will be updated to GLower0 ¼ vi þ 1.
Assume that each parallel task occupies one CPU core for
the search. At this moment, if Ti finishes, its corresponding
CPU core will be idle, which is a waste of computing resour-
ces. To fully utilize all available resources, our approach
updates the bound information for all the parallel tasks
using the following strategy:

� If a parallel task Tj has an upper-bound smaller than
GLower0, it will terminate its current search and
restart a new search with an upper-bound equal to

bGUpper� ðGUpper�GLower0Þ�ðj%4Þ
4 c and a lower-bound

equal to GLower0.
� If a parallel task Tj (j 6¼ i) has an upper-bound vj

and vj 	 GLower0, it will set its upper-bound to

Minðvj; bGUpper� ðGUpper�GLower0Þ�ðj%4Þ
4 cÞ and lower-

bound to GLower0.
Fig. 5 shows an example of lower-bound update con-

ducted by four tasks in a cluster. Similar to Fig. 4, the labels
(e.g., B:O: and S:S) in the figure indicate the tasks with dif-
ferent partial-search heuristics. It is important to note that
the labels only denote the full-search (i.e., BULB search) fol-
lowed by specific partial-search heuristics. In the figure, the
dotted arrow lines indicate the original range of the optimal
schedule length speculation. For instance, the BULB
approach assumes that the length of optimal schedules is in
the range ½10; 18�. In this case, the N:C: task has an upper-
bound estimation of 12. Once the N:C: task finishes its
search within its speculated range and does not find any
better schedules, it will update the GLower to 13 and all the
other tasks in the same cluster will update their lower-
bound accordingly. Meanwhile, the N:C: task will restart a
new search task with an upper-bound speculation 14. For
the S:S: task, since the new speculated upper-bound

b18� ð18�13Þ�2
4 c ¼ 15 is larger than the original one, it will

continue its search without changing the upper-bound. Due
to the improvement of the lower-bound, the termination of
the whole search becomes earlier.

In our approach, a search task periodically queries
the global bound information, and speculates its bounds
accordingly. Assume that the current task is Ti, and
the upper-bound and lower-bound of current search
task are v and � respectively. Let fðiÞ ¼ bGUpper�
ðGUpper�GLower0Þ�ði%4Þ

4 c be the procedure to calculate the specu-

lative upper-bound of Ti. Fig. 6 shows the extended finite
state machine (EFSM) for the bound speculation of the par-
allel task Ti. In our approach, each search task has three
states:

� Change indicates that the task has found a better
schedule since last speculation.

� !Change denotes that the task has not found a better
schedule since last speculation.

� Done asserts the termination of the task.
The transitions between states specify the details of the

collaborative speculation. Transition 1 initializes the upper-
and lower-bounds of all the search tasks using the static
speculation. Initially, since the task has not found any new

Fig. 5. An example of dynamic bound speculation.

1306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

better schedules, it will stay in the !change state. If it detects
that other tasks have found a new better schedule, in transi-
tion 2 it will synchronize its upper-bound v with the global
information. If the task finds the change of the global lower-
bound and the current lower-bound is no smaller than the
global lower-bound, it will update its lower-bound and
speculate it upper-bound in transition 3. In the !change state,
if the current search is finished and � < getGUðÞ, it means
that no better solution shorter than the speculated upper-
bound is found in the given range. Therefore, transition 4
will terminate the current task and spawn a new task with a
bound-speculation within the range ½vþ 1; fðiÞ�. Mean-
while, transition 4 will update the global lower-bound infor-
mation. If the current upper-bound is smaller than the
global lower-bound, transition 5 will terminate the current
search and restart a new task with the speculation range
½getGLðÞ; fðiÞ�. During the search, if current task finds a bet-
ter schedule, it will change its state to change and update the
global upper-bound information in transition 6. If v equals
� and the current search finishes, it indicates that v is the
length of the optimal schedule. Therefore, transition 7 will
report the optimal result. If the task state is change, when
other tasks find better lower-bound or upper-bound, it will
switch to the !change state and update the upper- and lower-
bounds accordingly as shown in transitions 8 and 9. If the
current task finds a better schedule, it will stay in the change
state as shown by transition 10. If the current task finishes
in the change state, it will become the winner that finds the
optimal schedule in transition 11.

4.4 Implementation of Our Approach

4.4.1 Implementation of a Parallel Search Task

Based on the proposed EFSM in Section 4.3.3 and BULB
approach, Algorithm 3 presents the implementation
details of a parallel B&B search task with an ID rank. In
this algorithm, we use the following private global data
structures to enable the B&B pruning: i) Sbsf , which is

used to keep the optimal schedule searched by this task
so far; ii) S, which is an enumerating incomplete sched-
ule; iii) v, which is equal to the length of Sbsf ; and iv) �,

which indicates the lower-bound estimation of the opti-
mal schedule of this task.

Since the bound-speculation of our approach is based
on Fig. 6, Algorithm 3 implements the transitions in the
proposed EFSM. In the algorithm, lines 2-6 check whether
the bounded operation based partial-search is adopted or

not. If yes, only the input nodes will be investigated in
the partial-search as shown in line 3. Lines 8-12 deal with
the search space speculation based partial-search. If the
partial-search is applied, line 9 will halve the range of the
current searching operation. Before operation dispatch-
ing, our method needs to check the global upper- and
lower-bound information. If the global lower-bound is
larger than v, the current search task will be terminated
and a new task will be created as shown in line 14. If the
global upper-bound is smaller than v, it indicates that
some other task has found a better schedule. According
to the transitions 2 and 9, lines 17-18 update the current v
information and set change to false to indicate that the cur-
rent task is not the one that finds the global best schedule
so far. If current task detects that the global lower-bound
has been improved, according to the transitions 3 and 8,
lines 21-23 will speculate the v and update the �, and set
change to false. Since our approach adopts the dynamic
ASAP update based on the current step assignment, we
need to save the original ASAP values of all the opera-
tions of GðopiÞ first in line 25. Lines 27-32 conduct the
level-bound checking as described in Section 4.3.2. Lines
34-35 calculate the lower and upper for current schedule,
respectively. If upper is no larger than v, line 37 will set
change to true to assert that it finds a schedule no worse
than the global best schedule. If upper is smaller than v,
then v and Sbsf will be updated in lines 40-41. Changing

v value will trigger the checking of early termination con-
dition in line 43 followed by the runtime space shrinking
in line 45. Since a better schedule is found by the task
itself, it needs to update the global upper bound-informa-
tion in line 46. If opi is the last dispatched operation of
some level and the level-check condition holds, when the
non-chronological backtrack is enabled, lines 49-50 will
backtrack to the first dispatched operation in the same
level. If the lower-bound of S (i.e., lower) is smaller than
v, the current operation will be scheduled. After the new
c-step assignment of operation opi in line 53, line 54 takes
resources required by the operation opi. Then opiþ1 is
processed recursively in step line 55. When the search
backtracks, the resources occupied by opi are released in
step line 56. Lines 57-61 check whether the non-chrono-
logical backtrack has finished or not. When the search of
SðopiÞ is done, line 65 restores the ASAP values of GðopiÞ
saved in step 5. Finally, line 67 reports the results when
the recursive search is complete.

Fig. 6. EFSM of bound speculation for the parallel search task Ti.

CHEN ET AL.: EFFICIENT RESOURCE CONSTRAINED SCHEDULING USING PARALLEL TWO-PHASE BRANCH-AND-BOUND HEURISTICS 1307

Algorithm 3. Implementation of a Parallel Search Task

Input: i) An RCS DFGD ¼ ðV;EÞ, where V has been
sorted;

ii) OP , a sequence of ordered operations;
ii) T , partial-search strategy;
iii) i, index of the current enumerating operation in the

search;
iv) PS, indicating whether the partial-search is

conducted.
Output: A schedule and its length
1 PTask(D, OP , T , i, PS) begin
2 if PS & T==B.O. then
3 N = jinput operations ofDj;
4 else
5 N= jVj;
6 end
7 if i � N then
8 if PS & T==S.S. then
9 ALAP = dðASAP ðopiÞþALAP ðopiÞÞ

2 e;
10 else
11 ALAP = ALAP(opi);
12 end
13 if getGLðÞ > v then
14 Return (Sbsf , v); /*transition 5*/
15 end
16 if getGUðÞ < v then
17 v ¼ getGUðÞ, change ¼ false; /*transitions 2, 9*/
18 UpdateALAP ðD;vÞ;
19 end
20 if getGLðÞ > � & v 	 getGLðÞ then
21 � ¼ getGLðÞ, change ¼ false; /*transitions 3, 8*/
22 v ¼ MINðv; bgetGUðÞ � ðgetGUðÞ�getGLðÞÞ�ðrank%4Þ

4 cÞ;
23 UpdateALAP ðD;vÞ;
24 end
25 SaveASAP ðD; opiÞ;
26 for step ¼ ASAP ðopiÞ to ALAP do
27 if !PS j ðPS & T ! ¼ N:C:Þ then
28 SðopiÞ ¼ step;
29 ifMLBCheckðS; opi; rankÞ then
30 Return (Sbsf , v);
31 end
32 end
33 if Precedence(opi) ^ ResAvailable(opi; step) then
34 lower ¼ LBoundðopiÞ;
35 upper ¼ leðListSchedulingðD;OP; iÞÞ;
36 if upper <¼ v then
37 change = true;
38 end
39 if upper < v then
40 v ¼ upper; /*transitions 6, 10*/
41 Sbsf ¼ ListSchedulingðD;OP; iÞ;
42 if v ¼¼ LowerBoundðDÞ then
43 Report(Sbsf , v); /*transition 11*/
44 end
45 UpdateALAP ðD;vÞ;
46 setGUðvÞ;
47 end
48 if PS & T==N.C. & i ¼¼ LeðopiÞ & i 6¼ LsðopiÞ

& MLBCheckðS; opi; rankÞ then
49 return id ¼ LsðopiÞ;
50 Return (Sbsf , v);
51 end
52 if lower < v then

53 SðopiÞ = step; /* Dispatch opi */
54 ResOccupy(step,type(opi),delay(opi));
55 PTaskððD;OP; T; iþ 1; PSÞ;
56 ResRestore(step,type(opi),delay(opi));
57 if return id 6¼ �1&return id 6¼ i then
58 Return (Sbsf , v);
59 else
60 return id ¼ �1;
61 end
62 end
63 end
64 end
65 RestoreASAP ðD; opiÞ;
66 end
67 Return (Sbsf , v).
68 end

Algorithm 4 describes the implementation of our parallel
two-phase B&B RCS approach. To enable the parallel search,
we adopt the OpenMPI library which implements each task
as a process with an ID rank. In Algorithm 4, lines 5-10 create
the data structures of the global bound information and local
level-bound information in the sharedmemory, respectively.
Line 11 parses the HLS inputs and figures out the DFG infor-
mation as well as resource constraints. Line 12 sorts the oper-
ations using the method presented in Section 3.1. Lines 13-14
shuffle the operations based on the results of line 12 using
the approach described in Section 4.3.1. Line 15 computes
the initial ASAP values for each operation ofD based on the
Definition 3.1. Line 16 tries to achieve an initial feasible
schedule Sbsf by adopting the list scheduling method. Line

17 synchronizes all the search tasks. Since the Sbsf can be

used for the level-bound pruning, it is inserted to the data
structure of local level-bound information LBInforank=4 in

line 18. Line 19 calculates the upper- and lower-bound esti-
mations of the optimal schedules for the current task. Line 20
updates the shared bound information among tasks. Lines
21-24 consult all the tasks and vote for the largest lower-
bound � and smallest upper-bound v among all parallel
tasks. Line 25 figures out the ALAP information for all the
operations of the task. Line 26 sets the change to false. Lines 29
and 30 start a BULB search with CID 0 within each cluster
(see transition 1 in Fig. 6). Line 32 conducts the partial-search
with different strategies for the remaining tasks in clusters.
When the partial-search finishes, line 33 queries the global
upper- and lower-bound information. Line 34 speculates the
new upper-bound for each task, and line 35 updates corre-
sponding ALAP information (see transition 1 in Fig. 6). Fol-
lowed by line 36 which denotes the beginning of the full-
search, line 37 starts the B&B style full-search on the specu-
lated upper-bounds. If the full-search finishes and no better
schedules are found, according to the transition 4 in Fig. 6, it
means that the optimal schedules do not have a lengthwithin
range ½�;v�. Then, lines 39-40 will update the value of global
lower-boundGLower.With the speculated upper-bound gen-
erated in line 41, line 42 restarts the new full-search for opti-
mal schedules. If the current task does not find a better
schedule but � equals v, the algorithm will terminate the
whole parallel search, and report the optimal results saved
in Sbsf andv at line 45.

1308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

Algorithm 4. Parallel Two-Phase B&B RCS Approach

Output: An optimal schedule forD and its length
1: main(argc, argv) begin
2: MPI_Init(&argc, &argv);
3: MPI_Comm_size(MPI_COMM_WRD, &procnum);
4: MPI_Comm_rank(MPI_COMM_WRD, &rank);
5: if rank ¼¼ 0 then
6: CreateGlobalBoundInfoðÞ;
7: end
8: if rank%4 ¼¼ 0 then
9: LBInforank=4 ¼ CreateLocalLBInfoðÞ;
10 end
11 D ¼ ParseDFGAndConstraintsFromFileðÞ;
12 OP ¼ fop1; . . . ; opNg ¼ SortOperationsðDÞ;
13 code ¼ Binaryðrank; dlog2ðprocnumÞeÞ;
14 OPrank ¼ ShuffleðD;OP; codeÞ;
15 ComputeInitialASAP ðDÞ ;
16 S = Sbsf = InitialFeasibleSchðDÞ;
17 MPI_Barrier(MPI_COMM_WRD);
18 LBInforank=4:addðSbsfÞ;
19 ð�0;v0Þ ¼ ðleðLBoundðS; 1ÞÞ; ListSchedulingðD;OPrank; 1Þ;
20 setGUðv0Þ and setGLð�0Þ;
21 MPI_Allreduce(&v0, &v, 1, MPI_INT, MPI_MIN,
22 MPI_COMM_WRD);
23 MPI_Allreduce(&�0, &�, 1, MPI_INT, MPI_MAX,
24 MPI_COMM_WRD);
25 ComputeInitialALAP ðD;OPrank;vÞ;
26 change ¼ false;
27 /*Partial-search strategy type {BULB=0,B.O.=1,S.S.=2,

N.C.=3})*/
28 if rank%4 ¼¼ 0 then
29 UpdateALAP ðD;vÞ; /*transition 1*/
30 PTaskðD;OPrank; BULB; 1; falseÞ;
31 else
32 PTaskðD;OPrank; rank%4; 1; trueÞ;
33 ð�;vÞ ¼ ðgetGLðÞ; getGUðÞÞ;
34 v ¼ bv� ðv��Þ�ðrank%4Þ

4 cÞ;
35 UpdateALAP ðD;vÞ; /*transition 1*/
36 change ¼ false;
37 PTaskðD;OPrank; rank%4; 1; falseÞ;
38 while !change & � < getGUðÞ do
39 � ¼ vþ 1; /*transition 4*/
40 setGLð�Þ;
41 v ¼ bgetGUðÞ � ðgetGUðÞ��Þ�ðrank%4Þ

4 cÞ;
42 PTaskðD;OPrank; rank%4; 1; falseÞ;
43 end
44 end
45 Report (Sbsf , v); /*transition 7*/
46 MPI_Abort(MPI_COMM_WRD, -1);
47 end

5 EXPERIMENTAL RESULTS

To evaluate the effectiveness of our approaches, we collected
the DOT files of designs ARFilter, Cosine1, Collapse, Feedback,
and Smooth Triangle from the MediaBench benchmark [13],
which is a standard DSP benchmark suite. We also got the
benchmark FDCT from [20]. We implemented the BULB
approach and both the sequential and parallel versions [23] of
two-phase B&B RCS approaches using the C programming
language and OpenMPI library [15]. For the purpose of com-
parison, we generated and solved the ILP models for each

benchmark item using IBM ILOG CPLEX CP Optimizer [14],
which utilizes the parallel branch-and-cut [21] for efficient ILP
solving.All the experimental resultswere obtained on a Linux
sever with 96 Intel Xeon 2.4 GHz cores and 1 TB RAM. Since
both the upper- and lower-bound estimation algorithms have
a linear complexity, the initial bound estimations of the
benchmarks can be achieved within less than 0.001 second,
which is much smaller than the B&B search time. Therefore,
we neglect the time elapsed in the estimation of these values.
Note that our parallel two-phase approach generates search
tasks based on randomly shuffled operations as described in
Section 4.3.1. Therefore, we run each RCS problem instance in
the benchmarks for five times for a fair comparison.

To enable the comparison with state-of-the-art HLS
scheduling approaches, in this experiment we consider both
the functional unit and power/area constraints which are
the same as the ones used in [5], [7], [22]. Table 1 lists the cor-
responding settings for all different types of functional oper-
ations used in the experiment. Note that our approach can be
directly applied on pipelined designs. This is because a pipe-
lined operation can be divided into a sequence of sub-opera-
tions which correspond to different kinds of new resources.
In this experiment, we assume that the pipelined multipliers
denoted by “�” have two stages (i.e., PMUL1 and PMUL2)
and each stage needs one c-step. Due to the limited space, we
only present the results for the pipelined designs in Table 3.

5.1 Scheduling with Functional Constraints

To investigate the efficacy of the three partial-search heuris-
tics individually, we tuned Algorithm 4 to check each of
them using only one search task. We changed the CID of the
investigated partial-search strategy to 0 and canceled all the
other search heuristics in the same cluster. It is important to
note that, in order to focus on the evaluation of each sequen-
tial two-phase approach separately, we did not employ the
structure-aware pruning. Table 2 presents the experimental
results carried out on a single core with different functional
unit constraints on the six benchmarks.

The first column of the table indicates the benchmark and
constraint information. The first sub-column gives the
benchmark name. The second sub-column presents the
functional unit constraints for the design. For example, “2
+,3�” denotes that only two adders and three non-pipe-
lined multipliers are used in the implementation. Due to the
space limitation, we only present the number of adders and
multipliers in both Tables 2 and 3. The number of other
functional units are fixed for both non-pipelined and pipe-
lined designs. For the benchmarks ARFilter, Collapse, Cosine,
and Feedback, we only adopted one functional unit for each

TABLE 1
Settings of Functional Units

Functional
Units

Operation
Class

Delay
(unit)

Power
(unit)

Area
(unit)

ADD/SUB +/- 1 10 10
MUL � 2 20 40
PMUL1/PMUL2 �1/�2 1 10 20
DIV
 2 20 40
MEM LD/STR 1 15 20
Shift < </> > 1 10 5
Other ... 1 10 10

CHEN ET AL.: EFFICIENT RESOURCE CONSTRAINED SCHEDULING USING PARALLEL TWO-PHASE BRANCH-AND-BOUND HEURISTICS 1309

other function type. For the benchmarks Cosine1 and Smooth
Triangle, we used ten functional units for each other func-
tion type. The third sub-column gives the lower- and

upper-bound estimations of the optimal schedule before the
scheduling, and the fourth sub-column presents the lengths
of global optimal schedules achieved by the scheduling.

TABLE 3
Parallel RCS Results under Functional Unit Constraints

Design
Name

of +,�
/ c-step

BULB
[5]

Seq.
2P

CPLEX
[14]

Hybrid8
[18]

ML8
[22]

Para. 2P
w/o L.B.

Para. 2P
w/ L.B.

of +,�
/ c-step

BULB
[5]

ML8
[22]

Para. 2P
w/o L.B.

Para. 2P
w/ L.B.

ARFilter

1, 3/16 0.31 0.33 TO 0.39 0.13 0.29 (< 0.01) 0.20 (< 0.01) 1, 1/19 < 0.01 < 0.01 < 0.01 < 0.01

1, 4/16 0.78 0.78 TO 1.01 0.26 0.75(< 0.01) 0.47 (< 0.01) 2, 1/19 < 0.01 < 0.01 < 0.01 < 0.01
1, 5/16 0.77 0.78 TO 1.03 0.26 0.73 (< 0.01) 0.46 (< 0.01) 2, 2/13 < 0.01 < 0.01 < 0.01 < 0.01

2, 3/15 0.01 0.02 1.93 < 0.01 < 0.01 < 0.01 < 0.01 3, 1/19 < 0.01 < 0.01 < 0.01 < 0.01

Collapse
2, 1/22 TO 0.34 TO 0.02 38.16 < 0.01 < 0.01 2, 1/21 TO TO < 0.01 < 0.01

2, 2/21 TO TO TO < 0.01 TO 0.02 (< 0.01) < 0.01 2, 2/21 TO TO < 0.01 < 0.01

Cosine1
1, 2/28 107.43 0.01 TO < 0.01 < 0.01 < 0.01 < 0.01 1, 2/28 < 0.01 < 0.01 < 0.01 < 0.01
2, 2/20 622.83 26.94 TO 34.54 0.52 1.05 (0.42) 0.36 (0.18) 2, 2/15 34.98 0.61 0.29 (0.44) 0.09 (0.10)
3, 3/16 0.02 < 0.01 TO 0.01 < 0.01 < 0.01 < 0.01 3, 3/12 0.11 0.01 < 0.01 < 0.01

FDCT

1, 2/26 36.91 < 0.01 TO < 0.01 < 0.01 < 0.01 < 0.01 1, 1/26 558.69 < 0.01 < 0.01 < 0.01
2, 2/18 201.59 0.13 TO 13.99 1.67 0.57 (0.42) 0.26 (0.04) 1, 2/26 < 0.01 < 0.01 < 0.01 < 0.01

2, 3/14 19.80 1.16 TO 2.85 0.53 0.47 (0.10) 0.25 (0.07) 2, 2/13 9.68 < 0.01 < 0.01 < 0.01

2, 4/13 4.07 0.05 TO 0.87 0.13 0.19 (0.08) 0.09 (0.06) 2, 3/13 < 0.01 < 0.01 < 0.01 < 0.01
2, 5/13 0.92 < 0.01 TO 0.04 < 0.01 < 0.01 < 0.01 3, 2/12 0.11 0.02 < 0.01 < 0.01

3, 4/11 0.55 0.05 TO 0.67 0.07 0.07 (0.02) 0.03 (0.02) 3, 3/10 0.07 < 0.01 < 0.01 < 0.01

4, 4/11 0.12 0.01 TO 0.23 < 0.01 < 0.01 < 0.01 4, 4/9 < 0.01 < 0.01 < 0.01 < 0.01

Feedback
4, 4/13 154.18 35.43 TO 3.82 0.81 0.01 < 0.01 4, 4/13 TO 3.67 0.04 (< 0.01) 0.01

4, 5/13 TO 498.89 TO 4.50 1.13 0.01 < 0.01 4, 5/13 TO 7.70 < 0.01 < 0.01

5, 5/13 4.87 4.96 TO 1.51 0.04 0.01 < 0.01 5, 5/13 22.62 0..07 < 0.01 < 0.01

Smooth Triangle 5, 5/28 0.45 0.40 TO 3.22 0.35 0.25 (0.14) 0.06 (0.05) 2, 2/45 TO < 0.01 < 0.01 < 0.01

6, 5/28 1921.54 1753.19 TO 15.86 1460.16 0.10 (0.06) 0.04 (0.03) 2, 3/43 TO < 0.01 < 0.01 < 0.01

�All RCS time is measured in seconds. “TO” and “NA” have the same meaning as used in Table 2. * “�” and “�” denote the non-pipelined and pipelined
multipliers, respectively.

TABLE 2
Sequential RCS Results under Functional Unit Constraints

Design BULB LEVEL Bounded Operation Non-Chronological Search Space
Speculation

Name # of +,� [L,U] len: [5] [17] T1 v0 Ttotal T1 v0 Ttotal T1 v0 Ttotal

ARFilter
1, 3 [14,16] 16 0.31 0.15 0.15 16 0.47 < 0.01 16 0.33 0.21 16 0.52
1, 4 [14,16] 16 0.78 0.25 0.27 16 1.04 < 0.01 16 0.78 0.54 16 1.32
1, 5 [14,16] 16 0.77 0.24 0.27 16 1.03 < 0.01 16 0.78 0.53 16 1.30
2, 3 [14,15] 15 0.01 0.01 < 0.01 15 0.02 < 0.01 15 0.02 < 0.01 15 0.02

Collapse 2, 1 [22,23] 22 TO TO 315.89 22 315.89 TO NA TO 0.34 22 0.34
2, 2 [21,23] NA TO TO TO NA TO TO NA TO TO NA TO

Cosine1
1, 2 [28,29] 28 107.43 29.68 0.01 28 0.01 0.10 28 0.10 41.17 28 41.17
2, 2 [20,23] 20 622.83 29.21 26.94 20 26.94 0.05 22 610.62 39.71 20 39.71
3, 3 [16,17] 16 0.02 0.01 < 0.01 16 < 0.01 < 0.01 16 < 0.01 < 0.01 16 < 0.01

FDCT

1, 2 [26,27] 26 36.91 26.63 < 0.01 26 < 0.01 37.85 26 37.85 0.50 26 0.50
2, 2 [18,22] 18 201.59 90.56 0.13 18 0.13 38.89 18 38.89 12.77 18 12.77
2, 3 [14,17] 14 19.80 21.16 1.16 14 1.16 3.86 14 3.86 3.93 14 3.93
2, 4 [13,15] 13 4.07 5.94 0.05 13 0.05 0.44 13 0.44 7.63 13 7.63
2, 5 [13,14] 13 0.92 0.60 < 0.01 13 < 0.01 0.22 13 0.22 0.32 13 0.32
3, 4 [11,13] 11 0.55 0.48 0.39 11 0.39 0.05 11 0.05 0.26 11 0.26
4, 4 [11,12] 11 0.12 0.03 0.01 11 0.01 0.11 11 0.11 0.04 11 0.04

Feedback
4, 4 [13,14] 13 154.18 155.74 156.87 13 156.87 156.30 13 156.30 35.43 13 35.43
4, 5 [13,15] 13 TO TO TO NA TO 498.89 13 498.89 TO NA TO
5, 5 [13,14] 13 4.87 4.92 4.96 13 4.96 4.97 13 4.97 1.13 13 1.13

Smooth Triangle 5, 5 [28,29] 28 0.45 0.41 0.41 28 0.41 0.40 28 0.40 TO NA TO
6, 5 [28,29] 28 1921.54 1760.92 1767.49 28 1767.49 1753.19 28 1753.19 TO NA TO

�All RCS time is measured in seconds. “TO” means that the scheduling time is larger than 3,600 seconds. “NA” indicates that the result is unavailable.

1310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

The second column presents the RCS results using the
BULB approach [5]. The third column presents the RCS
results using the structure-aware B&B pruning technique
(i.e., LEVEL [17]). The columns 4-6 present the two-phase
search results based on the three proposed partial-search
methods (i.e., bounded operation, non-chronological and
search space speculation). For each column, we present the
time spent in the partial-search, the tightest bound found
during the partial-search, and the total time for the whole
two-phase search, respectively. To facilitate the observation
of performance comparison results, the best total RCS time
of the five RCS approaches are marked in bold font.

It can be found that our partial-search based methods
outperform both the BULB and structure-aware pruning
approaches in most cases. Especially when the initial
lengths of feasible schedules can be reduced by the partial-
search, our approaches can drastically reduce the RCS time
(e.g., the space speculation heuristic can achieve more than
10,588 times improvement over BULB in Collapse design
with the constraint “2+,1�”). For the ARFilter design, since
the length of optimal schedules equals the initial upper-
bound estimation, the performance is worse than the BULB
approach. However, all the other benchmarks benefit from
our partial-search heuristics, since the coarse partial-search
can locate the global optimal result with significantly less
time. From this table, we can observe that the tighter the ini-
tial bound can achieve, the shorter the full-search time will
be. In the Cosine1 design with “2+,2�”, we can find that
although the non-chronological method can find a tighter
upper-bound (i.e., 22), the full-search still needs a long time.
This is because its initial upper-bound is not the tightest
(i.e., 20) compared with other two approaches.

Generally, it is hard to state which partial-search heuristic
is the best for a specific design before RCS, since the perfor-
mance is mainly determined by the design itself. As shown
in Table 2, the bounded operation method works best for the
FDCT design, while the search space speculation method
does best for the Collapse design. Although the non-chrono-
logical method cannot achieve the best results in most col-
lected benchmark items, it can solve the problems (e.g.,
Feedback with “4+,5�”) that cannot be solved by the other
heuristics. All these observations inspired our parallel two-
phase B&B approach, which combines the complementary
search capability of the three proposed partial-search heuris-
tics, to reduce the search time of short initial schedules.

Table 3 shows the results of our parallel two-phase B&B
RCS approach. The first two columns of Table 3 contain the
design information which is the same as the one shown
in the first column of Table 2. The third column gives the
RCS time using BULB approach. For the comparison pur-
pose, the fourth column presents the best sequential RCS
time of three proposed partial-search heuristics (i.e.,
MINðB:O:; N:C:; S:SÞ). The fifth column presents the ILP
solving time using the CPLEX CP Optimizerwith eight cores.
To compare with the state-of-the-art parallel RCS method,
the sixth column denotes the RCS time using the hybrid
method proposed in [18] with eight cores. The seventh col-
umn shows the RCS results using the parallel structure-
aware approach introduced in [22] with eight cores. The
eighth and ninth columns show the RCS time using our pro-
posed parallel two-phase B&B RCS approach with eight

cores. To show the effectiveness of the sharing of level-
bound information, the eighth column presents the RCS
time without the level-bound sharing and pruning, while
the ninth column denotes the RCS time with the level-
bound sharing and pruning. Since our approach relies on
the random dispatching of operations as described in
Section 4.3.1, in these two columns we give both the mean
value and the standard deviation (in the parentheses) of the
RCS time. Note that we omit the standard deviation when
its value is smaller than 0.005. Since our approach can be
directly applied on pipelined designs, we also conducted
the experiment on the same benchmarks. The last five col-
umns present the pipelined functional unit constraints, RCS
time using the BULB approach [5], RCS time using the par-
allel structure-aware approach [22] (with eight cores), and
RCS time using our parallel two-phase search method (with
eight cores), respectively. Similar to the eighth and ninth
columns, the last two columns give the RCS time without
and with level-bound sharing and pruning, respectively. To
facilitate the performance comparison, we marked the best
RCS time of the parallel approaches for the non-pipelined
and pipelined designs with bold font.

From this table, we can find that for the non-pipelined
design our parallel two-phase approaches (columns 8 and
9) outperform the sequential two-phase approaches (col-
umn 3), the parallel CPLEX method [14] and hybrid method
[18] for all of the benchmark items. This is mainly because
of the following two reasons: i) the usage of the structure-
aware pruning in the first-phase search; and ii) the adoption
of the bound speculation and sharing introduced in Section
4.3.3. When dealing with the ARFilter design, the perfor-
mance of our parallel two-phase approach is a little worse
than the parallel structure-aware pruning method as pre-
sented in column 7. This is because the final c-step of the
ARFilter design equals the initial upper-bound estimation.
In other words, the first-phase search does not benefit the
overall RCS time. Moreover, our parallel two-phase search
method shares local level-bound checking information
within a cluster, which may impose more burden on the
level-bound pruning checking. Especially when the overall
RCS time is small, this kind of overhead will be more obvi-
ous. However, when solving complex RCS problems, this
time cost can be neglected. For instance, when handling the
Collapse design with a constraint of “2+,2�”, our parallel
two-phase approach with level-bound sharing and pruning
can achieve more than 3,600/0.01 = 360,000 times improve-
ment than the parallel structure-aware pruning approach
[22]. Compared with the parallel structure-aware pruning
approach [22], in this experiment our parallel two-phase
approach (with level-bound sharing and pruning) can
achieve better RCS time in 18 out of 21 benchmark items.
For the pipelined benchmark items shown in the last four
columns, we can observe that our two-phase approaches in
the last two columns significantly outperform the BULB
approach as well as the parallel structure-aware pruning
approach. For example, for the Collapse design, our parallel
two-phase approach can figure out the problems quickly,
while both the BULB and parallel structure-aware pruning
approaches are timed out. In our experiment, we assume
that a pipelined multiplier has two stages (i.e., PMUL1 and
PMUL2) and each stage needs one c-step. Therefore, during

CHEN ET AL.: EFFICIENT RESOURCE CONSTRAINED SCHEDULING USING PARALLEL TWO-PHASE BRANCH-AND-BOUND HEURISTICS 1311

the operation dispatching we only need to check the avail-
ability of function units of type PMUL1. The sub-operation
PMUL2 can be dispatched at the c-step next to the sub-oper-
ation PMUL1. Due to the overlapped execution of pipelined
units, the search space of the RCS for pipelined resources is
typically smaller than the one of the RCS for non-pipelined
resources. From Fig. 3 we can find that pipelined designs
needs much less RCS time than the their non-pipelined
counterparts, which is consistent to the results in [5].

To check the scalability of our parallel two-phase
approach, we investigated the effect of task number on the
RCS performance. Fig. 7 shows the RCS results of different
benchmark items with different number of cores. In this
figure, the label design_x_y indicates the non-pipelined
design with a constraint of x adders and y multipliers. Due
to the space limitation, we only present one item in each
benchmark. From the other unlisted benchmarks, we can
observe a similar trend. It is important to note that, in Fig. 7,
the search with one core indicates the BULB approach, and
two cores indicates the cooperation between the BULB and
B.O. approach. It can be found that when there aremore than
four cores involved in the parallel two-phase search, we can
achieve several orders of magnitude improvement over the
BULB approaches. Especially for complex RCS problems
(e.g., S_Tri_6_5), more cores will lead to a higher speedup.

5.2 Scheduling with Area and Power Constraints

Since both area and power can be treated as special kinds of
resources, our approach can also be used to promote the RCS
performance under such constraints. To investigate the effect
of our approach under both power and area constraints, we
assume that the target hardware platform has a reconfigura-
ble part only for adders and multipliers with a power con-
straint of 100 units and an area constraint of 140 units. We
assume that the number of all the other functional units are
fixed. We assume that the number of all the other functional
units are fixed. The goal of this experiment is to find a

combination of adders and multipliers which can achieve
the smallest overall c-steps. Fig. 8 shows the RCS results for
the six designs under the constraints using different sequen-
tial approaches. From this figure, we can find that for the
designs of Cosine1, FDCT and Feedback our two-phase
approaches using different partial-search heuristics outper-
form both the BULB and LEVEL approaches significantly
(by several orders of magnitude). For the ARFilter design,
since the initial upper-bound cannot be reduced in the first
phase, the overall performance is a little worse than the
approaches BULB and LEVEL. For the designs of Collapse
and Smooth Triangle, we cannot obtain the comparison results
due to the timeout (i.e., 3,600 seconds) of all approaches.

Fig. 9 presents the RCS results using our parallel two-
phase approach together with the state-of-the-art parallel
B&B style RCS approaches (i.e., Hybrid8 [18] and ML8 [22])
under the same power and area constraints as Fig. 8. From
this figure, we can find that our parallel two-phase
approach can achieve the best RCS performance for all the
benchmarks except for the design Smooth Triangle. For the
ARFilter design, due to the level-bound sharing and pruning
techniques, our parallel two-phase approaches can have
better performance than the BULB approach. For the Smooth
Triangle design, the comparison fails due to the timeout of
all the four approaches. For the other four designs, our par-
allel two-phase approach outperforms the Hybrid8 and par-
allel structure-ware pruning approach (i.e., ML8) methods
by several orders of magnitude. This is mainly because our
parallel two-phase approach can quickly find shorter initial
schedules. Such shorter feasible schedules together with
speculated upper-bounds, updated lower-bounds and
level-bound pruning technique enable the early termination
of the RCS search. For example, from the Collapse design,
we can find that the ML8 approach cannot figure out an
optimal schedule within 3,600 seconds. Note that in Collapse
design the partial search heuristics are not helpful to find a
shorter initial schedule, since all the three sequential two-
phase heuristics fail to find optimal solutions within the
specified time limit (i.e., 3,600 seconds) as shown in Fig. 8.
However, based on the bound speculation and structure-
ware pruning, our parallel two-phase approach can find an
optimal schedule within less than 0.01 second. This is
because optimal schedules are located in the smallest specu-
lated search range.

6 CONCLUSION

This paper presented a parallel two-phase B&B approach
that can quickly achieve optimal solutions for RCS

Fig. 7. Parallel RCS results with different number of cores.

Fig. 8. Sequential RCS results under given constraints.

Fig. 9. Parallel RCS results under given constraints.

1312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

problems. By adopting the proposed partial-search heuris-
tics in the first phase, parallel search tasks can quickly
achieve a more accurate estimation for the upper-bound
length of optimal schedules. In the second phase, by using
our proposed bound sharing and speculation techniques,
the speed of optimal schedule detection can be accelerated
based on the collaboration between parallel search tasks.
Due to the reduced initial upper-bound length and the par-
allel collaborative search, our approach can drastically
reduce the overall RCS time. Experimental results using
well-known benchmarks demonstrate that our approach
can achieve better performance than both the state-of-the-
art sequential and parallel B&B methods by several orders
of magnitude.

ACKNOWLEDGMENTS

This work was partially supported by the grants from Natu-
ral Science Foundation of China (Nos. 91418203, 61672230
and 61572197), US National Science Foundation grants
CCF-1351054 (CAREER), Innovation Program of Shanghai
Municipal Education Commission 14ZZ047, and Shanghai
Municipal NSF 16ZR1409000. Tongquan Wei is the corre-
sponding author.

REFERENCES

[1] G. Martin and G. Smith, “High-level synthesis: Past, present, and
future,”Des. Test Comput., vol. 26, no. 4, pp. 18–25, 2009.

[2] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An introduc-
tion to high-level synthesis,” Des. Test Comput., vol. 26, no. 4,
pp. 8–17, 2009.

[3] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. A. Vissers, and
Z. Zhang, “High-level synthesis for FPGAs: From prototyping to
deployment,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 30, no. 4, pp. 473–491, Apr. 2011.

[4] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Intro-
duction to Chip and System Design. Norwell, MA, USA: Kluwer
Academic, 1992.

[5] M. Narasimhan and J. Ramanujam, “A fast approach to comput-
ing exact solutions to the resource-constrained scheduling prob-
lem,” ACM Trans. Des. Autom. Electron. Syst., vol. 60, no. 4,
pp. 490–500, 2001.

[6] M. Chen, F. Gu, L. Zhou, G. Pu, and X. Liu, “Efficient two-phase
approaches for branch-and-bound style resource constrained
scheduling,” in Proc. 27th Int. Conf. VLSI Des., 2014, pp. 162–167.

[7] C. Yu, Y. Wu, and S. Wang, “An in-place search algorithm for the
resource constrained scheduling problem during high-level syn-
thesis,” ACM Trans. Des. Autom. Electron. Syst., vol. 15, no. 4, 2010,
Art. no. 29.

[8] S. Y. Ohm, F. J. Kurdahi, and N. Dutt, “Comprehensive lower
bound estimation from behavioral descriptions,” in Proc. IEEE/
ACM Int. Conf. Comput.-Aided Des., 1994, pp. 182–186.

[9] P. Paulin and J. Knight, “Force-directed scheduling for behavioral
synthesis of ASICs,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 8, no. 6, pp. 661–679, Jun. 1989.

[10] A. Sharma and R. Jain, “Estimating architectural resources and
performance for high-level synthesis applications,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 1, no. 2, pp. 175–190, Jun. 1993.

[11] Z. Shen and C. Jong, “Lower bound estimation of hardware
resources for scheduling in high-level synthesis,” J. Comput. Sci.
Technol., vol. 17, no. 6, pp. 718–730, 2002.

[12] G. Tiruvuri and M. Chung, “Estimation of lower bounds in sched-
uling algorithms for high-level synthesis,” ACM Trans. Des.
Autom. Electron. Syst., vol. 3, no. 2, pp. 162–180, 1998.

[13] Media Benchmarks. (2016). [Online]. Available: http://www.ece.
ucsb.edu/EXPRESS/benchmark/

[14] IBM ILOG CPLEX CP Optimizer V12.3. (2014). [Online]. Avail-
able: http://www-01.ibm.com/software/commerce/optimiza-
tion/cplex-cp-optimizer/index.html

[15] Open MPI. (2014). [Online]. Available: http://www.open-mpi.org

[16] J. Hansen and M. Singh, “A fast branch-and-bound approach to
high-level synthesis of asynchronous systems,” in Proc. IEEE Int.
Symp. Asynchronous Circuits Syst., 2010, pp. 107–116.

[17] M. Chen, S. Huang, G. Pu, and P. Mishra, “Branch-and-bound
style resource constrained scheduling using efficient structure-
aware pruning,” in Proc. IEEE Comput. Soc. Int. Symp. VLSI, 2013,
pp. 224–229.

[18] M. Chen, L. Zhou, G. Pu, and J. He, “Bound-oriented parallel
pruning approaches for efficient resource constrained scheduling
of high-level synthesis,” in Proc. 9th IEEE/ACM/IFIP Int. Conf.
Hardware/Softw. Codes. Syst. Synthesis Des., 2013, pp. 1–10.

[19] A. H. Timmer and J. A. G. Jess, “Execution interval analysis under
resource constraints,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., 1993, pp. 454–459.

[20] H. Steve and B. Forrest, “Automata-based symbolic scheduling for
looping DFGs,” IEEE Trans. Comput., vol. 50, no. 3, pp. 250–267,
Mar. 2001.

[21] T. K. Ralphs, “Chap3: Parallel branch and cut,” in Parallel Combi-
natorial Optimization. Hoboken, NJ, USA: Wiley, 2006, pp. 53–101.

[22] M. Chen, X. Zhang, G. Pu, X. Fu, and P. Mishra, “Efficient
resource constrained scheduling using parallel structure-aware
scheduling techniques,” IEEE Trans. Comput., vol. 65, no. 7,
pp. 2059–2073, Jul. 2016.

[23] Two-Phase Parallel RCS Tool. (2016). [Online]. Available: http://
faculty.ecnu.edu.cn/chenmingsong

MingsongChen (S’08-M’11) received the BS and
ME degrees from the Department of Computer
Science and Technology, Nanjing University,
Nanjing, China, in 2003 and 2006 respectively,
and the PhD degree in computer engineering from
the University of Florida, Gainesville, in 2010. He
is currently a professor in the Computer Science
and Software Engineering Institute, East China
Normal University. His research interests include
design automation of cyber-physical systems,
parallel and distributed systems, formal verifica-

tion techniques, and cloud computing. He is an associate editor of the IET
Computers & Digital Techniques and the Journal of Circuits, Systems
andComputers. He is amember of the IEEE.

Yongxiang Bao received the BE degree from the
Department of Computer Science and Technology,
Anhui University of Technology, Anhui, China, in
2014. He is currently working toward the master’s
degree in the Department of Embedded Software
and System, East ChinaNormalUniversity, Shang-
hai, China. His research interests include design
automation of embedded systems, statisticalmodel
checking, and software engineering.

Xin Fu (S’05-M’10) received the PhD degree in
computer engineering from the University of
Florida, Gainesville, in 2009. She was an NSF
Computing Innovation fellow in the Computer Sci-
ence Department, University of Illinois at Urbana-
Champaign, Urbana, from 2009 to 2010. From
2010 to 2014, she was an assistant professor in
the Department of Electrical Engineering and
Computer Science, University of Kansas, Law-
rence. Currently, she is an assistant professor in
the Electrical and Computer Engineering Depart-

ment, University of Houston, Houston. Her research interests include
computer architecture, high-performance computing, hardware reliability
and variability, energy-efficient computing, and mobile computing. She
received 2014 NSF Faculty Early CAREER Award and 2012 Kansas
NSF EPSCoR First Award. She is a member of the IEEE.

CHEN ET AL.: EFFICIENT RESOURCE CONSTRAINED SCHEDULING USING PARALLEL TWO-PHASE BRANCH-AND-BOUND HEURISTICS 1313

Geguang Pu received the PhD degree in mathe-
matics from Peking University, in 2005. Currently,
he is a professor in the Software Engineering Insti-
tute, East China Normal University. His research
interests include program analysis, formal model-
ing of business processes, automated testing, and
verification. From 2006, he served as a PC mem-
bers in a number of international academic confer-
ences, including ATVA, ICFEM, ICTAC, etc.

Tongquan Wei (S’06-M’11) received the PhD
degree in electrical engineering from Michigan
Technological University, in 2009. He is currently
an associate professor in the Department of Com-
puter Science and Technology, East China Normal
University. His research interests include green
and reliable embedded computing, cyber-physical
systems, parallel and distributed systems, and
cloud computing. He serves as a regional editor of
the Journal of Circuits, Systems, and Computers
since 2012. He also served as guest editors of

several special sections of the IEEE Transactions on Industrial Informatics
and the ACM Transactions on Embedded Computing Systems. He is a
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

